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Abstract 
 

 
Comprised of exo- and trans-atmospheric trajectory segments, atmospheric re-entry 

represents a complex dynamical event which traditionally signals the mission end-of-life for low-

Earth orbit (LEO) spacecraft, both manned and unmanned. Transcending this paradigm, 

atmospheric re-entry can be employed as a means of operational maneuver whereby the 

aerodynamic forces of the upper atmosphere can be exploited to create an aeroassisted maneuver. 

Utilizing a notional trans-atmospheric, lifting re-entry vehicle with 𝐿/𝐷 = 6, the first phase of 

research demonstrates the terrestrial reachability potential for skip entry aeroassisted maneuvers. 

By overflying a geographically diverse set of sample ground targets, comparative analysis 

indicates a significant savings in ∆𝑉 expenditure for skip entry compared with planar phasing 

and simple plane change exo-atmospheric maneuvers. In the second phase, the Design of 

Experiments method of orthogonal arrays provides optimal vehicle and skip entry trajectory 

designs by employing main effects and Pareto front analysis. Depending on the chosen re-

circularization altitude, the coupled optimal design can achieve an inclination change 

of 19.91 deg with 50-85% less ∆𝑉 than a simple plane change. Finally, the third phase 

introduces the descent-boost aeroassisted maneuver as an alternative to combined Hohmann and 

bi-elliptic transfers in order to perform LEO injection. Compared with bi-elliptic transfers, 

simulations demonstrate that a lifting re-entry vehicle with 𝐿/𝐷 = 6 performing a descent-boost 

maneuver requires 6-12% less ∆𝑉 for injection into orbits lower than 650 km. In addition, the 

third phase also introduces the “Maneuver Performance Number” as a dimensionless means of 

comparative effectiveness analysis for both exo- and trans-atmospheric maneuvers. 
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List of Symbols 

 
 

The following list of symbols is alphabetical: Lowercase, then uppercase; Latin, then 

Greek. Due to the magnitude of distances associated with astrodynamics and re-entry analysis, 

all of the following symbols containing the base unit of measure of meters (m) are converted to 

kilometers (km) for all subsequent analysis. For the symbols χ and ∆, the notation subscript ( ∙ ) 

indicates an unspecified base unit of measure.  

Latin Symbol Definition Base Unit of Measure 

𝑎 Orbital semi-major axis m 
𝑎𝑑𝑒𝑐𝑒𝑙 Total deceleration �m/s2� 
𝑑 General distance m 
𝑒 Orbital eccentricity unitless 
𝑓 Planetary flattening parameter; focal length unitless; m 
𝑔 Gravitational acceleration �m/s2� 
ℎ Altitude m 
𝑖 Inclination angle rad 
𝑚 Vehicle mass kg 
𝑛 Scalar  quantity (e.g. number of points) unitless 
ƥ Maneuver performance (MP) number unitless 
𝑟 Geocentric radial distance  m 
𝑡 General time s 

 
𝐶𝐷 Coefficient of drag unitless 
𝐶𝐿 Coefficient of lift unitless 
𝐷 Drag force kg ∙ m/s2 
𝐸𝑟𝑒𝑙 Relative error tolerance unitless 
𝐽𝑖 Zonal harmonic coefficient (Jeffrey constant) unitless 
𝐿 Lift force kg ∙ m/s2 
𝑁 Integration step size s 
𝑃 Keplerian orbital period s 
𝑃𝑛 Legendre polynomial, order 𝑛 unitless 
�̇� Heat flux kW/m2 

𝑅𝑀𝑆 Root mean square unitless 
𝑆 Planform area m2 
𝑇 Thrust force kg ∙ m/s2 
𝑉 Velocity  m/s 

 



www.manaraa.com

xviii 

 
Greek Symbol Definition Base Unit of Measure 

𝛼 Atmospheric density parameter unitless 
𝛽 Atmospheric scale height 1 m⁄  
𝛾 Flight-path angle rad 
𝜀 Specific mechanical energy m2/s2 
𝜖 Planetary ellipticity  unitless 
𝜃 Longitude rad 
𝜇 Gravitational parameter m3/s2 
𝜌 Atmospheric density �kg/m3� 
𝜎 Bank angle rad 
𝜑 Co-latitude rad 
𝜒 Universal variable ( ∙ ) 
𝜓 Heading angle rad 
𝜔(∙) Planetary rotation rate rad/s 

 

∆ Change in value, i.e. ∆𝑉 ( ∙ ) 
𝜙 Latitude (geocentric) rad 

 
Symbol Scripting Definition 

( )𝑐 Conditions for circular orbit 
( )𝑒 Conditions at entry interface 
( )𝑓 Final conditions 

  ( )𝑔𝑑 Geodetic value 
( )𝑖 Initial conditions 
( )𝑗 General index 
( )𝑟 Component in radial direction 
( )𝑠 Stagnation value 
( )𝑣 Component in velocity direction 
 ( )𝑤 Conditions at vehicle surface (wall) 

 
( )𝐿 Component in lift direction 
( )𝑆𝐿 Conditions at sea-level 

 
 ( )𝜙 Component in transverse direction 

 
( )0 Conditions at a reference radius 

 ( )⊕ Conditions for the Earth 
 ( )∞ Free-stream conditions 

 
( )𝐼  Measured with respect to an inertial frame 
( )𝑅  Measured with respect to a rotating frame 
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THE PROSPECT OF RESPONSIVE SPACECRAFT USING 
AEROASSISTED, TRANS-ATMOSPHERIC MANEUVERS 

I.  Introduction 

General Issue 

Traditionally, orbital states and orbit geometry are modified via various maneuvers 

performed in vacuo, such as simple plane changes, combined changes to inclination and/or right 

ascension of the ascending node (RAAN), and coplanar/non-coplanar phasing. Based on a given 

mission altitude and the desired change in orbital plane position, however, exo-atmospheric 

maneuvers have the propensity of becoming prohibitively expensive in terms of ∆𝑉. While ∆𝑉 

expenditure can be reduced by performing maneuvers at high altitudes or nodal crossings, such 

options are precluded by mission taskings which seek to maximize inclination change, ∆𝑖, while 

simultaneously minimizing the total maneuver ∆𝑉 within a specified time duration. Besides the 

vacuum of space, the upper atmosphere offers an alternative maneuver environment which 

primarily has been utilized for re-entry, an event that signals the mission end-of-life for low-

Earth orbit (LEO) spacecraft. Departing from this convention, atmospheric re-entry can be 

employed as a means of operational maneuver whereby the aerodynamic drag of the upper 

atmosphere is exploited by an entry vehicle to create an aeroassisted, trans-atmospheric 

maneuver. For the purposes of this research, an entry vehicle represents a subset of spacecraft 

known as trans-atmospheric vehicles (TAVs) that are designed to (1) conduct normal mission 

functions within LEO, and, (2) operate at hypersonic velocities within the upper atmosphere 

following a de-orbit maneuver by using lift to complete a specified aeroassisted maneuver and 

fulfill a specified mission tasking.1 

                                                 
1 Daniel Gonzalez, Mel Eisman, Calvin Shipbaugh, Timothy Bonds, and Anh Tuan Le, Proceedings of the RAND 

Project AIR FORCE Workshop on Transatmospheric Vehicles (Santa Monica, CA: RAND Corporation, 1997), 1. 
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Research Motivation 

The attainment of global reach is part of a wider responsive space initiative within the 

U.S. Department of Defense and represents a shift from a solution-oriented to a capabilities-

oriented approach to space acquisition and space system design, in which the performance of a 

new system is “intended to respond to new taskings within days, hours or minutes without 

proscribing how it is done.”2 Not restricted to the vacuum environment of space, aeroassisted 

maneuvers represent an alternative means of achieving global reach and feature the potentiality 

of changing orbital states and geometry with a lower ∆𝑉 expenditure and shorter time-of-flight 

than conventional exo-atmospheric maneuvers. For the present research, global reach is divided 

into two categories: (1) Terrestrial reachability; and (2) LEO reachability. With the first 

category, terrestrial reachability represents the ability of a TAV to overfly a specified ground 

target within a fixed operations window by performing an aeroassisted maneuver to change orbit 

inclination and/or semi-major axis. The second category, LEO reachability, extends the concept 

of global reach to the LEO altitude regime and represents the ability of a TAV to execute a LEO 

injection subsequent to an aeroassisted maneuver for the prospect of on-orbit inspection and 

rendezvous.3    

One method for determining the performance potential of aeroassisted maneuvers is 

through the pursuance of a trajectory-centric analysis approach comprised of either a parametric 

study or an optimization of the trajectory based on a specified performance index. For both 

cases, the TAV design is known a priori and, in conjunction with the mission tasking, represent 

the fundamental constraints on aeroassisted maneuver performance. As an alternative, the second 

                                                 
2 Robert D. Newberry, “Powered Spaceflight for Responsive Space Systems,” High Frontier 1 (2005): 46. 
3 NASA defines the upper altitude limit of LEO as 2000 km; National Aeronautics and Space Administration, 

“Process for Limiting Orbital Debris,” NASA STD 8719.14A (Washington, D.C.: National Aeronautics and Space 
Administration, 2012), 23. 
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method is optimization-centric and determines performance potential by optimizing the TAV 

design simultaneously with the maneuver trajectory. Based on a specified set of performance 

indices within the multiple-objective optimization problem (MOP), aeroassisted maneuver 

performance becomes the objective space arising from an initial decision space containing not 

only TAV and trajectory design parameters, but also constraints related to TAV capability, to 

include available ∆𝑉, maximum deceleration g-loading, and maximum heat flux. Employing 

these two methodologies, the terrestrial and LEO reachability aspects of global reach will be 

explored by fulfilling the following research objectives: 

• Develop and verify a model for utilizing aeroassisted, trans-atmospheric maneuvers to 

achieve desired orbital state changes induced by aerodynamic effects. This model will 

hereafter be referred to as the trajectory dynamics model.  

• Based on a given TAV design commencing from LEO, determine the terrestrial 

reachability performance of aeroassisted maneuvers, specifically skip entry, by 

overflying a series of geographically-separated ground targets at high, medium, and low 

latitudes. For comparison, planar phasing and simple plane change maneuvers will be 

simulated as exo-atmospheric alternatives to the aeroassisted maneuvers. 

• Employing the Design of Experiments method of orthogonal arrays, determine terrestrial 

reachability by optimizing the TAV and aeroassisted maneuver designs based the MOP 

of maximizing orbit inclination change while minimizing total maneuver ∆𝑉. Following 

optimization, the performance of the TAV and aeroassisted maneuver designs will be 

compared with that of an exo-atmospheric simple plane change.  

• Explore the reachability potential of aeroassisted maneuvers as a means for LEO 

injection and determine a cursory orbit injection envelope for a TAV commencing from 
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LEO. Also, provide an assessment of the viability of aeroassisted maneuvers for orbit 

injection when compared with exo-atmospheric maneuver alternatives, specifically 

combined Hohmann and bi-elliptic transfers.   

 

Methodology 

The trajectory dynamics model produces solutions by integrating a set of six nonlinear, 

ordinary differential equations of motion which govern the kinetics and kinematics of orbital 

flight and atmospheric re-entry. As a means of model verification, the Apollo 10 re-entry initial 

conditions will serve as inputs for the trajectory dynamics model so as to compare the resulting 

trajectory solutions with the actual re-entry trajectory. In addition to the Apollo 10 capsule 

parameters, the re-entry initial conditions – expressed as geodetic values with respect to an 

inertial reference frame – are given in the following tables: 

 
 
 

Table 1.1. Apollo 10 Re-Entry Initial Conditions4 

State Value 

Geodetic Altitude, ℎ𝑔𝑑𝑖 123.55077 km 
Inertial Velocity, 𝑉𝑖

𝐼  11.06715 km/s 
Longitude, 𝜃𝑖 174.24384 deg E 

Geodetic Latitude, 𝜙𝑔𝑑𝑖 23.653003 deg S 
Inertial Flight-Path Angle, 𝛾𝑖

𝐼  −6.6198381 deg 
Inertial Heading Angle, 𝜓𝑖

𝐼  18.0683 deg 

 

 

 

                                                 
4 Kerry D. Hicks, Introduction to Astrodynamic Re-Entry, TR 09-03 (Wright-Patterson AFB, OH: Air Force Institute 

of Technology, 2009), 377. 
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Table 1.2. Apollo 10 Command Module Capsule Parameters5 

 

Pre-Entry Mass, m 5498.22 kg 
Planform Area, S 12.017 m2 

Coefficient of Drag, 𝐶𝐷 0.40815 
Coefficient of Lift, 𝐶𝐿 1.2569 

 

 
Following the verification phase, the trajectory dynamics model is utilized to estimate the 

terrestrial and LEO reachability envelopes for the skip entry and descent-boost types of 

aeroassisted maneuvers based on a notional TAV as defined in Table 1.3. Similar to spacecraft 

such as the X-37B Orbital Transfer Vehicle (OTV) in terms of dimensional area and mass, the 

notional TAV features a theoretical hypersonic lift-to-drag ratio of 𝐿/𝐷 = 6 that serves to 

illustrate the trans-atmospheric maneuvering capability of a vehicle with aerodynamic 

characteristics approaching the maximum of Newtonian flow theory.6 By comparison, the 

hypersonic lift-to-drag ratios of the Space Shuttle and X-33 single-stage-to-orbit concept vehicle 

are 1.9 and 1.2, respectively.7 

 

Table 1.3. Notional Trans-Atmospheric Vehicle (TAV) Parameters 
 

Total Wet Mass, m 5000 kg 
Planform Area, S 18 m2 

Coefficient of Drag, 𝐶𝐷 0.5 
Coefficient of Lift, 𝐶𝐿 3.0 

 

                                                 
5  Ibid., 379. 
6 John D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, Second Edition (Reston, VA: American 

Institute of Aeronautics and Astronautics, Inc., 2006), 52. 
7 Michael E. Tauber, “Maximum Lift/Drag Ratio of Flat Plates with Bluntness and Skin Friction at Hypersonic 

Speeds,” NASA TM 88338 (Moffett Field, CA: AMES Research Center, 1986), 3; Kevin J. Murphy, Robert J. 
Nowak, Richard A. Thompson, and Brian R. Hollis, “X-33 Hypersonic Aerodynamic Characteristics,” Journal of 
Spacecraft and Rockets 38, no. 5 (2001): 674. 
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As shown in Chapter V, terrestrial reachability is also determined by conducting main 

effects and Pareto front analysis to solve the MOP of maximizing inclination change, ∆𝑖, while 

simultaneously minimizing total ∆𝑉. Implementing the Design of Experiments method of 

orthogonal arrays, the optimization decision space contains both TAV and trajectory design 

parameters. Consequently, the notional TAV defined in Table 1.3 represents one combination of 

vehicle design parameters to be simulated in order to solve the MOP.  

 Whether skip entry or descent-boost in nature, the aeroassisted maneuvers each 

commence from a circular reference orbit in the LEO altitude regime. Following a de-orbit burn 

to transfer from the reference orbit into an elliptical trajectory, the TAV changes the orbital states 

of inclination and semi-major axis by leveraging aerodynamic forces in the upper atmosphere. 

The amount of change achievable for the orbital states is a direct function of the trans-

atmospheric trajectory perigee altitude as well as the aeroassisted maneuver mechanics, 

specifically the TAV bank angle and initial velocity. In order to maximize aerodynamic force 

and, therefore, the reachability potential of the aeroassisted maneuver, the TAV must penetrate 

deep into the sensible atmosphere during perigee transit at a specified negative bank angle to 

create a leftward turn based on the prograde motion of the initial reference orbit. While a 

constant bank angle of 𝜎 = −90 deg is assumed in Chapter IV, the Design of Experiments 

optimization approach in Chapter V utilizes both a constant and variable bank angle within the 

orthogonal arrays of experiments. Detailed descriptions of skip entry and descent-boost 

maneuvers are provided in Chapters IV and VI, respectively.  

As a means of evaluating aeroassisted maneuver performance, the following types of 

atmospheric maneuvers are simulated: (1) Phasing maneuver; (2) simple plane change; (3) 

Hohmann transfer; (4) combined Hohmann transfer; and (5) bi-elliptic transfer. While other 
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types of exo-atmospheric maneuver exist, to include planar non-tangential orbit transfers, one-

tangent burns, apsides rotations, and Lambert transfers, the present research is restricted to the 

preceding list.8 For the first type of exo-atmospheric maneuver, a circular reference orbit in LEO 

is simulated for a 24 hour-duration, with the resulting ground track trajectory crossings of the 

ground target latitude identified and catalogued. If the latitude crossings are to the east of the 

target, then an “ascending” planar phasing maneuver is formulated so as to create an elliptical, 

perturbed orbit with both a period and semi-major axis greater than that of the reference orbit. 

Flight along the “ascending” orbit allows for the Earth to rotate a greater angular distance during 

the orbit period, thus permitting an over-flight of the target rather than a miss to the east as 

originally calculated.  

With latitude crossings to the west of the target, two options are available to shift the 

ground track trajectory eastward in order to overfly the target. The first option, a “descending” 

planar skip maneuver creates an elliptical perturbed orbit with both a period and semi-major axis 

less than that of the reference orbit. By entering into the “descending” eccentric orbit, over-flight 

of the target is achieved by traversing a greater angular distance during the orbit period, thus 

decreasing the westward longitudinal difference to zero. The second option arises when the semi-

major axes calculated for a “descending” maneuver are less than the radius of the Earth as a 

result of a large longitudinal difference between the latitude crossing and target. Although 

patently infeasible, such cases can be transformed into “ascending” phasing maneuvers which 

prevent planetary impact at the cost of an increased time-of-flight to target. Both the “ascending” 

and “descending” phasing maneuvers are shown in Fig. 1.1.  

 

                                                 
8 David A. Vallado, Fundamentals of Astrodynamics and Applications, Third Edition (El Segundo, CA: Microcosm 

Press, 2007), 324, 335, 464. 
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Figure 1.1. Phasing Maneuver Diagrams: “Ascending” (left) and “Descending” (right) 
 

 The archetypal out-of-plane exo-atmospheric maneuver, the simple plane change, only 

creates a change in orbital inclination as ∆𝑉 is applied at a nodal crossing. By changing orbital 

velocity from 𝑉𝑖 to 𝑉𝑓, an out-of-plane maneuver is executed which transfers the spacecraft from 

Orbit (1) to Orbit (2) and thus creating the inclination change ∆𝑖 as shown in Fig. 1.2. A function 

of orbital velocity, flight-path angle, and inclination change, an expression for the ∆𝑉 necessary 

to perform a simple plane change is given by:9 

 ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒 = 2𝑉𝑖 cos 𝛾 ∙ sin �1
2

|∆𝑖|� (4.7) 

Known as the Hohmann transfer, the second type of maneuver represents one of the most basic 

and efficient transfer options for altering the orbital semi-major axis. Depicted in Fig. 1.3, the 

Hohmann transfer is coplanar by definition and consists of a spacecraft first performing a 

                                                 
9 Ibid., 345-346. 
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tangential impulsive burn in circular parking orbit (A) to enter into an elliptical transfer orbit (1) 

at periapsis. Once in the transfer orbit, the spacecraft does not thrust until apoapsis where another 

∆𝑉 burn is performed to re-circularize at the desired mission orbit (B).10 

 
 

Figure 1.2. Simple Plane Change Diagram 
 
 

 
Figure 1.3. Hohmann Transfer Diagram 

 

                                                 
10 Robert A. Bettinger and Jonathan T. Black, “Mathematical Relation between the Hohmann Transfer and 

Continuous-Low Thrust Maneuvers,” Acta Astronautica, 96 (2014): 42. 
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For cases in which the parking and mission orbits are non-coplanar, the combined 

Hohmann transfer in Fig. 1.4 is utilized to change both inclination and semi-major axis. In order 

to minimize the total ∆𝑉, the inclination change is incorporated into the transfer burns at both 

(A) and (B) based on the expressions ∆𝑖𝐴 = 𝑠∆𝑖 and ∆𝑖𝐵 = (1 − 𝑠)∆𝑖. One option of determining 

the “best” amount of inclination change to perform at each burn consists of iterating the 

transcendental equation given by Eq. (1.1):11 

 sin(∆𝑖𝐴) = ∆𝑉𝐴𝑉𝐵𝑉1,𝐵 sin(∆𝑖𝐵)
∆𝑉𝐵𝑉𝐴𝑉1,𝐴

 (1.1) 

where 𝑉𝐴 is the orbital velocity at parking orbit (A), 𝑉𝐵 is the orbital velocity at mission orbit (B), 

𝑉1,𝐴 is the velocity at transfer orbit periapsis, and 𝑉1,𝐵 is the velocity at transfer orbit apoapsis. A 

second option, which is used for descent-boost maneuver comparative analysis in Chapter VII, 

involves an analytic approximation that estimates the “best” allocation of inclination change to 

within about 0.5 deg is shown below, where 𝑅 = 𝑟𝑓 𝑟𝑖⁄ .12 

 𝑠 ≈ 1
∆𝑖

tan−1 � sin(∆𝑖)
𝑅3 2⁄ +cos(∆𝑖)

� (1.2) 

 
 

Figure 1.4. Combined Hohmann Transfer Diagram 

                                                 
11 Vallado, 354. 
12 Ibid., 355. 
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Finally, the bi-elliptic transfer in Fig. 1.5 is similar to the Hohmann transfer such that the 

parking, mission, and transfer orbits are all coplanar. Although efficient in terms of ∆𝑉, the bi-

elliptic transfer features the longest time-of-flight as compared with the preceding maneuvers. 

Rather than a direct elliptical transfer from the parking to the mission orbit, the bi-elliptic is 

characterized two transfer ellipses. After performing a tangential impulsive burn at (A), the 

spacecraft enters into an elliptical transfer orbit (1) until apoapsis at the intermediate orbit (B), 

which for the example given in Fig. 1.5 is at an altitude greater than the mission orbit altitude. At 

(B), a second impulsive burn is performed to enter into second elliptical transfer orbit (2) and 

subsequent re-circularization at the mission orbit (C). 

 

 
Figure 1.5. Bi-Elliptic Transfer Diagram  
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Preview 

With the research objectives defined and an outline of the analysis methodology provided 

in Chapter I, Chapter II comprises a review of relevant literature pertaining to aeroassisted 

maneuvers and the re-entry environment. An extension of Chapter II, a review of literature 

related to both the Design of Experiments (DOE) method and alternative approaches to 

maneuver optimization is given in Chapter V. In Chapter III, the first section explores the 

simplifying assumptions pertaining to the atmospheric density and TAV models which underpin 

the trajectory dynamics model. The second section provides a detailed presentation of the 

equations of motion and the gravity model, as well as the verification of the trajectory dynamics, 

deceleration, and heat flux models. Chapter IV presents a comparative study of ground target 

over-flight performance for skip entry and exo-atmospheric phasing and simple plane change 

maneuvers. In Chapter V, the DOE method of orthogonal arrays is employed to optimize both 

TAV design and the trajectory of an atmospheric skip entry maneuver. Next, Chapter VI 

examines the use of aeroassisted descent-boost maneuvers for LEO injection and reachability. 

Chapter VII discusses potential air and space law challenges contemporarily associated with the 

prospect of executing aeroassisted maneuvers, and, finally, Chapter VIII concludes with a 

presentation of the significance of the present research as well as recommendations for future 

research. Presented using the scholarly article format, Chapters IV-VII represent manuscripts 

submitted to various aerospace engineering journal publications. In terms of ancillary material, 

Appendix A outlines the algorithms for exo-atmospheric maneuver implementation, Appendix B 

presents the direct formulation for geodesies on an ellipsoidal planetary model, Appendix C 

provides a guide for extracting the six Keplerian orbital elements from a Two-Line Element 

(TLE) set, and an algorithm for solving a Lambert transfer is given in Appendix D.     
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II. Literature Review 
 

Chapter Overview 

The purpose of this chapter is to provide an overview of the relevant research pertaining 

to aeroassisted, trans-atmospheric maneuvers and their utilization as an alternative to traditional 

exo-atmospheric maneuvers. Besides analyzing the viability of leveraging aeroassisted 

maneuvers as a means of altering the orbital elements of a given spacecraft in low-Earth orbit 

(LEO), preceding studies have also focused on modeling spacecraft aerodynamics as well as the 

flow and heating environment of the upper atmosphere. 

Types of Aeroassisted Maneuvers 

Fundamentally, three types of aeroassisted maneuvers can be identified, each 

representing synergistic maneuvers since they utilize both atmospheric forces – in the form of 

aerodynamic drag and lift – and propulsive forces. The first type, known as aerobang 

maneuvers, consists of a trans-atmospheric flight trajectory augmented by continuous thrusting at 

maximum throttle. Employed to not only vary the spacecraft’s angle-of-attack, maximum thrust 

also limits the duration of atmospheric flight, thereby reducing total heating during re-entry. Due 

to the higher velocity of the aerobang maneuver, however, the spacecraft potentially could 

experience an increase in re-entry heat flux depending on the altitude of trans-atmospheric 

flight.13 Similarly, the second type of maneuver, known as aerocruise, also utilizes propulsive 

force during the trans-atmospheric trajectory, but at a throttle level sufficient to only counteract 

aerodynamic drag. The third maneuver type, known as aeroglide, is analogous to a skip entry 

maneuver. Relying primarily on aerodynamic forces, aeroglide maneuvers produce a gliding, 
                                                 
13 Richard E. Johnson, “Effects of Thrust Vector Control on the Performance of the Aerobang Orbital Plane Change 

Maneuver” (MS Thesis, Department of Aeronautical and Astronautical Engineering, Naval Postgraduate School, 
1993): 3-4. 
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unpowered trajectory which only employs propulsive forces to de-orbit prior to and re-circularize 

at the end of the maneuver.14 Despite experiencing greater total heating stemming from 

prolonged flight through lower, denser regions of the atmosphere, aeroglide maneuvers are the 

least expensive in terms of fuel consumption compared with the aerobang and aerocruise 

alternatives. As measured by the change in orbit inclination per quantity of fuel expended, 

aerocruise maneuvers have been shown to become increasingly efficient as the bank angle 

increases during the trans-atmospheric trajectory.15  

Primarily used for interplanetary trajectories, supplementary types of aeroassisted 

maneuvers consist of aerobrake, aerocapture, and aerogravity assist. Described as purely 

aerodynamic in nature, aerobrake maneuvers produce a reduction in eccentricity and semi-major 

axis as a result of aerodynamic drag effects induced with successive perigee passages through the 

upper atmosphere. Alternatively, aerocapture maneuvers exploit atmospheric drag to reduce 

orbital energy thereby changing an orbit from hyperbolic to elliptic, while aerogravity assist 

maneuvers modify the orbital elements of a hyperbolic trajectory by utilizing the combined 

effects of aerodynamic, gravitational, and propulsive forces.16 

Aeroassisted Maneuver Performance 

Skip maneuvers simulated without heat flux path constraints for vehicles in LEO have 

been demonstrated to have a similar propellant-efficiency with exo-atmospheric maneuvers for 

changes in inclination less than 3 deg.17 For ∆𝑖 > 3 deg, the propellant expenditure of skip and 

                                                 
14 Ibid. 
15 John C. Nicholson, “Numerical Optimization of Synergistic Maneuvers” (MS Thesis, Department of Aeronautical 

and Astronautical Engineering, Naval Postgraduate School, 1994), 5. 
16 Christopher L. Darby and Anil V. Rao, “Optimal Impulsive LEO to LEO Multiple-Pass Aeroassisted Orbital 

Transfer for Small Spacecraft” (paper presented at the 20th AAS/AIAA Space Flight Mechanics Meeting, San 
Diego, CA, 15-17 February 2010): 3. 

17 Christopher L. Darby and Anil V. Rao, “Minimum-Fuel Low-Earth Orbit Aeroassisted Orbital Transfer of Small 
Spacecraft,” Journal of Spacecraft and Rockets 48, no. 4 (2011): 621-622. 
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simple plane change maneuvers begin to diverge, with simple plane change maneuvers requiring 

87% more ∆𝑉 to execute a plane change of ∆𝑖 = 20 deg. As the inclination change increases 

to 40 deg, the difference in propellant expenditure also increases with simple plane changes 

requiring 175% more ∆𝑉 than skip entry.18 Although the minimum maneuver ∆𝑉 increases as 

the number of atmospheric passes increase, skip entry remains more efficient than exo-

atmospheric maneuvers for ∆𝑖 ≥ 15 deg.19 Even with the imposition of a heat flux path 

constraint, skip entry maneuvers remain more propellant efficient than exo-atmospheric 

maneuvers for ∆𝑖 ≥ 15 deg despite increases in ∆𝑉 related to decreases in maximum heat flux.20  

In their paper “Numerical Optimization Study of Multiple-Pass Aeroassisted Orbital 

Transfer,” Rao, Tang, and Hallman studied the problem of a minimum-impulse multiple-pass 

aeroassisted orbital transfer from geostationary orbit (GEO) to LEO with a large inclination 

change, subject to constraints on heat flux, angle-of-attack, and transfer time.21 For their notional 

TAV, the total aeroassisted inclination change approaches a limit of approximately 36.2 deg as 

the number of atmospheric passes increases. In all test cases, the aeroassisted maneuver offered 

“substantial savings” in ∆𝑉 when compared with the non-coplanar combined Hohmann and bi-

elliptic transfers.22 Similarly, Miele, Lee, and Mease in their paper “Optimal Trajectories for 

LEO-to-LEO Aeroassisted Orbital Transfer” developed a series of optimal control orbit transfer 

problems from which to compare the relative performance of aeroassisted maneuvers with that of 

Hohmann-style, exo-atmospheric maneuvers. Through their analysis, Miele, Lee, and Mease 

identified that aeroassisted maneuvers required less energy than the bi-elliptic transfer to 

                                                 
18 Ibid. 
19 Darby and Rao, “Optimal Impulsive,” 45. 
20 Ibid., 47. 
21 Anil V. Rao, Sean Tang, and Wayne P. Hallman, “Numerical Optimization Study of Multiple-Pass Aeroassisted 

Orbital Transfer,” Optimal Control Applications and Methods 23 (2002): 215. 
22 Ibid., 228-230. 



www.manaraa.com

16 

minimize the energy required for orbital transfer, in addition to minimizing the “time integral of 

the square of the path inclination,” or flight-path angle. For the problem of minimizing the peak 

heating rate, however, the aeroassisted maneuvers required more energy than the bi-elliptic 

transfer case.23 

In addition to maneuver comparative analyses, a segment of current literature focuses on 

the formulation of skip entry guidance algorithms. Specifically tailored for capsule-style entry 

vehicles with a low lift-to-drag ratio, most of these algorithms provide control guidance during 

the re-entry phase of a lunar-return trajectory. In their paper “Skip Entry Trajectory Planning and 

Guidance,” Brunner and Lu developed an on-board, closed-loop numerical predictor-corrector 

algorithm for re-entry trajectories featuring an initial skip entry flight segment.24 Employing full 

three-degree-of-freedom dynamics, the algorithm not only computes the required bank angle to 

achieve the desired final range condition, but also accounts for bank-angle reversals during re-

entry, and features lift and drag acceleration filters.25 Intended for use with the Orion capsule, 

Putnam, Neave, and Barton in “PredGuid Entry Guidance for Orion Return from Low Earth 

Orbit” formulated a numerical predictor-corrector algorithm that operates a non-spherical 

planetary model with the inclusion of 𝐽2-perturbations, and can be used for both lunar and LEO 

re-entry.26 As an alternative algorithm, Kluever in “Entry Guidance Using Analytical 

Atmospheric Skip Trajectories” developed a guidance method that uses analytical trajectory 

                                                 
23 A. Miele, W. Y. Lee, and K. D. Mease, “Optimal Trajectories for LEO-to-LEO Aeroassisted Orbital Transfer,” 

Acta Astronautica 18 (1988): 110, 115. 
24 Christopher W. Brunner and Ping Lu, “Skip Entry Trajectory Planning and Guidance,” Journal of Guidance, 

Control, and Dynamics 31, no. 5 (2008): 1210. 
25 Ibid., 1218-1219. 
26 Zachary R. Putnam,  Matthew D. Neave, and Gregg H. Barton, “PredGuid Entry Guidance for Orion Return from 

Low Earth Orbit” (Paper presented at the 2010 IEEE Aerospace Conference, Big Sky, Montana, 6-13 March 
2010): 2, 6. 
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solutions obtained from matched asymptotic expansions.27 Further information regarding the 

mathematical foundation of Kluever’s algorithm is found in “Solution of the Exact Equations for 

Three-Dimensional Atmospheric Entry Using Directly Matched Asymptotic Expansions” by 

Busemann, Vinh, and Culp,28 as well as “Three-Dimensional Atmospheric Entry Problem Using 

Method of Matched Asymptotic Expansions” by Naidu.29 

Examining the relative performance of aerobang and aerocruise maneuvers in their paper 

“Optimality of the Heating-Rate-Constrained Aerocruise Maneuver,” Ross and Nicholson 

concluded that the aerobang maneuver is superior to both aerocruise and the exo-atmospheric 

simple plane change. For the same propellant expenditure, the aerobang maneuver produced an 

inclination change of approximately 17 deg, whereas the aerocruise and simple plane change 

alternatives were lower at ∆𝑖 ≈ 15 deg and ∆𝑖 ≈ 11 deg, respectively.30 In his paper 

“Combining Propulsive and Aerodynamic Maneuvers to Achieve Optimal Orbital Transfer,” 

Hanson simulated the synergetic and purely aerodynamic forms of aeroassisted maneuvers and 

compared the respective orbital transfer performance results with exo-atmospheric maneuvers. 

Overall, Hanson identified that synergetic aeroassisted maneuvers required the lowest ∆𝑉 

expenditure by leveraging both aerodynamic and propulsive forces.31 Finally, Ikawa and Rudiger 

in “Synergetic Maneuvering of Winged Spacecraft for Orbital Plane Change” demonstrated that 

                                                 
27 C. A. Kluever, “Entry Guidance Using Analytical Atmospheric Skip Trajectories,” Journal of Guidance, Control, 

and Dynamics 31, no. 5 (2008): 1531. 
28 Adolf Busemann, Nguyen X. Vinh, and Robert D. Culp, “Solution of the Exact Equations for Three-Dimensional 

Atmospheric Entry Using Directly Matched Asymptotic Expansions,” NASA CR-2643 (Washington, D.C.: 
National Aeronautics and Space Administration, 1976): 1-33. 

29 D. S. Naidu, “Three-Dimensional Atmospheric Entry Problem Using Method of Matched Asymptotic 
Expansions,” IEEE Transactions on Aerospace and Electronic Systems 25, no. 5 (1989): 660-667.  

30 I. Michael Ross and John C. Nicholson, “Optimality of the Heating-Rate-Constrained Aerocruise Maneuver,” 
Journal of Spacecraft and Rockets 35, no. 3 (1998): 361-364. 

31 John M. Hanson, “Combining Propulsive and Aerodynamic Maneuvers to Achieve Optimal Orbital Transfer,” 
Journal of Guidance, Control, and Dynamics 12, no. 5 (1989): 732-738. 
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spacecraft performing synergetic aeroassisted maneuvers during high-lift, high-drag flight 

produce a greater change in inclination than those operating at the maximum lift-to-drag ratio.32 

Performing purely exo-atmospheric maneuvers, Co analyzed the capability of achieving 

global reach in three separate scenarios: (1) Walker constellation; (2) a single non-maneuvering 

satellite; and (3) two maneuvering satellites (one with chemical propulsion and the other with 

electric).33 In the third scenario, a notional satellite with electric propulsion starting from a 

500 km-altitude retrograde orbit performed a series of continuous low-thrusting phasing 

maneuvers in order to overfly a series of 10 sample ground targets during a 10.5-day campaign. 

Illustrating the capability of global reach in minimum time, several sample ground targets were 

overflown, to include Tokyo after an elapsed time of approximately 60 hr with a ∆𝑉 expenditure 

of 0.095 km/s, and Moscow with a time-of-arrival of 140 hr and ∆𝑉 = 0.18 km/s.34 Overall, a 

single electric propulsion satellite was demonstrated to perform a “worst case” of approximately 

40 maximum-∆𝑉 maneuvers for a total ∆𝑉 of 6.5 km/s. In terms of global reach, it was shown 

that even the “worst case” targets located furthest from the reference ground track trajectory 

could be reached and overflown in 2.5 days. 35 

Extending Co’s research, Dalton in his thesis entitled “Ground Target Over-Flight and 

Orbital Maneuvering via Aeroassisted Maneuvers” demonstrated the global reach of aeroassisted 

skip entry maneuvers by identifying terrestrial reachability envelopes for various initial 

inclination, RAAN, and altitude conditions.36 Assuming both a spherical planetary and 

                                                 
32 H. Ikawa and T. F. Rudiger, “Synergetic Maneuvering of Winged Spacecraft for Orbital Plane Change” (Paper 

presented at the AIAA 20th Aerospace Sciences Meeting, Orlando, FL, 11-14 January 1982): 1-10. 
33 Thomas C. Co, “Operationally Responsive Spacecraft Using Electric Propulsion” (Ph.D Dissertation, School of 

Engineering and Management, Air Force Institute of Technology (AU), 2012): 218. 
34 Ibid., 187-188, 190. 
35 Ibid., 226. 
36 Devin K. Dalton, “Ground Target Over-Flight and Orbital Maneuvering via Aeroassisted Maneuvers” (MS 

Thesis, School of Engineering and Management, Air Force Institute of Technology (AU), 2014): 77-81. 



www.manaraa.com

19 

gravitational model, Dalton also developed closed-form analytical equations for the computation 

of ∆𝑉 and time-of-arrival for skip entry, phasing, and simple plane change maneuvers.37 

The Atmospheric Flow Environment and TAV Aerodynamics 

Underpinning all trajectory analyses and simulations of aeroassisted maneuvers is the 

method by which the atmosphere is modeled. Due to the short time scales involved with 

atmospheric entry scenarios, various atmospheric dynamics can be deemed negligible, primarily 

geomagnetic-induced variations in density and temperature arising due to the solar cycle and 

related space weather phenomena. As a result, a single atmospheric model can be devised that 

depicts density as not only decaying exponentially as altitude increases, but also independent of 

any effects due to time of day, season, or geographic location. Such a model, defined in 

Vallado’s Fundamentals of Astrodynamics and Applications, was utilized by Gargasz in his 

thesis “Optimal Spacecraft Attitude Control Using Aerodynamic Torques,” and Hajovsky in his 

thesis “Satellite Formation Control Using Atmospheric Drag.”38  

In addition to depicting the macroscopic atmospheric environment as a function of 

altitude, aeroassisted maneuver simulations have also sought to garner increased model fidelity 

by capturing the flow characteristics of the upper atmosphere and their relation to TAV 

aerodynamics. In his study of the viability of achieving three-axis attitude control using only 

aerodynamic torques, Gargasz divided interactions between the various atmospheric species and 

a TAV into two categories: specular and diffuse collisions. Storch, in Aerodynamic Disturbances 

on Spacecraft in Free-Molecular Flow, defines specular collisions as deterministic momentum 

                                                 
37 Ibid., 42, 60, 65, 67, 72. 
38 Vallado, 562; Michael L. Gargasz, “Optimal Spacecraft Attitude Control Using Aerodynamic Torques” (MS 

Thesis, School of Engineering and Management, Air Force Institute of Technology (AU), 2007); Blake B. 
Hajovsky, “Satellite Formation Control Using Atmospheric Drag” (MS Thesis, School of Engineering and 
Management, Air Force Institute of Technology (AU), 2007). 



www.manaraa.com

20 

transfer processes in which the angle of incidence equals the angle of reflection, with the incident 

velocity, reflected velocity, and surface normal all representing coplanar quantities.39 For diffuse 

collisions, the incident molecules are “trapped into the interstices” of the surface and lose all 

knowledge of the incoming direction. Subsequently, the molecules are re-emitted from the 

surface with a random distribution of speed and direction governed by the cosine distribution.40  

Aside from collisions between atmospheric species and the TAV surface, King-Hele in 

his book Satellite Orbits in an Atmosphere: Theory and Applications identifies a specific 

example in which interactions with the atmospheric chemical environment directly effects TAV 

aerodynamics. King-Hele states that while traversing an altitude of 200 − 300 km within the 

atomic oxygen-rich thermosphere, a TAV acquires “at least a mono-layer” of atomic oxygen on 

its surface either by mechanisms of chemisorption or physisorption. With this layer present on 

the TAV surface, most air molecules will strike the atomic oxygen rather than the atoms of the 

surface material.41 As a TAV increases altitude above the layer of atomic oxygen and enters the 

exosphere, atmospheric species predominance shifts from oxygen to helium, and then to 

hydrogen. King-Hele explains that the decreasing molecular weight of the atmospheric species 

colliding with the mono-layer of atomic oxygen produces an increase in the TAV drag 

coefficient from 2.2 to approximately 2.4.42    

The flow environment for aeroassisted maneuvers can also be expressed in terms of flow 

regime rather than momentum exchange. In his thesis “Investigation of Atmospheric Re-Entry 

for the Space Maneuver Vehicle,” McNabb describes that for a given re-entry trajectory, a TAV 

                                                 
39 J. A. Storch, Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow (El Segundo, CA: The Aerospace 

Corporation, 2002), 3. 
40 Ibid. 
41 Desmond King-Hele, Satellite Orbits in an Atmosphere: Theory and Applications (Glasgow, Scotland: Blackie 

and Son Ltd., 1987), 23. 
42 Ibid., 24. 
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will operate in the rarefied (free molecular), transition (slip-flow), and continuum flow regimes 

of the upper atmosphere. Defined by the Knudsen number (𝐾𝑛), or the ratio of the particle mean 

free path to characteristic length of the TAV aerodynamic chord, McNabb identified rarefied 

flow as 𝐾𝑛 > 10, transitional flow as 0.01 ≤ 𝐾𝑛 ≤ 10, and continuum flow as 𝐾𝑛 <  0.01.43 

As the depth of atmospheric penetration increases during the execution of an aeroassisted 

maneuver, the atmospheric density increases and, as a result, the flow regime transitions from 

rarefied to continuum flow as altitude decreases.  

With the flow characteristics established for flight in the upper atmosphere, the 

aerodynamics of a TAV can be determined by either assuming or directly calculating values for 

the drag and lift coefficients. Consulting a Douglas Aircraft Company technical report entitled 

“Surface-Particle-Interaction Measurements using Paddlewheel Satellites,” Guettler in his thesis 

“Satellite Attitude Control using Atmospheric Drag” assumes a constant value drag coefficient of 

2.2 for his analysis regarding the employment of aerodynamic torques produced by deployable 

drag panels as a primary source of satellite attitude control.44 A drag coefficient of 2.2 is also 

given by Vallado, who states that such a value is derived by modeling a satellite operating within 

the upper atmosphere as a flat plate.45  Although greater in magnitude than the value utilized by 

Guettler, Hall assumed in his thesis “Orbit Maneuver for Responsive Coverage Using Electric 

Propulsion” a drag coefficient of 3.0, which was posited as one of many “commonly achievable 

design parameters based upon existing satellite designs.”46  

                                                 
43 Dennis J. McNabb, “Investigation of Atmospheric Re-Entry for the Space Maneuver Vehicle” (MS Thesis, School 

of Engineering and Management, Air Force Institute of Technology (AU), 2004): 14-15. 
44 David B. Guettler, “Satellite Attitude Control Using Atmospheric Drag” (MS Thesis, School of Engineering and 

Management, Air Force Institute of Technology (AU), 2007): 24. 
45 Vallado, 549. 
46 Timothy S. Hall, “Orbit Maneuver for Responsive Coverage Using Electric Propulsion” (MS Thesis, School of 

Engineering and Management, Air Force Institute of Technology (AU), 2010): 18. 
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As for direct calculation, Nicholson computes values for the aerodynamic coefficients as 

a function of angle-of-attack based on empirically-derived equations developed from linearly-

interpolated wind tunnel data from tests performed on the Entry Research Vehicle (ERV) within 

the supersonic velocity range up to Mach 10. Debuted in the conference paper “Performance 

Evaluation of an Entry Research Vehicle” by Powell, Naftel, and Cunningham, the ERV was a 

lifting entry test platform designed to investigate maneuvers involving “long downrange, wide 

cross-range, and synergistic plane changes.”47 Similarly, Parish in his thesis “Optimality of 

Aeroassisted Orbital Plane Changes” also computes values for the aerodynamic coefficients from 

interpolated transonic and supersonic wind tunnel data, but for the Maneuverable Re-Entry 

Research Vehicle (MRRV) rather than the ERV. Over the angle-of-attack range of 0 deg 

to 40 deg, the drag coefficient varies from 0.1 to approximately 1.2 for the ERV, while it varies 

from 0.03 to approximately 0.6 for the MRRV.48 Overall, the preceding values for the vehicle 

drag coefficient as depicted by Nicholson and Parish are consistent with the research of Rao, 

Scherich, Cox, and Mosher who, in their conference paper “A Concept for Operationally 

Responsive Space Mission Planning Using Aeroassisted Orbital Transfer,” utilized a drag 

coefficient of approximately 0.49 in their study of an aerodynamically maneuverable TAV.49 

The Atmospheric Flow Environment and Heat Flux 

The maturation of ballistic missile technology during the mid-1950s precipitated the need 

to not only characterize and model re-entry heat flux, but also devise methods by which to 

mitigate heating effects and forestall mission failure during re-entry. With heat flux analysis on 

                                                 
47 Nicholson, 34-35, 144. 
48 Ibid., 36; Michael S. Parish II, “Optimality of Aeroassisted Orbital Plane Changes” (MS Thesis, Department of 

Aeronautical and Astronautical Engineering, Naval Postgraduate School, 1995): 11-12). 
49 Anil V. Rao, Arthur E. Scherich, Skylar Cox, and Todd E. Mosher, “A Concept for Operationally Responsive 

Space Mission Planning Using Aeroassisted Orbital Transfer” (paper presented at the 6th Responsive Space 
Conference, Los Angeles, CA, 28 April – 1 May 2008): 3-5. 
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slender-body ballistic warheads giving way to blunt-body capsules and proposed lifting entry 

vehicles for manned spaceflight, several experimental techniques were developed to estimate 

heat flux within the hypersonic flow environment of re-entry. Derived from measuring of heat 

transfer rates in shock tubes under simulated hypersonic conditions, Detra, Kemp, and Riddell in 

“Addendum to ‘Heat Transfer to Satellite Vehicles Re-Entering the Atmosphere’” presented a 

revised empirical equation for stagnation heat flux on a blunt body:50  
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where ℎ𝑠 is the stagnation point enthalpy, ℎ𝑤 is the wall enthalpy, (ℎ𝑤)300 K is the wall enthalpy 

evaluated at 300 K, 𝑅𝑁 is the vehicle nose radius, and  𝑉𝑆𝐿 = 26,000 ft/s, a pre-defined sea-level 

orbital velocity. Identified as being “nearer the mean of the data” than a previous model iteration 

derived by the same authors, the revised equation “agrees with calculated heat transfer results” 

for altitude and velocity ranges of 0 ≤ ℎ ≤ 250,000 ft  (0 ≤ ℎ ≤ 76.2 km) and 7,000 ≤ 𝑉 ≤

25,000 ft/s (2.1 ≤ 𝑉 ≤ 7.6 km/s), respectively, with an accuracy of ±10%.51 

 Employing a similar empirical form as the Detra et al. model, Havey in his 1982 paper 

“Entry Vehicle Performance in Low-Heat-Load-Trajectories” utilized an equation for stagnation 

heat flux which accounted for the reduction in heating rate due to a non-zero wall temperature on 

the vehicle surface:52  
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where 

                                                 
50 R. W. Detra, N.H. Kemp, and F. R. Riddell, “Addendum to ‘Heat Transfer to Satellite Vehicles Re-Entering the 

Atmosphere,’” Jet Propulsion 27 (1957): 1256. 
51 Ibid., 1257. 
52 Keith A. Havey Jr., “Entry Vehicle Performance in Low-Heat-Load Trajectories,” Journal of Spacecraft and 

Rockets, 19 (1982): 507. 
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    ℎ𝑤 = 0.24𝑇𝑤             ℎ𝑖 = 0.24𝑇∞ + 𝑉2

50,063
 

 
The wall temperature, 𝑇𝑤, is determined via the Stefan-Boltzmann Law: 

       �̇� = 𝜀𝐾𝑆𝐵(𝑇𝑤4 − 𝑇∞4) (2.3) 

where 𝐾𝑆𝐵 = 0.476 𝑥 10−12  BTU (s ∙ ft2 ∙ R4)⁄  and 𝜀 is the emissivity. 

 For their research in the early 2000s, Rao and several co-authors used a condensed form 

of the Detra et al. model with varying coefficients and units of measure. Removing the enthalpy-

differencing term, Rao, Tang, and Hallman utilized the following in their analysis comprising the 

2002 paper “Numerical Optimization Study of Multiple-Pass Aeroassisted Orbital Transfer”:53 

        �̇�𝑠 = 17,600 �
𝜌
𝜌𝑆𝐿

�
0.5
�
𝑉
𝑉𝑆𝐿

�
3.15

BTU (ft2 ∙ s)⁄ = 199,830 �
𝜌
𝜌𝑆𝐿

�
0.5
�
𝑉
𝑉𝑆𝐿

�
3.15

kW m2⁄  (2.4) 

where 𝑉𝑆𝐿 a function of spherical planetary radius given by 𝑉𝑆𝐿  = �𝜇 𝑟⊕⁄ , rather than a pre-

defined value for the sea-level orbital velocity as with the  Detra et al. model. Maintaining the 

same equation structure in the 2008 paper “A Concept for Operationally Responsive Space 

Mission Planning Using Aeroassisted Orbital Transfer,” Rao et al. modified the stagnation heat 

flux coefficient to be 11.357 kW m2⁄ ≈ 1 BTU (ft2 ∙ s)⁄ .54 Similarly, Darby and Rao in the 

2010 paper “Optimal Impulsive LEO to LEO Multiple-Pass Aeroassisted Orbital Transfer for 

Small Spacecraft” again altered the equation coefficient. Not as drastic as the 2008 paper, the 

final modification resulted in a 0.02% increase from 199,830 kW m2⁄  to 199,870 kW m2⁄ .55 

 
                                                 
53 Rao et al., “Numerical Optimization Study,” 219. 
54 Rao et al., “A Concept for Operationally Responsive Space,” 4-5. 
55 Darby and Rao, “Optimal Impulsive,” 41-42. 
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 Consulting a 1958 General Electric internal study conducted by Brunner and Gallagher 

entitled “Analysis of the Aerodynamic Heating of a Blunt Hypersonic Glide Vehicle,” Galman 

presents stagnation heat flux models with zero wall temperature for three-dimensional laminar 

flow around a sphere,  

                    �̇�𝑠 =
3.18
�𝑅𝑁

(𝜌0.5𝑉3.2  ∙  10−9) (2.5) 

 
as well as two-dimensional laminar flow normal to an infinitely-long cylinder:56 

                      �̇�𝑠 =
3.18

�2𝑅𝑁
(𝜌0.5𝑉3.2  ∙  10−9) (2.6) 

 
In his 1961 paper “Some Fundamental Considerations for Lifting Vehicles in Return from 

Satellite Orbit,” Galman indicates that “good design practice” for lifting, winged-entry vehicles 

is to use a large planform nose radius so as to “approach the more favorable” two-dimensional 

flow model.57 

 Apart from an increase in convective and, specifically, stagnation heat flux, a vehicle re-

entering a planetary atmosphere also encounters a likewise increase in radiative heat flux. For 

Allen and Eggers in their 1958 paper “A Study of the Motion and Aerodynamic Heating of 

Ballistic Missiles Entering the Earth’s Atmosphere at High Supersonic Speeds,” however, the 

convective mode of heat flux was deemed to be the dominant form of energy transfer and all 

radiative heat flux assumed to be negligible.58 Qualifying Allen and Eggers’ assertion, Moore in 

his contribution to Loh’s 1968 work Entry and Planetary Entry Physics and Technology: 

                                                 
56 Barry A. Galman, “Some Fundamental Considerations for Lifting Vehicles in Return from Satellite Orbit,” 

Planetary and Space Science, 4 (1961): 400. 
57 Ibid. 
58 H. J. Allen and A. J. Eggers, Jr., “A Study of the Motion and Aerodynamic Heating of Ballistic Missiles Entering 

the Earth’s Atmosphere at High Supersonic Speeds,” NACA TR 1381 (Moffett Field, CA: AMES Aeronautical 
Laboratory, 1958), 1129. 
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Dynamics, Physics, Radiation, Heat Transfer, and Ablation states that radiative heat flux is a 

“particularly sensitive function of flight velocity” and it “‘takes off’ at speeds just beyond 

orbital.”59 As examples, Moore compares the stagnation and radiative heat flux of an 

intercontinental ballistic missile (ICBM) entering the Earth’s atmosphere with that of a probe 

entering the Martian atmosphere. With the former example, an ICBM velocity of approximately 

20,000 ft s⁄  (6.1 km/s) produces a stagnation heat flux 2.5-3.0 times greater than the radiative 

heat flux; for the latter example, the probe entry velocity of 40,000 ft s⁄ (12.2 km/s) yields a 

radiative heat flux 10 times greater than the stagnation heat flux.60  

Providing a more precise threshold for radiative heat flux dominance, Olfe in the 1968 

book Radiation and Re-Entry states that as the re-entry velocity increases towards that of a 

parabolic orbit (~11.19 km/s), the radiative heat flux “rapidly overtakes the aerodynamic heat 

transfer” and can “appreciably affect the flow field.”61 Olfe also conveys that as the re-entry 

velocity increase above the parabolic value, the radiative energy loss from the shock layer 

“approaches the magnitude of the flow energy.”62 Although published earlier in 1961, Eggers’ 

and Wong’s paper “Motion and Heating of Lifting Vehicles during Atmosphere Entry” affirms 

Olfe’s threshold and posits that the maximum radiative heat flux corresponds to a velocity of 

approximately 36,000 ft s⁄ (11.0 km/s).63 

                                                 
59 F. K. Moore, “Entry Radiative Transfer,” in Re-Entry and Planetary Entry Physics and Technology: Dynamics, 

Physics, Radiation, Heat Transfer, and Ablation, ed. W. H. T. Loh (New York, NY: Springer-Verlag New York 
Inc., 1968), 343. 

60 Ibid. 
61 Daniel B. Olfe, “Radiation Gasdynamics,” in Radiation and Re-Entry, ed. S. S. Penner and Daniel B. Olfe (New 

York, NY: Academic Press Inc., 1968), 271. 
62 Ibid., 272. 
63 A. J. Eggers Jr. and Thomas J. Wong, “Motion and Heating of Lifting Vehicles during Atmosphere Entry,” 

American Rocket Society (ARS) Journal, 31 (1961): 1370. 
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Summary 

Upon review of the relevant research pertaining to aeroassisted maneuvers, it can be 

asserted that despite complexities due to high temperature and varying density gas dynamics, the 

upper atmosphere provides an advantageous environment within which maneuvers can be 

executed to alter a TAV’s orbital states, such as inclination and semi-major axis. Whether 

performed by small vehicles with an initial mass less than 1000 kg, or larger vehicles with an 

initial mass greater than 5000 kg, preceding research indicates that aeroassisted maneuvers 

generally require less ∆𝑉 than a purely propulsive maneuver conducted in the vacuum 

environment to produce desired changes in orbital states and geometry. While the prospect of 

responsive spacecraft and global reach has been demonstrated by a satellite with electric 

propulsion performing exo-atmospheric maneuvers, the current literature is limited regarding the 

reachability performance potential of aeroassisted maneuvers outside the realm of single- and 

multi-objective comparative optimization problems. As a result, the present research serves to 

augment the current literature though an application-based analysis of aeroassisted maneuver 

performance for the intent of achieving not only terrestrial, but also LEO reachability for a TAV 

initiating from the LEO altitude regime.  
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III. Methodology 
 

Chapter Overview 

The purpose of this chapter is to provide an overview of the assumptions, limitations, and 

algorithms underpinning the trajectory dynamics model, a simulation tool capable of modeling 

both exo- and trans-atmospheric maneuvers. In addition to the verification of the trajectory 

model by duplicating the Apollo 10 re-entry trajectory, models associated with simulating the 

atmospheric density, gravitational potential, and re-entry heat flux is be discussed. 

 

Assumptions and Limitations 

Planetary Ellipticity 

 Unlike the planet Venus which features a nearly spherical shape, Earth is a rotationally 

symmetric ellipsoid that revolves about its minor axis. Also known as an oblate spheroid, the 

Earth’s shape is characterized by a flattening at the poles, thus creating a polar (minor) axis 

shorter in diameter than the equatorial (major) axis.64 Depicted in the following figure, the 

ellipticity of the Earth presents two different means of expressing radial position: (1) Geocentric 

latitude, 𝜙, which is measured with respect to the planetary center-of-mass; and (2) geodetic 

latitude, 𝜙𝑔𝑑,  which is offset from the planetary center-of-mass and measured with respect to the 

TAV such that the position vector is perpendicular to a plane tangent to the planetary surface.  

 

 
                                                 
64 Vallado, 142. 
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Figure 3.1. Comparison of Geocentric and Geodetic Latitude65 

 
Since the equations of motion outlined later in this chapter are formulated in terms of the 

geocentric representation, any simulation initial conditions featuring geodetic altitude and 

latitude must be converted into geocentric values by employing analytical expressions obtained 

from Long’s paper “General-Altitude Transformations between Geocentric and Geodetic 

Coordinates.” Formulated as truncated series expansions in powers of the Earth’s flattening, 𝑓, 

the following second-order equations are functions of geodetic altitude and latitude:66 
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65 Hicks, 382. 
66 S.A.T. Long, “General-Altitude Transformations between Geocentric and Geodetic Coordinates,” Celestial 

Mechanics 12 (1975): 228. 
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When Eqs. (3.1) and (3.2) are evaluated with a geodetic altitude of ℎ𝑔𝑑 = 0.0 km for sea-

level and a geodetic latitude range of −90 deg ≤ 𝜙𝑔𝑑 ≤ 90 deg, the corresponding radial 

distance from the planetary center of mass to sea-level for a given latitudinal position on the 

oblate spheroid can be determined. Illustrated in Fig. 3.2, the oblate spheroid model creates a 

radial difference of 21.385 km at the poles and 0.0 km at the equator when compared with an 

equivalent spherical model. Due to this disparity in radial distance, the Earth planetary model 

retains the characteristics of an oblate spheroid with an ellipticity of 𝜖 = 0.08181919.67 

 

Figure 3.2. Radial Distance Deviation between Spherical and Oblate Spheroid Models 

Atmospheric Density and Dynamics 

 For most spacecraft, the nominal operating altitude is located above the upper limit of the 

sensible atmosphere of approximately 120 km. Based on this demarcation, orbital perturbations 

arising from atmospheric drag are only a concern for spacecraft in the lower reaches of LEO 

                                                 
67 Hicks, 382. 
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below an altitude of 400 km. Even for these spacecraft, however, interaction with the rarefied 

flow environment of the exosphere is contingent on the solar cycle and the expansion of the 

atmosphere due to increased solar and resultant geomagnetic activity. Conversely, spacecraft 

categorized as TAVs possess the ability to perform aeroassisted maneuvers and exploit 

atmospheric drag to alter orbital elements such as inclination or right ascension of the ascending 

node.  

With aeroassisted, trans-atmospheric trajectories producing a perigee of less than 120 km, 

a model of atmospheric density is required to simulate the spacecraft’s aerodynamic 

characteristics, specifically the drag and lift force generated at a particular altitude. The simplest 

model assumes that atmospheric density decreases exponentially with increasing altitude:68       

                                                               𝜌(𝑟) = 𝜌𝑆𝐿𝑒−𝛽�𝑟−𝑟⊕� (3.3) 

where the scale height, 𝛽, is constant throughout the atmosphere. Formulated in terms of a 

spherical planetary model, Eq. (3.3) determines the atmospheric density at a specific altitude 

defined by a non-varying radius 𝑟⊕ from the planetary center of mass to the surface. For a 

spherical planet, the altitude ℎ = 𝑟 − 𝑟⊕ is both geocentric and geodetic in nature, and is 

measured along an imaginary vertical line perpendicular to the planetary surface and passing 

through the TAV center-of-mass.69 When the planetary model is changed from spherical to 

oblate spheroid, Eq. (3.3) then requires a geodetic altitude at which to calculate the atmospheric 

density. In order to reflect this subtlety, the following represents the modified exponential 

density model for an oblate spheroid model: 

 

                                                 
68 Ibid., 68. 
69 Vladimir A. Chobotov, Orbital Mechanics, Third Edition (Reston, VA: American Institute of Aeronautics and 

Astronautics, Inc., 2002), 72. 
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                                                            𝜌�ℎ𝑔𝑑� = 𝜌𝑆𝐿𝑒−𝛽�ℎ𝑔𝑑� (3.4) 

Since geocentric radius represents a specified state within the equations of motion for 

atmospheric re-entry rather than geodetic altitude, a conversion must be performed to derive the 

geodetic altitude value in order to calculate the atmospheric density for a given geocentric radius.  

Rather than calculating the geodetic altitude and associated geodetic latitude 

simultaneously via an iterative algorithm as described in Hicks’ text Introduction to 

Astrodynamic Re-Entry, analytical expressions can be implemented a posteriori from Long’s 

aforementioned paper. Also formulated as truncated series expansions in powers of the Earth’s 

flattening, 𝑓, the following second-order equations are functions of geocentric coordinates in 

units of the Earth’s equatorial radius:70 
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 As an alternative to the exponential density model, Vinh, Busemann, and Culp in their 

book Hypersonic and Planetary Entry Flight Mechanics provide an equation which accounts for 

variation in both scale height and molecular scale temperature throughout the atmosphere. 

Expressed in terms of geodetic altitude, the dual variation model is:71   

                           𝜌�ℎ𝑔𝑑� = 𝜌𝑖 ��1 + 𝛿𝑇𝑀 �
ℎ𝑔𝑑−ℎ𝑖
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−1

� ∙ ��1 + 𝛿𝐻 �
ℎ𝑔𝑑−ℎ𝑖
𝑟⊕

��
−1

�

1
𝛼

 (3.7) 

                                                 
70 Long, 225-226, 228. 
71 Nguyen X. Vinh, Adolf Busemann, and Robert D. Culp, Hypersonic and Planetary Entry Flight Mechanics (Ann 

Arbor, MI: The University of Michigan Press, 1980), 9. 
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where the subscript 𝑖 represents an index for the division of the atmosphere into seven sections 

between 54 ≤ ℎ𝑔𝑑 ≤ 300 km, and 𝛿𝐻, 𝛿𝑇𝑀 are dimensionless parameters related to scale height 

and molecular scale temperature, respectively, for the seven altitude-demarcated sections of the 

atmosphere. In their discussion, Vinh et al. identify that the dual variation model can be 

simplified by noting that 𝛿𝐻, 𝛿𝑇𝑀 are approximately equal throughout the seven sections and 

thus reduce Eq. (3.7) into a single variation model, which only accounts for variation in scale 

height:72     

                                               𝜌�ℎ𝑔𝑑� = 𝜌𝑖 ��1 + 𝛿𝐻 �
ℎ𝑔𝑑−ℎ𝑖
𝑟⊕

��
−1

�

1+𝛼
𝛼

 (3.8) 

 So as to evaluate the relative capability of the exponential, single, and dual variation 

models to accurately estimate atmospheric density, the solutions of each were compared with 

density results from the MSIS-E-90 density model within the altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km 

for the sample dates 01 January 2000-2012. With the first iteration being developed in the late 

1970s at the NASA/Goddard Space Flight Center, the mass spectrometer-incoherent scatter 

(MSIS) series of atmospheric density models are empirical in nature and assimilate in situ mass 

spectrometer measurements of temperature and composition, as well as “temperatures inferred 

from incoherent scatter radar data.”73 Although other high fidelity atmospheric models exist, 

Akins, Healy, Coffey, and Picone in their paper “Comparison of MSIS and Jacchia Atmospheric 

Density Models for Orbit Determination and Propagation” indicate that the atmospheric physics 

community has “validated the [MSIS] model” via direct measurement of density and has 

                                                 
72 Ibid. 
73 National Research Council, Aeronautics and Space Engineering Board, Continuing Kepler’s Quest: Assessing Air 

Force Space Command’s Astrodynamics Standards (Washington, D.C.: The National Academies Press, 2012), 23. 
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demonstrated the superiority of the MSIS series over older models such as Jacchia-70.74 As a 

result, the MSIS-derived density solutions are deemed admissible as “truth” data for comparative 

and root-mean square (RMS) error analysis.  

 In addition to the MSIS-E-90 data, an atmospheric density profile was obtained from the 

AGI analysis module Astrogator within Systems Toolkit® (STK) and plotted against the 

exponential and single variation density models. By default, Astrogator employs the US 1976 

Standard Atmospheric Density Model and only provides density estimates along the trajectory 

rather than a specified altitude regime. Due to the resolution of the following figures, the dual 

variation curve is omitted since it nearly coincides with the single variation solution and any 

differences between the two models are not readily discernible. Also, only the MSIS data for 01 

January 2012 is plotted in order to provide a single example of the thirteen data sets obtained 

from the MSIS model. All thirteen sets as well as the STK® density data are illustrated in Fig. 

3.4. As seen in the Fig. 3.3, the exponential, single, and dual variation models are insufficient in 

modeling the MSIS and STK® data over the entire altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km. For the 

exponential model, the accuracy of density predictions is superior to the single and dual 

variations models and features the least deviation with the MSIS and STK® data until an altitude 

of approximately 84 km where solution divergence initiates. More limited, the single and dual 

variation models are only applicable within the range 54 ≤ ℎ𝑔𝑑 ≤ 300 km and are thus unable to 

provide density predictions for 75.4% of the altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km.    

                                                 
74 Keith Akins, Liam Healy, Shannon Coffey, and Mike Picone, “Comparison of MSIS and Jacchia Atmospheric 

Density Models for Orbit Determination and Propagation” (paper presented at the 13th AAS/AIAA Space Flight 
Mechanics Meeting, Ponce, Puerto Rico, 9-13 February 2003), 3. 
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Figure 3.3. Initial Comparison of Atmospheric Density Models with  
MSIS-E-90 and STK® Density Data for 01 January 2012  

 

Figure 3.4. Comparison of MSIS-E-90 and STK® Density Data 
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 Faced with the solution inadequacies of the exponential, single, and dual variation models 

as individual equations, a piecewise-continuous function – or Combined Model – was developed, 

and is:   

         𝜌�ℎ𝑔𝑑� =

⎩
⎪
⎨

⎪
⎧ 𝜌𝑆𝐿𝑒−𝛽�ℎ𝑔𝑑�                                    ,   ℎ𝑔𝑑 < 84 km

𝜌𝑖 ��1 + 𝛿𝐻 �
ℎ𝑔𝑑−ℎ𝑖
𝑟⊕

��
−1

�

1+𝛼
𝛼

                 ,   84 ≤ ℎ𝑔𝑑 ≤ 120 km

(4.50847623 x 107) ∙ �ℎ𝑔𝑑�
−7.44605852

  , 120 < ℎ𝑔𝑑 ≤ 1000 km

� (3.9) 

 
For all altitudes above the 1000 km threshold, the density is assumed to be 0.0 kg m3⁄ . 

Parameters given in the single variation segment of Eq. (3.9) are listed in the following table: 

Table 3.1. Atmospheric Density Model Parameters 

Altitude Section ℎ𝑖 ,𝑘𝑚 𝜌𝑖 ,𝑘𝑔 𝑚3⁄  𝛼 𝛿𝐻 

84 ≤ ℎ𝑔𝑑 ≤ 90 km 85 7.726 x 10−6 0.1545455 197.9740 
91 ≤ ℎ𝑔𝑑 ≤ 106 km 99 4.504 x 10−7 0.1189286 128.4577 

107 ≤ ℎ𝑔𝑑 ≤ 120 km 110 5.930 x 10−8 0.5925240 432.8484 

 
While the first two equations represent the exponential and single variation models, the 

third is a power model formulated through regression analysis of the MSIS and STK® data. Since 

atmospheric density changes with not only date and local time, but also geographical location, 

both the MSIS and STK® data sets were obtained for the date 01 January at 12:00:00.00 

Universal Time for the latitude/longitude coordinates (𝜃,𝜙) = (0,0) deg. Unlike the MSIS data 

which is defined for the year range 2000-2012, the STK® data only represents the year 2012 due 

to a preliminary RMS error analysis conducted with the following expression:75 

            𝑅𝑀𝑆𝑋 = �∑ ��𝑋(𝑡𝑖)�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − �𝑋(𝑡𝑖)�𝑡𝑟𝑢𝑡ℎ�
2

𝑛
𝑖=1

𝑛
 (3.10) 

                                                 
75 Hicks, 394. 
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with the “simulation” data representing the years 2000-2011 and the “truth” data the year 2012. 

From this analysis, a deviation of approximately 2 x 10−16  kg m3⁄  was calculated between the 

data for 2012 and the years 2000-2011, thus enabling the data for the years 2000-2011 to be 

excluded from all subsequent comparative analysis.  

 As shown in Fig. 3.5, the Combined Model maintains the least deviation with MSIS and 

STK® data for the altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km. Quantified in terms of RMS error, the 

Combined Model deviates from the MSIS data by approximately  1.2 x 10−2  kg m3⁄  and the 

STK® data by 9.181 x 10−11 kg m3⁄ . Based its ability to predict atmospheric density from the 

troposphere through to upper reaches of the xenosphere, the Combined Model is implemented as 

the density model for all aeroassisted maneuver analysis.  

 

Figure 3.5. Comparison of Combined Atmospheric Density Model with  
MSIS-E-90 and STK® Density Data for 01 January 2012 
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Table 3.2. RMS Error for Combined Density Model Compared with 

MSIS-E-90 and STK® Density Data 
 

Data Set 𝑛 RMS Error, 𝑘𝑔 𝑚3⁄  

MSIS-E-90, 01 Jan 2000 1000 1.228 x 10−2 
MSIS-E-90, 01 Jan 2001 1000 1.232 x 10−2 
MSIS-E-90, 01 Jan 2002 1000 1.231 x 10−2 
MSIS-E-90, 01 Jan 2003 1000 1.230 x 10−2 
MSIS-E-90, 01 Jan 2004 1000 1.227 x 10−2 
MSIS-E-90, 01 Jan 2005 1000 1.226 x 10−2 
MSIS-E-90, 01 Jan 2006 1000 1.226 x 10−2 
MSIS-E-90, 01 Jan 2007 1000 1.226 x 10−2 
MSIS-E-90, 01 Jan 2008 1000 1.226 x 10−2 
MSIS-E-90, 01 Jan 2009 1000 1.225 x 10−2 
MSIS-E-90, 01 Jan 2010 1000 1.226 x 10−2 
MSIS-E-90, 01 Jan 2011 1000 1.226 x 10−2 
MSIS-E-90, 01 Jan 2012 1000 1.230 x 10−2 

STK®, 01 Jan 2012 570 9.181 x 10−11 

 
  

Besides variations in density with altitude, the atmosphere is also highly dynamic and 

rotates, albeit with a lower angular velocity, concomitant to the planet. Vinh et al. state that the 

maximum rotational velocity of the atmosphere at the equator is approximately six percent of the 

circular orbit velocity at low altitude. Furthermore, the aerodynamic force due to atmospheric 

rotation has a maximum of about 12% of the aerodynamic force arising due to the vehicle’s 

velocity. Although dependent on not only vehicle velocity, but also latitude, and the inclination 

of the trajectory to the equator, Vinh et al. conclude that the effects of atmospheric rotation are 

“so slight” and that any errors introduced by estimating an entry vehicle’s drag and lift 

coefficients exceeds the error caused by neglecting atmospheric rotation.76 Due to the 

complexities of and inherent error associated with endeavoring to model independent rotation, 

the atmosphere is the assumed to be rotating at the same angular velocity as the planetary model.    

                                                 
76 Vinh et al., Hypersonic and Planetary Entry Flight Mechanics, 3. 
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TAV Mass Properties 

As with any object, the mass of a TAV is distributed throughout the envelope of the 

vehicle’s three-dimensional shape, with such a distribution expressed as a mass moment of 

inertia calculated about the principal axes of the vehicle’s body-fixed coordinate frame. 

Although a more accurate representation of the vehicle mass, the calculation of mass moment of 

inertia values is contingent on the implicit assumption that the vehicle is a rigid body and, 

therefore, does not deform nor change shape.77 As a simplifying alternative, the TAV is modeled 

as a point mass with the total force, �⃗�, acting on the point mass at any instant in time expressed 

by the following:78 

                                                                �⃗� = 𝑇�⃗ + 𝐴 + 𝑚�⃗� (3.10) 

where 𝑇�⃗  is the thrust force, 𝐴 is the aerodynamic force comprised of drag and lift components, 

and �⃗� is the gravitational force.  

 In addition to the point mass simplification, the TAV is assumed to maintain a constant 

mass, with propellant only being expended prior to and/or following a maneuver. Due to the 

high-temperature molecular interactions between the vehicle surface and the various gaseous 

species of the “chemically reacting boundary layer” during an aeroassisted maneuver, the 

constant mass simplification is also maintained within the hypersonic re-entry flow environment 

by assuming the employment of a non-ablative thermal control subsystem on the vehicle 

surface.79  

                                                 
77 Anthony Bedford and Wallace Fowler, Engineering Mechanics: Dynamics, Fourth Edition (Upper Saddle River, 

NJ: Pearson Prentice Hall, 2005), 280, 398. 
78 Hicks, 37. 
79 Anderson, 17. 
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Total Force Properties 

Defined in terms of the vehicle-pointing reference frame (OX2Y2Z2), with the origin 

coincident with the point mass, the gravitational force acts along the radial position vector 

originating from the planetary center of mass and is aligned with the 𝑥2-axis. Not aligned with 

any specific axis within the vehicle-pointing system, however, the aerodynamic force can be 

described in relation to the TAV’s velocity vector, with the lift and drag forces acting in 

directions perpendicular to and opposite the velocity vector, respectively. While the gravitational 

force is expressed in the vehicle-pointing system, both the aerodynamic and thrust forces can be 

described by a coordinate reference system fixed to the TAV center of mass.80 The relationship 

of the thrust force to a sample TAV’s aerodynamic lift, drag, and velocity vector is shown in the 

following depiction of the North American-Rockwell Space Shuttle concept:     

 

 
Figure 3.6. Vehicle Reference Frame and Vector Definition for Sample TAV81 

                                                 
80 Hicks, 29, 43-46. 
81 Ibid., 47; T. A. Heppenheimer, The Space Shuttle Decision: NASA’s Search for a Reusable Space Vehicle 

(Washington, D.C.: National Aeronautics and Space Administration, 1999), 333. 
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When examined separately, the aerodynamic and thrust forces provide the impetus for 

further simplifying assumptions. The aerodynamic force is a dynamic quantity during an 

aeroassisted maneuver due to the geometry of the TAV relative to the hypersonic re-entry flow 

environment, the viscous interactions between the rarefied gaseous species of the upper 

atmosphere and the vehicle surface, and the decrease in air density resulting from increases in 

temperature. In order to simplify these dynamical flow complexities, the drag and lift 

coefficients are modeled as constant values. Produced by a notional TAV propulsion subsystem, 

the thrust force is modeled as impulsive and capable of being applied instantaneously. 

Earth-Based Constants 

Various planetary and atmospheric parameters are modeled as constant values and are 

outlined in Table 3.3:82 

Table 3.3. Earth-Based Constants 
 

Constant Value 

Gravitational Parameter, 𝜇⊕ 398600.442 km3 s2⁄  
Gravitational Acceleration at Sea-Level, 𝑔𝑆𝐿 9.798 m s2 ⁄  

Planetary Radius, 𝑟⊕ 6378.137 km 
Atmospheric Scale Height, 𝛽 0.14 km−1 

Atmospheric Density at Sea-Level, 𝜌𝑆𝐿 1.225 kg m3⁄  

 

 

 

 

                                                 
82 Hicks, 381; Vallado, 138, 140. 
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Trajectory Dynamics Model Development 

Described by a system of six nonlinear differential equations, re-entry and aeroassisted 

maneuvers are simulated by the following set of kinematic and dynamical equations:83 

                                                              �̇� = 𝑉𝑅 sin 𝛾   
(3.11) 
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(3.16) 

 
where the drag and lift forces are computed, respectively, by: 

                                         𝐷 = 1
2
𝜌𝐶𝐷𝑆 𝑉2𝑅               𝐿 = 1

2
𝜌𝐶𝐿𝑆 𝑉2𝑅   

 
Based on the assumption that the TAV is non-thrusting, the preceding equations of motion can 

be simplified to the following with the thrust force, 𝑇, equal to zero: 

                                                              �̇� = 𝑉𝑅 sin 𝛾 (3.17) 
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83 Ibid., 42, 52. 
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In the Hicks formulation of the equations of motion, gravitational acceleration is defined 

in terms of the TAV radial position from the center of a spherical, axisymmetric planet: 

             𝑔(𝑟) = 𝑔𝑆𝐿 �
𝑟⊕
𝑟
�
2

=
𝜇
𝑟2

 (3.23) 

Representing the spherical (Newtonian) gravity model, Eq. (3.23) neglects variations in the 

Earth’s gravitational potential due to a non-uniform mass distribution and planetary ellipticity, or 

oblateness. If the oblate spheroid assumption is implemented, then the trajectory dynamics model 

will utilize the higher-order 𝐽2-gravity model which accounts for gravitational potential 

variations due to ellipticity. In his book Atmospheric and Space Flight Dynamics, Tewari derives 

vector-component expressions for the acceleration due to gravity of a non-spherical, 

axisymmetric planet. As the foundation of his formulation, Tewari employs spherical harmonics 

to model the variations in the Earth’s gravitational potential deemed negligible by the spherical 

gravity model. Components of the following co-latitude (𝜑) dependent equations, the spherical 

harmonics are given by the Earth-specific Jeffrey constants 𝐽2 = 0.00108263, 𝐽3 =

−0.00000254, 𝐽4 = −0.00000161, while the term 𝑃𝑛(cos𝜑) represents an 𝑛th-order Legendre 

polynomial:84 

                                                 
84 Ashish Tewari, Atmospheric and Space Flight Dynamics (Boston, MA: Birkhäuser, 2007), 51-52. 
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Expanding the Legendre polynomials and replacing the co-latitude variables with that of 

geocentric latitude via the co-function trigonometric identity, the preceding equations for the 

radial and transverse components of gravitational acceleration become: 
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(3.25) 

Evaluating Eq. (3.24) at an altitude of 1000 km over the equator gives a radial gravitational 

acceleration of 7.33114498 m s2⁄ . By assuming that the contribution of both the  𝐽3 and 𝐽4 

Jeffrey constants are negligible, however, the resulting gravitational acceleration decreases 

to 7.33113256 m s2⁄ , which yields a deviation of 1.2420 x 10−5  m s2⁄  from the original value. 

Based on the magnitude of this deviation, the negligibility assumption proffered for the 𝐽3 and 𝐽4 

Jeffrey constants can be maintained, thus simplifying and transforming the 𝐽4-gravity model into 

the 𝐽2-gravity model which only accounts for planetary oblateness: 
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(3.27) 

A final simplification can be made by assuming that the contribution of the 𝐽2 Jeffrey constant is 

negligible, thus creating the initial spherical gravity model given by Eq. (3.23).  
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 In order to model 𝐽2-gravity effects, the equations of motion are modified so that the 

gravitational acceleration consists of both radial (𝑔𝑟) and transverse �𝑔𝜙� components. Since 

gravitational acceleration only appears as a parameter in the trajectory force equations, then only 

the modified versions of Eqs. (3.14) - (3.15) are presented:85  

     �̇� = −
𝐷
𝑚
− 𝑔𝑟 sin 𝛾𝑅 − 𝑔𝜙 sin 𝛾 cos 𝛾 + 𝑟𝜔⊕

2 cos𝜙 (cos𝜙 sin 𝛾 − sin𝜙 sin𝜓 cos 𝛾) (3.28) 
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(3.30) 

 
Overall, the equations of motion employing the spherical gravity and 𝐽2-gravity models are given 

by Eqs. (3.11) – (3.13) and Eqs. (3.28) – (3.30), respectively.    

Trajectory Dynamics Model Flow Diagram 

The trajectory dynamics model was constructed as a collection of modules comprising 

the equations of motion, models for the atmosphere, gravity, and TAV, as well as the requisite 

physical constants from Table 3.3. With this construct, the user is permitted to edit the 

supporting modules pertaining to the dynamical, environmental, and vehicle models without 

effecting the operation of the differential equation solver routine encapsulated in the core 

program. A flow diagram of the trajectory dynamics model with all supporting modules is below.   

                                                 
85 Hicks, 413. 



www.manaraa.com

46 

 

 

 

 

 

 

 

Figure 3.7. Trajectory Dynamics Model Flow Diagram 

 

Model Verification Assumptions 

In addition to gravity, the trajectory dynamics model is also reliant on secondary 

dynamics models related to the planetary atmosphere, planetary angular motion, and TAV 

aerodynamics. For the purposes of model verification, however, the duplication of the Apollo 10 

re-entry profile permits the relaxation of several aforementioned simulation assumptions with the 

implementation of an exponential density and non-rotating planetary models. In his analysis of 

the Apollo 10 re-entry in his book Introduction to Astrodynamic Re-Entry, Hicks sought to 

improve his capsule re-entry simulation by replacing the “baseline” exponential density model 

described by Eq. (3.3) with the 1962 Standard Atmosphere Model. A hypothetical vertical 

distribution of atmospheric density, pressure, and temperature from sea-level to an altitude of 

1000 km, the 1962 Standard Atmosphere Model is an ideal, steady-state representation of the 

Earth’s atmosphere at a latitude of 45 deg N during “moderate solar activity.”86 Compared with 

the exponential model, the implementation of the 1962 Standard Atmosphere Model revealed 

                                                 
86 Vallado, 565. 
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that the RMS error increased by 0.275%, 8.30%, and 2.34% for the geodetic altitude, inertial 

velocity, and tangential deceleration solutions, respectively. Although changes to the 

aerodynamic coefficients could potentially reduce the RMS error associated with the 1962 

Standard Atmosphere Model, the implementation of the exponential density model is deemed 

permissible for purposes of duplicating the Apollo 10 re-entry profile.87      

Similarly, Hicks also sought to improve his simulation of the Apollo 10 re-entry by 

including planetary rotation. Since the Apollo 10 initial states are expressed in the inertial frame, 

a series of coordinate transformations were first completed to convert the states to a frame 

relative to the rotating Earth. Following the integration of the equations of motion, the Apollo 10 

states were then transformed back to the inertial frame.88 After simulating the Apollo 10 re-entry 

with the planetary rotation rate both activated and deactivated, RMS error analysis indicated that 

the inclusion of planetary rotation created the greatest improvement in accuracy for the inertial 

velocity solution, while only a “marginal improvement” for geodetic altitude. The specific RMS 

values for geodetic altitude, inertial velocity, and deceleration are listed in Table 3.4 for the 

“baseline” case of deactivated planetary rotation as well as for the activated rotation case. When 

compared with the RMS error for the baseline case, the RMS error for geodetic altitude and 

velocity improved by 22.4% and 11.6%, respectively, while the RMS error increased by 1.96% 

for tangential deceleration. With only minor improvements to the trajectory solutions arising 

from the inclusion of the planetary rotation rate, the assumption of negligible planetary angular 

motion is also deemed permissible, thus generating the secondary assumption that the initial 

inertial entry velocity, flight-path angle, and heading angle for Apollo 10 are Earth-relative.89 

                                                 
87 Hicks, 409, 411. 
88 Ibid., 393-394. 
89 Ibid., 383. 
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Finally, for the capsule aerodynamics model, Hicks chose to represent the drag and lift 

coefficients for Apollo 10 as constants derived by averaging the preflight aerodynamic 

coefficient estimates for the Apollo 11 Command Module capsule at Mach 10 and Mach 29.5.90 

Alternatively, Hicks indicates that the aerodynamic coefficients can also be obtained by first 

calculating the Mach number as a function of altitude and speed during the integration of the 

equations of motion, and then continuously adjusting the coefficients by interpolating with the 

Apollo 11 preflight estimates.91 After simulating both methods, RMS error analysis revealed that 

the “baseline” case with constant aerodynamic coefficients produced less error than those 

derived from the Mach-dependent functions and associated interpolation scheme. In terms of 

geodetic altitude, the constant and function-derived aerodynamic coefficients produced a RMS 

error of 3.63 km and 4.48 km, respectively. For inertial velocity, a greater deviation in RMS 

error is illustrated, with 241 m/s for the constant values and 814 m/s for the function-derived 

values.92 By producing less error than the function-derived aerodynamic coefficients, the 

assumption of modeling the drag and lift coefficients as constant values is also deemed 

permissible for the Apollo 10 capsule. 

 
Table 3.4. RMS Errors for Modifications to Trajectory Dynamics Model93 

RMS Error 
Type Baseline 

Modification to Dynamics 

Gravity (𝐽2) Planetary 
Rotation Atmosphere Aerodynamic 

Coefficients 

𝑅𝑀𝑆ℎ𝑔𝑑 3.63 km 3.57 km 3.21 km 3.64 km 4.48 km 
𝑅𝑀𝑆 𝑉𝐼  241 m/s 253 m/s 187 m/s 261 m/s 814 m/s 
𝑅𝑀𝑆𝑑𝑒𝑐𝑒𝑙 4.60 m s2⁄  4.69 m s2⁄  5.40 m s2⁄  4.71 m s2⁄  8.43 m s2⁄  

 
                                                 
90 Ibid., 379, 384. 
91 Ibid., 384. 
92 Ibid., 404. 
93 Ibid., 415. 
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Verification of Trajectory Dynamics Model 

Due to the availability of data for both the re-entry initial conditions and trajectory, the 

Apollo 10 re-entry was chosen as a preliminary means of verifying the trajectory dynamics 

model described earlier in this chapter. As a method of integrating the equations of motion, a 

fourth-order Runge-Kutta numerical integrator was employed with the Apollo 10 bank angle 

history given in Fig. 3.8 as a control input, and the gravitational acceleration described by the 𝐽2-

gravity model.  

 
 

Figure 3.8. Bank Angle History for Apollo 10 Command Module Capsule94 
 

Based on the Apollo 10 re-entry solutions obtained from Hicks’ text, Fig. 3.9 illustrates 

that despite initial alignment, the simulated geocentric and geodetic latitude solutions diverge 

from the Apollo 10 trajectory at approximately 150 s after entry interface (EI), or passage 

through the upper limit of the sensible atmosphere. Beyond a visual assessment, the divergence 

exhibited by the simulated latitude solution from the Apollo 10 trajectory can be quantified in 
                                                 
94 Ibid., 378. 



www.manaraa.com

50 

terms of distance. Due to the ellipticity of the Earth, however, the distance between lines of 

latitude increases towards the poles and, as a result, cannot be assumed constant. As a result, a 

sample method for calculating the distance of 1 deg of latitude at specified geocentric latitudes 

(in units of degrees) is given by the following trigonometric expression:95 

                  𝑑𝜙=1 deg = 111.13295 − 0.55982 cos(2𝜙) + 0.00117 cos(4𝜙) (3.31) 

Employing Eq. (3.31), the approximate distance between the simulated terminal geocentric 

latitude of 17.1 deg S and the actual value of 15.06 deg S is 221 km. Aside from latitude, an 

examination of Figs. 3.10 and 3.11 indicate that while the geodetic altitude solution tracks closer 

to the Apollo 10 trajectory, the inertial velocity solution diverges at 150 s after EI – the same 

time as indicated by the latitude plot.  

 

Figure 3.9. Comparison of Geocentric/Geodetic Latitude for Apollo 10 
(𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver) 

 
                                                 
95 Larry McNish, “Latitude and Longitude,” RASC Calgary Centre, The Royal Astronomical Society of Canada, last 

modified 11 November 2011, accessed 17 August 2012, http://calgary.rasc.ca/latlong.htm. 
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Figure 3.10. Comparison of Geodetic Altitude for Apollo 10  
(𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver) 

 

 

Figure 3.11. Comparison of Inertial Velocity for Apollo 10  
(𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver) 
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For the preceding analysis, the fourth-order Runge-Kutta solver was run with a relative 

error tolerance of 𝐸𝑟𝑒𝑙 = 1.0 x 10−8 and a default maximum step size of 55 s based on the 

formula 𝑁𝑚𝑎𝑥 = �0.1 ∙ �𝑡0 − 𝑡𝑓��, where 𝑡0 = 0 s and 𝑡𝑓 = 550 s. After a limited sensitivity 

analysis run to identify the impact of modifying these parameters on the trajectory solutions, 

updated values for relative error tolerance and maximum step size were selected to be 

1.0 x 10−10 and 0.1 s, respectively. Illustrated in Figs. 3.12–3.14, the modified parameters 

improved the performance of the fourth-order Runge-Kutta solver for not only the latitude, but 

also the geodetic altitude and inertial velocity solutions. Quantitatively, the improved solver 

performance is expressed by RMS error and outlined in Table 3.5. Compared with the initial 

simulation run, the reduction of both the relative error tolerance and maximum step size 

produced a respective 69.11%, 70.80%, and 67.61% decrease in the RMS error for the latitude, 

geodetic altitude, and inertial velocity solutions.  

 

Figure 3.12. Comparison of Geocentric/Geodetic Latitude for Apollo 10 
(𝐽2-Gravity Model, Modified Solver Parameters) 
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Figure 3.13. Comparison of Geodetic Altitude for Apollo 10  
(𝐽2-Gravity Model, Modified Solver Parameters) 

 

Figure 3.14. Comparison of Inertial Velocity for Apollo 10  
(𝐽2-Gravity Model, Modified Solver Parameters) 
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Table 3.5. RMS Error for Trajectory Dynamics Model Verification 
 

 Geocentric Latitude, 𝜙 Geodetic Altitude, ℎ𝑔𝑑 Velocity, 𝑉𝐼  
Total Points, 𝑛 56 107 73 

Initial Simulation 1.35 deg 9.59 km 1420 m s⁄  
Modified Parameters 0.417 deg 2.80 km 460 m s⁄  

 
Despite the improvement in RMS error, deviation between the Apollo 10 trajectory and 

the solutions produced by the trajectory dynamics model persisted in subsequent simulations. 

With the remaining error resulting from neither incorrect unit conversions nor the erroneous 

transcription of the equations of motion into the computational software, the Apollo 10 capsule 

aerodynamic coefficients were next examined and a solution sensitivity study performed. 

Outlined in Table 3.6, the drag and lift coefficients for the Apollo 10 capsule were modified from 

their original values of 𝐶𝐷 = 1.2569 and 𝐶𝐿 = 0.40815 and simulated with various 

combinations of relative error tolerance and maximum step size. With the original aerodynamic 

coefficients obtained by averaging the preflight estimates for the Apollo 11 capsule at Mach 10 

and Mach 29.5, the modified values were selected from the aerodynamic coefficients 

corresponding to the same Mach number range given by:96 

1.2246 ≤ 𝐶𝐷 ≤ 1.2891 

0.38773 ≤ 𝐶𝐿 ≤ 0.42856 

Due to the complexities of increasing and/or decreasing the aerodynamics coefficients while 

endeavoring to simultaneously minimize the RMS error for geocentric latitude, geodetic altitude, 

and inertial velocity, the aerodynamic coefficients listed in Table 3.6 represent optimal estimates. 

From the various cases analyzed, the alternate aerodynamic coefficients which yielded the lowest 

RMS error for geocentric latitude, geodetic altitude, and inertial velocity are 𝐶𝐷 = 1.255 and 

                                                 
96 Hicks, 379, 384. 
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𝐶𝐿 = 0.4225 for a relative error tolerance and maximum step size of 1.0 x 10−10 and 0.1 s, 

respectively. Trajectory solutions corresponding to these aerodynamic coefficients are illustrated 

in Figs. 3.15-3.17.  

Table 3.6. RMS Error for Alternate Aerodynamic Coefficients 
 

Rel. Error 
Tol., 𝐸𝑟𝑒𝑙  

Max. Step Size, 
𝑁𝑚𝑎𝑥 𝐶𝐿 𝐶𝐷 Geocentric 

Latitude, 𝜙 
Geodetic 

Altitude, ℎ𝑔𝑑 Velocity, 𝑉𝐼  

1.0 x 10−10 0.1 s 0.40815 1.2569 0.417 deg 2.80 km 460 m s⁄  
1.0 x 10−10 0.1 s 0.4225 1.255 0.0338 deg 1.11 km 105 m s⁄  

1.0 x 10−10 0.5 s 0.4240 1.245 0.0406 deg 1.21 km 125 m s⁄  

1.0 x 10−10 1.0 s 0.4260 1.251 0.0412 deg 1.23 km 123 m s⁄  

1.0 x 10−8 0.1 s 0.4234 1.257 0.0381 deg 1.18 km 114 m s⁄  

1.0 x 10−8 0.5 s 0.4240 1.258 0.0442 deg 1.27 km 127 m s⁄  
1.0 x 10−8 1.0 s 0.4265 1.235 0.0405 deg 1.21 km 128 m s⁄  

 
 

 

Figure 3.15. Comparison of Geocentric/Geodetic Latitude for Apollo 10  
(𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 x 10−10,𝑁𝑚𝑎𝑥 = 0.1) 
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Figure 3.16. Comparison of Geodetic Altitude for Apollo 10  
(𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 x 10−10,𝑁𝑚𝑎𝑥 = 0.1) 

 
 

 

Figure 3.17. Comparison of Inertial Velocity for Apollo 10  
(𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 x 10−10,𝑁𝑚𝑎𝑥 = 0.1) 
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Although the modified aerodynamic coefficients yielded trajectory solutions with the 

hitherto lowest RMS error during the model verification process, such results remain dissonant 

with Hicks’ text since all Apollo 10 re-entry analysis was accurately performed with the original 

values of 𝐶𝐷 = 1.2569 and 𝐶𝐿 = 0.40815. Consequently, the fourth-order Runge-Kutta solver 

underpinning the trajectory dynamics model was re-examined for sources of possible error 

beyond the relative error tolerance and maximum step size parameters. Shifting investigative 

focus towards the solver inputs, it was determined that the solver was interpolating the control 

input from the one-second incremented bank angle profile given in Fig. 3.8 while simulating the 

capsule re-entry trajectory with non-integer time steps. Illustrated in Figs. 3.18 and 3.19, the 

interpolated bank angle profile (shown in red) does not align with the original profile and thus 

introduces erroneous bank angle values into the simulation.  

 

 

Figure 3.18. Comparison of Bank Angle Profile for Apollo 10  
(𝐶𝐿 = 0.40815,𝐶𝐷 = 1.2569,𝐸𝑟𝑒𝑙 = 1 x 10−8,𝑁𝑚𝑎𝑥 = Default) 
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Figure 3.19. Comparison of Bank Angle Profile for 𝑡 = [160, 280] s 
(𝐶𝐿 = 0.40815,𝐶𝐷 = 1.2569,𝐸𝑟𝑒𝑙 = 1 x 10−8,𝑁𝑚𝑎𝑥 = Default) 

 

In order to prevent this interpolation, integer rounding code was introduced which forces 

the time steps to align with the bank angle profile time history, thereby producing the correct 

control input. When run with the original aerodynamic coefficients of 𝐶𝐷 = 1.2569 and 𝐶𝐿 =

0.40815, the trajectory dynamics model produced trajectory solutions with RMS errors 

of 0.0447 deg, 0.8047 km, and 61.0 m/s for geocentric latitude, geodetic altitude, and inertial 

velocity, respectively. Plots for trajectory solutions corresponding to the preceding RMS error 

values are shown by Figs. 3.20 – 3.22.  
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Figure 3.20. Comparison of Geocentric/Geodetic Latitude for Apollo 10 with 
Non-Interpolation of Bank Angle Profile 

 

 

Figure 3.21. Comparison of Geodetic Altitude for Apollo 10 with 
Non-Interpolation of Bank Angle Profile 
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Figure 3.22. Comparison of Inertial Velocity for Apollo 10 with  
Non-Interpolation of Bank Angle Profile 

     

Verification of Deceleration Model 

 A model for re-entry deceleration is given by Hicks and provides dimensional values 

according to:97 

             (𝑎𝑑𝑒𝑐𝑒𝑙)𝑉 = − �̇�𝑅 =
𝐷
𝑚

+ 𝑔(𝑟) sin 𝛾 (3.32) 

               (𝑎𝑑𝑒𝑐𝑒𝑙)𝐿 = −�̇� 𝑉𝑅 = −
𝐿
𝑚
− �

𝑉2𝑅

𝑟
− 𝑔(𝑟)� cos 𝛾 (3.33) 

              𝑎𝑑𝑒𝑐𝑒𝑙 = ‖𝑎�𝑑𝑒𝑐𝑒𝑙‖ = �(𝑎𝑑𝑒𝑐𝑒𝑙)𝑉
2 + (𝑎𝑑𝑒𝑐𝑒𝑙)𝐿

2 (3.34) 

 
 where (𝑎𝑑𝑒𝑐𝑒𝑙)𝑉 and (𝑎𝑑𝑒𝑐𝑒𝑙)𝐿 are the tangential (along the velocity vector) and normal (along 

the lift vector) components of the deceleration vector, respectively. When divided by the 

                                                 
97 Hicks, 66. 



www.manaraa.com

61 

acceleration due to gravity at a specified reference altitude, 𝑔0, then the deceleration components 

and overall magnitude calculated in Eqs. (3.32) – (3.34) become non-dimensional quantities. 

 When simulating the Apollo 10 re-entry deceleration profile for a spherical gravity and 

rotating planetary model, the preceding equations yield the non-dimensional solutions illustrated 

in Fig. 3.23. Although over-estimating the local maxima of the Apollo 10 profile, the 

deceleration model produces solutions which coincide with the general locations for the profile 

maxima and minima over the specified time-of-flight. In terms of RMS error, the visual 

assessment of the model’s graphical behavior translates into a  0.422 g-deviation of the 

tangential component from the Apollo 10 profile, and  0.578 g for the deceleration magnitude. 

 

 

Figure 3.23. Comparison of Deceleration for Apollo 10 with  
Spherical Gravity and Rotating Planetary Models 
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Verification and Selection of Heat Flux Model 

 As with the verification of the trajectory dynamics model, measurements and simulation 

solutions available from various NASA missions were utilized to verify the efficacy of the 

stagnation heat flux models presented in Chapter II. Once verified, an appropriate model was 

selected and applied to all aeroassisted maneuver simulations. Although unavailable for the 

Apollo 10 capsule, re-entry heat flux data was obtained for two sub-orbital Apollo command 

module flights performed in February and August 1966.98 The vehicles employed for the tests, 

identified as Apollo Spacecraft 009 and 011, were fitted with pressure transducers and surface-

mounted calorimeters according to Fig. 3.24.    

 

 

Figure 3.24. Pressure Transducer and Calorimeter Locations on the  
Conical Section of Apollo Spacecraft 00999 

 

                                                 
98 Dorothy B. Lee, John J. Bertin, and Winston D. Goodrich, “Heat-Transfer Rate and Pressure Measurements 

Obtained during Apollo Orbital Entries,” NASA TN D-6028 (Washington, D.C.: National Aeronautics and Space 
Administration, 1970), 1. 

99 Ibid., 17. 
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For Spacecraft 009, local pressure and heat flux measurements were obtained at free-stream 

relative velocities between 12,000 ≤ 𝑉 ≤ 25,300 ft/s (3.7 ≤ 𝑉 ≤ 7.7 km/s); for Spacecraft 

011, the velocity range was greater at 2,080 ≤ 𝑉 ≤ 27,300 ft/s (0.63 ≤ 𝑉 ≤ 8.3 km/s).100 At 

an altitude and velocity of 45.7 km and 6.86 km/s at 64 s after EI, Spacecraft 009 achieved a 

maximum measured heat flux of 210 kW m2⁄  at the calorimeter location identified by the circle 

and arrow in Fig. 3.24. For the same calorimeter location, Spacecraft 011 achieved a maximum 

heat flux of 94 kW m2⁄  at an altitude and velocity of approximately 64.0 km and 7.62 km/s at 

170 s after EI.101 Since “no valid heat transfer data” was obtained on the blunt entry face of 

either command module, no real depiction of the heat flux immediately behind the bow shock is 

available.102 Consequently, the aforementioned heat flux measurements constitute the only 

maximum values available for Spacecraft 009 and 011 in subsequent comparative analysis.   

In addition to the Apollo sub-orbital flights, heat flux data also exists for the Space 

Shuttle, specifically the STS-5 (Space Transport System) mission of 1982. Shown in Fig. 3.25, 

thermocouples were affixed within sections of the fuselage and wings so as to enable the 

measuring of total heat flux at varying locations relative to both the vehicle centerline and 

hypersonic flow. Overall, the fuselage sidewalls, cargo bay doors, and the upper wing surfaces 

are subject to lower heating rates, while the fuselage and wing lower surfaces are conversely 

subject to higher heating rates.103  

                                                 
100 Ibid., 1. 
101 Ibid., 21, 24, 52, 69. 
102 Ibid., 1. 
103 William L. Ko, Robert D. Quinn, and Leslie Gong, “Finite Element Re-Entry Heat Transfer Analysis of Space 

Shuttle Orbiter,” NASA TP 2657 (Edwards, CA: NASA Dryden Flight Research Facility, 1986), 1. 
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Figure 3.25. Wing Segment (WS) and Fuselage Section (FS) Locations  
used for STS-5 Heat Flux Analysis104 

 

 

Figure 3.26. Re-Entry Trajectory for STS-5105 

                                                 
104 Ibid., 16, 18. 
105 Ibid., 16. 
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As presented in their 1986 paper “Finite Element Re-Entry Heat Transfer Analysis of 

Space Shuttle Orbiter,” Ko, Quinn, and Gong indicate that the maximum heat flux was measured 

to be approximately 1400 kW m2⁄  and occurred on the lower surface of Bay 1 in WS328 (circle 

and arrow in Fig. 3.25) at 600 s after EI.106 Based on the trajectory profile for STS-5 given in 

Fig. 3.26, this time corresponds to an approximate altitude and velocity of 70 km and 7.0 km/s, 

respectively. While also occurring on the lower surface of Bay 1 in WS328, the peak temperature 

of 1910℉ was measured at a later elapsed time of 1000 s at a lower approximate altitude 55 

km.107 The maximum heat flux and peak temperature are respectively denoted by the red and 

green dashed lines in Fig. 3.26. 

 A final source of heat flux data originates from a 2007 technical memorandum entitled 

“Re-Entry Thermal Analysis of a Generic Crew Exploration Vehicle Structure.” In this paper, 

Ko, Gong, and Quinn utilized an organic NASA Dryden aerodynamic heating software program 

to calculate the heat flux encountered by the Crew Exploration Vehicle (CEV) when flying the 

identical trajectory as Apollo Spacecraft 009 in 1966.108 Initially, the zero-tilt stagnation heat 

flux was calculated and featured a maximum value of 818 kW m2⁄  at an altitude of 45.7 km and 

an elapsed time of 1630 s. Utilizing the zero-tilt data, an amplification factor of 1.4 was applied 

to simulate the migration of the stagnation point “toward the upper torodial shoulder” when the 

CEV is at an 18 deg angle of tilt. Based on this modification, the maximum stagnation heat flux 

increased to 1128 kW m2⁄ .109  

                                                 
106 Ibid., 32. 
107 Leslie Gong, William L. Ko, Robert D. Quinn, and W. Lance Richards, “Comparison of Flight-Measured and 

Calculated Temperatures on the Space Shuttle Orbiter,” NASA TM 88278 (Edwards, CA: NASA Dryden Flight 
Research Facility, 1987), 36. 

108 William L. Ko, Leslie Gong, and Robert D. Quinn, “Re-Entry Thermal Analysis of a Generic Crew Exploration 
Vehicle Structure,” NASA TM 2007-214607 (Edwards, CA: NASA Dryden Flight Research Facility, 2007), 9. 

109 Ibid., 9, 41-42. 
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 Of the stagnation heat flux models presented in Chapter II, only four were selected for 

comparison with the preceding flight data for Apollo, the Space Shuttle, and CEV: (1) Eq. (2.4)   

from Darby and Rao (2010); (2) Eq. (2.4) from Rao et al. (2002); (3) Eq. (2.2) from Havey; and 

(4) Eq. (2.6) from Galman. Excluded from consideration, the Detra et al. model given in Eq. 

(2.1) requires presently unknown quantities for stagnation and wall enthalpies, while the form of 

Eq. (2.4) presented in the Rao et al. paper “A Concept for Operationally Responsive Space 

Mission Planning Using Aeroassisted Orbital Transfer” maintains a coefficient that is four orders 

of magnitude smaller than both the 2002 and 2010 alternatives. When simulated by the preceding 

models, the sample NASA vehicle trajectory states corresponding to maximum heat flux produce 

the results illustrated in Fig. 3.27.  

Depicted as a series of colored bars, the models show perceivable variation with the flight 

data, presented by the cross-hatched bars. For the Apollo spacecraft 009, the models over-

estimate the heat flux by one order of magnitude, with the Darby and Rao, and Rao et al. variants 

yield approximately 5200 kW m2⁄ , compared with that of 210 kW m2⁄  from the flight data. 

Similarly, the models over-estimate the heat flux for the Apollo spacecraft 011, but by nearly 

two orders of magnitude. While the variation with the CEV data is less than that of the Apollo 

spacecraft, the models still over-estimate the heat flux by 536% compared with the zero-tilt CEV 

and an associated data amplification factor of 1.0. Conversely, the models under-estimate the 

heat flux for STS-5 with the Darby and Rao, and Rao et al. variants producing a value of 

approximately 715 kW m2⁄ , 48.9% less than the measured 1400 kW m2⁄ .  

Although patently inaccurate in their estimation the flight data maximum heat flux, 

several factors must be considered when verifying the efficacy of the respective models. First, 

the greatest variation between the model and flight data heat flux occurs when the latter 
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corresponds to a blunt-body spacecraft like that of the capsule design for both the Apollo 

command module and CEV. Second, the models only estimate stagnation heat flux and do not 

account for radiative heat flux contributions to the total heat load. While the addition of a 

radiative heat flux estimate would further increase the variation between the models and 

Apollo/CEV flight data, it would decrease the variation with the STS-5 flight data and produce 

an improved approximation of maximum heat flux. Third, the models were empirically 

formulated primarily with heat flux measurements from experimental devices such as shock 

tubes located at sea-level. Even though an expedient substitute for flight data, shock tubes and 

similar devices fail to accurately simulate hypersonic flow effects stemming from not only 

altitude and varying atmospheric density due to local solar conditions, but also the intermolecular 

reaction and energy transfer properties of atmospheric atomic and molecular species local to the 

spacecraft.  

 Aside from their inherent inaccuracies, the models still provide a coarse approximation of 

heat flux, with the least variation illustrated with flight data from STS-5, a winged-entry vehicle 

similar to the example TAV utilized for this research. Overall, the Rao et al. 2002 model 

(referred hereafter as Rao, 2002) will be implemented henceforth since it maintains a 

comparatively small variation with the STS-5 example, as well as a traceable formulation lineage 

to the experimental work of Detra et al.  
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Figure 3.27. Comparison of Stagnation Heat Flux Models with  
Flight Data from Sample NASA Vehicles 
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Summary and Conclusion 

Selected as a known example of atmospheric re-entry, the Apollo 10 trajectory was 

duplicated by an independently-developed trajectory dynamics model, thereby verifying the 

accuracy and efficacy of the model for the simulation of exo- and trans-atmospheric maneuvers. 

Driven by a system of six differential equations of motion, the trajectory dynamics model is 

comprised of environmental and planetary models for atmospheric density, gravitational 

potential, and stagnation heat flux. Rather than utilizing a single model for atmospheric density, 

a piecewise-continuous atmospheric density function has been developed which models the 

MSIS-E-90 density profile by incorporating three separate altitude-delimited models. Based on 

the simulation assumptions of spherical planetary geometry and negligible radiative heat flux 

contributions during re-entry, the remaining components of the trajectory dynamics model are 

represented by a spherical gravity model and an empirically-derived model for stagnation heat 

flux.   
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IV. Comparative Study of Phasing, Skip Entry, and Simple Plane Change Maneuvers 
 

Chapter Overview 

A suite of maneuvers comprising planar phasing, out-of-plane skip entry, and simple 

plane changes are simulated for a notional trans-atmospheric, lifting re-entry vehicle with 

𝐿/𝐷 = 6. By comparing the relative performance of each maneuver to overfly a geographically 

diverse sample ground targets, it is demonstrated that skip entry maneuvers require a total ∆𝑉 

less than 0.5 km/s. For select targets, simulation results demonstrate a significant savings in ∆𝑉 

expenditure for skip entry compared with the simple plane change alternative. Overall, the 

simulated skip entry maneuvers consistently provide responsive mission execution in terms of 

ground target time-of-arrival, with maximum deceleration and stagnation heat flux less than 

1.0 g and 1000 kW/m2, respectively.  

Introduction 

Defined as a special case of lifting entry, a skip entry maneuver is comprised of exo- and 

trans-atmospheric trajectory segments as described by the example in Fig. 4.1. For the present 

research, the sequence of maneuver events for skip entry commences with a de-orbit impulse 

applied by the TAV at an initial circular orbit altitude, ℎ𝑖 (A). By decreasing orbital velocity, the 

initial circular orbit – or reference orbit – is transformed into an elliptical orbit with apogee equal 

to ℎ𝑖, and perigee corresponding to the desired depth of atmospheric penetration. Following (A), 

orbital altitude decreases until perigee transit at (B), which occurs below the upper limit of the 

sensible atmosphere at an altitude of approximately 120 km. During the trans-atmospheric 

trajectory segment, the TAV generates and utilizes atmospheric lift to execute an out-of-plane 

maneuver by banking left or right. 
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 As the altitude of a skip entry trajectory decreases, the TAV encounters increasing 

atmospheric density and, therefore, greater aerodynamic drag. In the absence of drag, the TAV 

states at (A) would equal those at the end of the trans-atmospheric trajectory, or skip apogee (C). 

By converting kinetic energy into heat, aerodynamic drag reduces both the altitude and velocity 

of the TAV such that: (1) The skip apogee altitude is less than the initial altitude; and (2) the 

velocity is less than the orbital velocity at skip apogee. Without performing a re-circularization 

burn at skip apogee to establish a stable circular orbit, the TAV will re-enter the atmosphere and 

continue on a phugoid trajectory of decreasing energy and altitude until planetary impact. With 

the completion of the re-circularization impulse at (C), however, the TAV enters a new circular 

orbit (D) which is then maintained until the next maneuver is performed, whether exo- or trans-

atmospheric in design. 

 
 

 

 

Figure 4.1. Skip Entry Maneuver Diagram 
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 Presented as an alternative to both skip entry and simple plane change maneuvers, planar 

phasing maneuvers can fulfill a desired mission tasking by either increasing or decreasing the 

semi-major axis of the reference orbit. With the former case, orbital velocity is increased to 

create an elliptical orbit with perigee equal to ℎ𝑖; for the latter case, orbital velocity is decreased 

to create an elliptical orbit with apogee equal to ℎ𝑖 and a perigee altitude greater than 120 km, 

thus precluding any transit through the sensible atmosphere. Perigee placement near the sensible 

atmosphere limit will, however, yield aerodynamic effects sufficient to degrade the phasing 

maneuver trajectory if successive perigee transits are executed. Despite such potential effects, the 

bank angle for all planar phasing maneuvers will remain at 𝜎 = 0 deg. 

Methodology 

 For the planar phasing and out-of-plane skip maneuvers, algorithms are developed to 

achieve over-flight of a specified ground target by either increasing or decreasing the semi-major 

axis of an initial reference orbit, or by banking a TAV within the sensible atmosphere to create a 

plane change. As a means of evaluating the effectiveness of the phasing and skip maneuvers in 

terms of ground target time-of-arrival and total ∆𝑉, an algorithm is also developed for simple 

plane change maneuvers conducted in the vacuum environment.  

Simulation of Planar Phasing Maneuvers 

 As an alternative to the exo-atmospheric simple plane change, a TAV can perform either 

a planar phasing or out-of-plane skip maneuver to fulfill a baseline example of a responsive 

space mission: Overfly a specified ground target in minimum time. In order to demonstrate the 

implementation of these maneuver cases, the sample ground target of Moscow was selected due 

to its mid-latitude location in the Northern Hemisphere. The geographical coordinates for 
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Moscow along with other sample ground targets utilized for subsequent comparative analyses of 

maneuver performance are given in Table 4.1. To ensure coverage of all sample ground targets, 

an initial inclination angle of 70 deg was chosen since it is greater than the latitude of Reykjavik, 

the northernmost sample location. All remaining reference orbit states are outlined in Table 4.2. 

Table 4.1. Geographical Coordinates of Sample Ground Targets of Interest 
 

Ground Target Longitude Geodetic 
Latitude 

Reykjavik, Iceland 21.9333 deg E 64.1333 deg N 
Moscow, Russia 37.6178 deg E 55.7517 deg N 

Tokyo, Japan 139.767 deg E 35.6833 deg N 
Gibraltar, United Kingdom 5.3530 deg W 36.1430 deg N 

Pontianak, Indonesia 109.333 deg E 0.0000 deg N 
Brasilia, Brazil 47.9196 deg W 15.7810 deg S 

Buenos Aires, Argentina 58.3817 deg W 34.6036 deg S 
Canberra, Australia 149.131 deg E 35.2828 deg S 

Cape Town, South Africa 18.4244 deg E 33.9767 deg S 

 

Table 4.2. Reference Orbit Initial States for Over-Flight Analysis 
 

Eccentricity, 𝑒 0.0 
Altitude, ℎ𝑖 1000 km 

Longitude, 𝜃𝑖 0 deg 
Latitude, 𝜙𝑖 0 deg 

Inclination, 𝑖𝑖 70 deg 
Flight-Path Angle, 𝛾𝑖 0 deg 
Heading Angle, 𝜓𝑖 70 deg 

Bank Angle, 𝜎𝑖 0 deg 

 
 As a consequence of simulating trajectories with respect to a rotating planetary reference 

frame, both the heading angle and orbital velocity need to be recomputed as relative quantities. 

Defined by the initial reference orbit states, the initial guess for the relative orbital velocity, 𝑉𝑅 , 

is calculated by utilizing the 𝑉𝑅 �̇� trajectory force equation components as inputs to the quadratic 

formula when �̇� = 0: 
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 𝑉𝑛𝑅 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎

 (4.1) 

 
where the variables 𝑎, 𝑏, and 𝑐 are given by: 
 

𝑎 =
1
𝑟

cos 𝛾 + �
𝜌𝐶𝐿𝑆
2𝑚

� cos𝜎 

𝑏 = 2𝜔⊕ cos𝜙 cos𝜓 

𝑐 = −𝑔(𝑟) cos 𝛾 + 𝑟𝜔⊕
2 cos𝜙 (cos𝜙 cos 𝛾 − sin𝜙 sin𝜓 sin 𝛾) 

 
With the computed value for orbital velocity, the initial guess for the heading angle is determined 

via the Law of Sines. When rotation is activated, the heading angle becomes a function of orbital 

velocity relative to the rotating reference frame, 𝑉𝑅 . Based on the vector geometry of Fig. 4.2, 

the Law of Sines is employed to produce: 

 � 𝑉��⃗𝑅 �
sin(∆𝜙)

=  �𝑉��⃗ 𝜙1�
sin(𝜓−∆𝜙)

= 86400 𝑉𝑅

sin(∆𝜙)
= 2𝜋 𝑟𝑖

sin(𝜓−∆𝜙)
  

 
When algebraically re-arranged, the preceding expression becomes: 

 𝜓 = ∆𝜙 + sin−1 �2𝜋 𝑟𝑖 sin(∆𝜙)
86400 𝑉𝑅

� (4.2) 

 
where 𝑉𝑅  is the orbital velocity calculated from Eq. (4.1). Placed in an iterative loop, Eqs. (4.1) 

and (4.2) produce relative orbital state solutions when a specified error tolerance is surpassed 

between the 𝑛 and (𝑛 − 1) steps of the relative heading angle solution algorithm.  
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Figure 4.2. Heading Angle, Orbital Velocity with Respect to a Rotating Reference Frame 

 
With the initial values for the relative heading angle and orbital velocity calculated for 

the TAV, the reference orbit is then propagated for a simulation time of 24 hours. Comparing the 

final value for semi-major axis with that of the initial state revealed an increase of 0.360836 m 

and a likewise increase in eccentricity from 0.0 to 2.445 x 10−8. To ensure that all planar 

phasing maneuvers commence from a circular reference orbit, the secant iteration method was 

implemented rather than the traditional Newton-Raphson method. A one-dimension root-finding 

routine, Newton-Raphson requires the evaluation of both the function 𝑓(𝑥) and derivative 𝑓′(𝑥) 

at a point 𝑥. Overall, quadratic convergence is achieved by extrapolating the local derivative and 

geometrically extending a tangent line formed at the current point 𝑥𝑛 until it crosses zero, where 

the next guess 𝑥𝑛+1 is set equal to the functional value associated with the tangent line zero-

crossing, also known as the ordinate.110 

For the problem of ensuring that the reference orbit is indeed circular, the heading angle 

and orbital velocity states must be iteratively calculated so that the difference between the target 

and post-simulation semi-major axis are within a specified error tolerance. Since functional 

relationships and their associated derivatives are not readily available for these parameters, the 

                                                 
110 William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes: The Art 

of Scientific Computing (Cambridge, United Kingdom: Cambridge University Press, 1988), 254-255. 
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Newton-Raphson method cannot be directly utilized without approximating the derivative 𝑓′(𝑥). 

Alternatively, the derivative requirement can be bypassed by instead using a secant line passing 

through two points on the curve to iteratively find the root. In terms of orbital velocity, 𝑉, and 

semi-major axis, 𝑎, the secant method can be represented as:111 

 
 𝑉𝑛+1 = 𝑉𝑛 + (𝑉𝑛−𝑉𝑛−1)(𝑎0−𝑎𝑛)

𝑎𝑛−𝑎𝑛−1
 (4.3) 

 

where the index 0 represents the target condition for semi-major axis. 

Following two iterations, the relative values for heading angle and orbital velocity 

calculated were then used to re-propagate the reference orbit to create a trajectory with a semi-

major axis deviation of 0.1804 m – the result of accumulated numerical errors in the differential 

equation solver. From the ground track trajectory produced by the propagated reference orbit, the 

approximate locations where the trajectory crossed the line of latitude for the ground target were 

identified and catalogued. Since the solver produces discrete solutions, the exact longitude 

corresponding with each latitude crossing cannot be directly determined from the trajectory and, 

therefore, must be interpolated. Selecting cubic spline rather than a linear interpolation scheme 

due to the nonlinearities of the trajectory, the longitude of each crossing was calculated and then 

differenced with the target longitude to produce a “delta”-longitude, or ∆𝜃. Figure 4.3 illustrates 

the ground track trajectory of the propagated reference orbit with respect to the example target of 

Moscow, while Fig. 4.4 depicts the latitude crossings, interpolation points, and resulting 

longitude interpolation solutions. 

 
 
 

                                                 
111 James F. Epperson, An Introduction to Numerical Methods and Analysis (Hoboken, NJ: John Wiley & Sons, Inc., 

2007), 120-121. 
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Figure 4.4. Latitude Crossings and Related Longitude Interpolation Solutions 
(Trajectory Point: Open Circle; Interpolated Crossing: Square) 

 

(ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg) 

 
Figure 4.3. Ground Track Trajectory of Reference Orbit  
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As examples, the sample latitude crossings of 97.96 deg E and 33.59 deg E from Fig. 4.4 

will be used to create first an “ascending,” then a “descending” phasing maneuver, respectively. 

For both cases, the type of phasing maneuver is dictated by the location at which the ground 

track trajectory crosses the line of latitude of the target. With the first example crossing located 

east of the target, indicated by the right arrow in Fig. 4.4, the TAV traveled too far during the 

simulation time and overshot the target. As a result, the semi-major axis of the reference orbit 

must increase to create an elliptical trajectory defined by a perigee location coinciding with the 

reference altitude of 1000 km. By conducting a single impulsive, tangential burn the TAV will 

enter the “ascending” eccentric orbit so as to decrease the angular distance traversed during the 

orbit period, thus permitting an over-flight of the target rather than a miss to the east. 

The amount by which the semi-major axis of the reference orbit must increase is dictated 

by both the value of ∆𝜃 and the number of reference orbits required to produce the elapsed 

simulation time corresponding to the latitude crossing. The number of reference orbits, 𝑛𝑟𝑒𝑓, is 

calculated by dividing the latitude crossing time by the reference orbit period, and then 

subsequently truncating the result to yield an integer value. Since the Earth rotates at an angular 

rate of 15 deg per hour, a delta-period, or  ∆ℙ, is calculated by dividing the longitudinal 

difference,  ∆𝜃, by the number of reference orbits and then converting into a time duration: 

 ∆ℙ = �∆𝜃 𝑛𝑟𝑒𝑓⁄ �(hr 15 deg⁄ )(3600 s/hr) (4.4) 

With the latitude crossing located east of the target, the value for  ∆ℙ must be added to the 

reference orbit period to produce the “ascending” eccentric, or perturbed orbit period. For the 

east latitude crossing case, the period of the perturbed orbit is 2.118 hr, which corresponds to an 

“ascending” semi-major axis of 8372.10 km obtained from: 
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 𝑎𝑝𝑒𝑟𝑡 = �𝜇 � ℙ
2𝜋
�
2
�
1
3
 (4.5) 

Prior to the propagation of the perturbed orbit, the secant method was again utilized to 

determine the requisite initial values for heading angle and orbital velocity for the “ascending” 

maneuver relative to the rotating reference frame. Following the completion of the perturbed 

orbit propagation – a time equal to the product of the perturbed orbit period and the number of 

reference orbits – a second impulsive tangential burn is applied when the flight-path angle is 

𝜙 = 0 deg so as to minimize the ∆𝑉 required for orbit re-circularization at the initial reference 

orbit altitude. Figure 4.5 shows both the propagated perturbed and re-circularized orbits (dashed 

line) in contrast to the initial reference orbit (solid line). 

 

 
 

Figure 4.5. Ground Track Trajectory of “Ascending” Phasing Maneuver Example 
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line) 
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By conducting an “ascending” phasing maneuver, the TAV shifted the east-latitude 

crossing westward and produced an ascending-node target over-flight with an elapsed time-of-

arrival of 23.59 hr from the simulation start time of 𝑡 = 0 at the initial latitude/longitude 

coordinates (𝜃,𝜙) = (0,0) deg. The total ∆𝑉 for the phasing maneuver is 0.846 km s⁄ , 

comprising of 0.423 km s⁄  for both the de-orbit burn from the reference into the “ascending” 

eccentric orbit trajectory and orbit re-circularization at the initial reference altitude.  

  For the “descending” phasing maneuver case, latitude crossings located west of the target 

indicate that the TAV traveled an insufficient distance during the simulation time and, therefore, 

undershot the target. Rather than increasing the reference orbit semi-major axis as with the 

“ascending” case, the “descending” case must instead decrease the semi-major axis to create an 

elliptical trajectory defined by an apogee location coinciding with the reference altitude 

of 1000 km. By conducting a single impulsive, tangential burn similar to the “ascending” case, 

the TAV will enter the “descending” eccentric orbit to overfly the target by traversing a greater 

angular distance during the orbit period, and thus decreasing the westward longitudinal 

difference ∆𝜃 to zero. Based on the example latitude crossing of 33.59 deg E located west of 

Moscow, the value for ∆ℙ calculated from Eq. (4.4) must be subtracted from the reference orbit 

period to produce a “descending” eccentric orbit period of 1.685 hr which corresponds to a 

semi-major axis of 7188.43 km. Figure 4.6 shows the propagated perturbed and re-circularized 

orbits (dashed line) in contrast to the initial reference orbit (solid line). 
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Through the execution of a “descending” phasing maneuver, the TAV shifted the west-latitude 

crossing eastward and produced a descending-node target over-flight with a time-of-arrival 

of 7.316 hr. The total ∆𝑉 for the phasing maneuver is 0.195 km s⁄ , to include 0.0974 km s⁄  for 

the tangential burn to transition from the reference to the “descending” eccentric orbit trajectory 

and 0.0974 km s⁄  for orbit re-circularization. 

 As an alternative, a modified phasing maneuver is available which transforms 

“descending” maneuvers into the “ascending” variant. In order to the eliminate the longitude 

difference between a west crossing and the target, “descending” phasing maneuvers reduce the 

semi-major axis of the reference orbit and thus increase orbital velocity. While theoretically 

tenable, large values of ∆𝜃 generate practical problems since the maneuver semi-major axis 

produces an impact scenario with the planetary surface. Rather than branding such west crossing 

Figure 4.6. Ground Track Trajectory of “Descending” Phasing Maneuver Example 
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line) 
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cases as infeasible, they can be transformed into “ascending” phasing maneuvers by subtracting 

the longitude difference ∆𝜃 from 360 deg to create an east crossing on the target line of latitude. 

As a consequence of this longitudinal shift, the time of the new east crossing is determined by 

first dividing the modified longitude difference (360 deg − ∆𝜃) by 360 deg per sidereal day, 

and then adding the result to the time associated with the original west crossing. Once calculated, 

the time of the new east crossing is divided by the reference orbit period to yield the requisite 

number of reference orbits, 𝑛𝑟𝑒𝑓, to complete the maneuver and overfly the target. Subsequent 

steps in the maneuver algorithm to include the calculation of ∆ℙ, the perturbed orbit period, and 

the perturbed orbit semi-major axis, are identical to the conventional “ascending” case. 

 For all phasing maneuvers analyzed, the time-of-arrival is derived from a determination 

of miss distance between the ground track trajectory and the target coordinates. Although the 

preceding discussion indicated that both the “ascending” and “descending” phasing maneuver 

examples produced a target over-flight, a comparison of the respective ground track trajectories 

with the target coordinates reveals a distance deviation and, therefore, not a true over-flight 

despite the target remaining within the field of view of the TAV. Quantitatively, this deviation is 

expressed by a miss distance of 10.23 km for the “ascending” and 0.68 km for the “descending” 

example cases.  

  Ideally, the minimum miss distance between the ground track trajectory and target can be 

represented as a position vector originating from the target and orthogonally extending to the 

trajectory. Since the ground track trajectory is comprised of a set of discrete points rather than a 

continuous curve, the determination of the minimum miss distance can become computationally 

expensive with the active searching of regions along the trajectory that potentially contain a 

minimum, then the subsequent interpolation of these candidate regions to provide the points 
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necessary to calculate the distance between the trajectory and target. As an alternative, the miss 

distance is determined by first interpolating the coordinates at which the trajectory crossed the 

lines of latitude and longitude pinpointing the target. Once identified, the distance between these 

crossings and the target is then calculated with Eq. (4.6) and compared to determine the 

minimum value.112 See Appendix B for geodesic distance on a non-spherical planetary model.  

 𝑠 = 𝑟⊕ cos−1[sin𝜙1 sin𝜙2 + cos𝜙1 cos𝜙2 cos(𝜃1 − 𝜃2)] (4.6) 

Simulation of Out-of-Plane Skip Entry Maneuvers 

 Rather than executing a phasing maneuver, target over-flight can be achieved with out-

of-plane skip maneuvers that vary the trajectory perigee altitude and TAV bank angle instead of 

the reference orbit semi-major axis. By decreasing the perigee altitude below the upper limit of 

the sensible atmosphere, the TAV encounters increased collisions with atmospheric chemical 

species as the rarefied, free-molecular flow of the exosphere shifts into the slip-flow, and 

eventually the hypersonic continuum flow regime of the lower atmospheric layers.113 With 

atmospheric density increasing as altitude decreases, the introduction of a non-zero bank angle 

by the TAV creates an aerodynamic force that enables a change in velocity vector direction and, 

therefore, the orientation of the orbital plane.   

 While an optimum out-of-plane solution of minimum target time-of-arrival would 

involve a simultaneous solution for perigee altitude and bank angle, an alternative method limits 

the design space and reduces the number of dynamic variables to either: (1) Perigee altitude; or 

(2) bank angle. If the former option is selected, then the values for both the perigee and skip 

apogee altitudes are known a priori. Since an out-of-plane maneuver is conducted within the 
                                                 
112 Paul Longley, Michael F. Goodchild, David J. Maguire, and David W. Rhind, Geographic Information Systems 

and Science (Hoboken, NJ: John Wiley & Sons, Inc., 2005), 117. 
113 King-Hele, 26. 
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sensible atmosphere, then aerodynamic drag effects produce a skip apogee lower than the 

reference orbit altitude. The exact value of skip apogee represents an unknown quantity since the 

magnitude of the bank angle remains to be optimized. By convention, a bank angle 

approaching ±90 deg produces an apogee altitude closer to the upper limit of the sensible 

atmosphere, whereas a bank angle approaching  0 deg yields an apogee altitude closer to that of 

the reference orbit. Depending on the apogee altitude, the amount of ∆𝑉 expended for re-

circularization remains variable since the mission might necessitate a boost to a higher altitude if 

the apogee altitude is too low due to considerations of either payload effectiveness and/or TAV 

mission lifetime.  

With the latter option, only the bank angle is known a priori and the perigee altitude 

remains to be optimized. So as to create an approximate maximum aerodynamic force, the bank 

angle is set to either  ±90 deg depending on the location of target relative to the ground track 

trajectory of the reference orbit. Of the two options available, the constant bank angle option was 

selected and an iterative solution method implemented to optimize perigee altitude for all 

subsequent analysis. Starting from the reference orbit states given in Table 4.2, the requisite 

perigee altitude to produce an over-flight condition is determined by first identifying the 

orientation of the closest approach of the reference orbit ground track trajectory to the target. If 

south or east, then the bank angle is set to +90 deg for a right bank; −90 deg for a left bank if 

north or west. If the calculated miss distance between the trajectory and target exceeds a 

specified error tolerance, then the perigee altitude is either decremented to reduce the out-of-

plane shift of the trajectory, or, conversely, incremented to increase the trajectory shift. Once 

over-flight is achieved within permissible miss distance tolerances, the time-of-arrival and total 

∆𝑉 are then calculated according to the method described for the planar phasing maneuvers. 
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Simulation of Simple Plane Change Maneuvers  

 As a means of evaluating the effectiveness of planar phasing and out-of-plane skip 

maneuvers, the respective time-of-arrival and total ∆𝑉 required for ground target over-flight is 

compared with corresponding values calculated for a simple plane change. Similar to the skip 

maneuvers, the amount of plane change required for target over-flight is determined by first 

identifying whether the closest approach of the reference orbit ground trajectory is north or south 

of the target. If the calculated miss distance between the trajectory and target exceeds a specified 

error tolerance, then the initial inertial heading angle of the spacecraft is decremented if missing 

to the north, and, conversely, incremented if missing to the south. Once the heading angle 

required for target over-flight is obtained, then it is differenced with that of the reference orbit to 

produce a “delta” value describing the amount of heading angle change required for the 

maneuver (∆𝜓). A function of relative orbital velocity, flight-path angle, and inclination change, 

an expression for the ∆𝑉 necessary to perform a simple plane change maneuver is given by:114 

 ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒 = 2 𝑉𝑅 𝑖 cos 𝛾 ∙ sin �1
2

|∆𝑖|� (4.7) 

Results and Analysis 

 The ability for planar phasing and out-of-plane skip maneuvers to perform an over-flight 

of a specified ground target in minimum time was analyzed for the locations given in Table 4.1. 

While all sample ground targets were analyzed, planar phasing maneuvers were only 

implemented for locations deemed representative of the high (Moscow), medium (Gibraltar), and 

low-latitude (Pontianak) regions. Over-flights of the remaining ground targets were executed 

utilizing only the skip entry and simple plane change maneuvers. 

                                                 
114 Vallado, 345-346. 
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Maneuver Performance Comparison for Select Ground Targets 

 For all sample ground targets, “ascending” and “descending” phasing maneuvers were 

designed based on the location of the reference orbit relative to the ground target. Employing a 

fourth-order Runge-Kutta solver, simulations of each phasing maneuver yielded over-flight data 

featuring not only time-of-arrival and altitude-of-arrival, but also the ∆𝑉 required to enter the 

perturbed orbit and subsequently re-circularize after completion of the required number of 

reference orbits comprising the maneuver. Based on this data, a series of plots were created to 

illustrate: (1) ∆𝑉 versus time-of-arrival; (2) ground resolution versus time-of-arrival; (3) altitude-

of-arrival versus time-of-arrival; and (4) number of reference orbits versus ∆𝑉. Illustrated in Fig. 

4.7 for the ground target of Moscow, over-flights originating from a reference orbit altitude of 

1000 km occur at an elapsed time of approximately 7.3, 23.6, and 31.3 hr for the planar phasing 

maneuver cases. For each of these time-of-arrival bands, the solutions corresponding to high 

values for ∆𝑉 indicate that large shifts in latitude are required to create an over-flight. Likewise, 

the low ∆𝑉 solutions arise from small shifts in latitude necessary for target over-flight. In terms 

of fuel expenditure, the phasing maneuver ∆𝑉 decreases as the number of reference orbits 

increases depending on the semi-major axis of the perturbed orbit. Of the various phasing 

maneuvers simulated, an “ascending” case with 13 reference orbits and an apogee altitude of 

1219.15 km yielded the lowest ∆𝑉 at 0.107 km/s. Despite having the same number of reference 

orbits, an example of an “ascending” case transformed from a “descending” maneuver produced 

a higher apogee altitude at 4248.40 km and a greater ∆𝑉 of 1.268 km/s. 

 As an alternative initial condition, the reference orbit and related phasing maneuvers 

were also simulated from an initial altitude of 750 km. While sharing the same time-of-arrival 

bands as the 1000 km altitude alternative, the 750 km altitude cases produced additional times-
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of-arrival at 8.16 and 17.8 hr. For both initial altitude cases, the TAV overflew Moscow at an 

altitude equal to the initial condition, with the exception of an “ascending” case whose semi-

major axis was defined by an apogee and perigee of 12048.20 km and 750 km, respectively, 

and an altitude-of-arrival of 1385.82 km. To ascertain maneuver effectiveness in terms of 

altitude-of-arrival, the TAV flies a visible imager payload with dimensions of (𝑙,𝑤,ℎ) =

(2.10, 1.20, 2.80) m, an aperture diameter (𝐷) of 1.15 m, a focal length (𝑓) of 2.70 m, and 

image wavelength of 1.0 µm. Using Eq. (4.8), the diffraction-limited ground resolution for each 

maneuver is calculated with respect to the altitude-of-arrival over each sample ground target.115 

 𝑋𝑣𝑖𝑠 = 2.44 ℎ𝜆𝐷−1 (4.8) 

For the 1000 km initial altitude case, the ground resolution was 2.12 m, while the resolution 

decreased to 1.59 m for the 750 km case.  

In addition to planar phasing maneuvers, Fig. 4.7 also shows the over-flight parameters 

for two out-of-plane skip maneuvers performed from an initial altitude of 1000 km. For an 

initial inclination of 70 deg, only a single out-of-plane maneuver opportunity is available for the 

target latitude crossing at 33.59  deg  E. Banking at 𝜎 = −90 deg, this maneuver produced an 

over-flight time-of-arrival of 7.361 hr with ∆𝑉 = 0.482 km/s. When the inertial inclination is 

decreased to 60 deg, however, two out-of-plane maneuver opportunities become available. As 

outlined in Table 4.3, the skip maneuvers surpassed the majority of phasing maneuvers in terms 

of the ∆𝑉 required to achieve the shortest time-of-arrival. Although a “descending” phasing 

maneuver was shown to overfly Moscow in 7.316 hr with ∆𝑉 = 0.195 km/s, the first skip 

maneuver with 𝜎 = +90 deg and an initial inclination of 60 deg was able to achieve an over-

                                                 
115 Bruce Chesley, Reinhold Lutz, and Robert F. Brodsky, “Space Payload Design and Sizing,” in Space Mission 

Analysis and Design, ed. James R. Wertz and Wiley J. Larson (El Segundo, CA: Microcosm Press, 2003), 264. 
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flight after 1.947 hr with ∆𝑉 = 0.466 km/s – a ∆𝑉 increase of 139% for a time-of-arrival 

savings of 5.369 hr. Likewise, an increase in ∆𝑉 from 0.466 km/s to 0.485 km/s produces an 

over-flight after 5.611 hr for the second 60 deg inclination case – a time-of-arrival that is 

1.705 hr faster than the preceding “descending” phasing maneuver case. Besides faster times-of-

arrival over Moscow, the skip maneuver examples furthermore produce improved imager 

resolutions of 1.86 m and 2.10 m, respectively, since the re-circularized orbit altitudes of 

876.57 km and 989.97 km are lower than the reference orbit altitude.  

  As a final point of comparison, Fig. 4.7 also presents the time-of-arrival and ∆𝑉 required 

to produce an over-flight of Moscow via a simple plane change maneuver. At an altitude 

of 1000 km, the simple plane change achieves a time-of-arrival of 2.043 hr with ∆𝑉 =

0.491 km/s. By comparison, the 𝜎 = +90 deg skip entry case produced a 0.096 hr-slower 

time-of-arrival with ∆𝑉 =  0.516 km/s, thus making the simple plane change the superior 

alternative. In terms of time-of-arrival alone, the simple plane change out-performs the 

“ascending” and “descending” phasing maneuvers alike, while for ∆𝑉, it under-performs the 

“ascending” maneuver with ∆𝑉 = 0.107 km/s. When the altitude is decreased to 750 km, then 

the simple plane change achieves an over-flight of Moscow with ∆𝑉 = 0.0128 km/s. While this 

represents the lowest ∆𝑉 value among the various maneuver options, the lower altitude produces 

a trade-off with a time-of-arrival of 23.576 hr for the simple plane change. 
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Table 4.3. Out-of-Plane Skip Maneuver Parameters for Moscow, Russia 

Parameter 𝑖𝑖 = 70 deg 𝑖𝑖 = 60 deg 𝑖𝑖 = 60 deg 

Bank Angle −90 deg +90 deg −90 deg 
Latitude Crossing 33.59 deg E 26.36 deg E 35.06 deg E 

Time-of-Arrival, hr 7.361 1.947 5.611 
∆𝑉𝑇𝑜𝑡𝑎𝑙, km/s 0.482 0.466 0.485 

ℎ𝑝, km 95.9 88.39 103.1 
Altitude-of-Arrival, km 949.01 876.57 989.97 

𝑋𝑣𝑖𝑠, m 2.01 1.86 2.10 
Miss Distance, km 0.637 1.85 0.047 

 

 
 

Figure 4.7. Maneuver Over-Flight Parameters for Moscow, Russia 
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  For the medium-latitude case of Gibraltar, over-flights originating from an initial altitude 

of 1000 km also occur in bands, but at elapsed times of approximately 11.3, 25.3, and 35.2 hr 

for the phasing maneuver cases. As shown in Fig. 4.8, the phasing maneuvers commencing at an 

altitude of 1000 km maintained a lower ∆𝑉 than the 750 km-case within the 11.3 hr time-of-

arrival band. Similar to the Moscow case, phasing maneuvers commencing at 1000 km out-

performed the simple plane change maneuver at the same initial altitude with ∆𝑉 = 0.046 km/s 

– a value 0.179 km/s lower than the simple plane change with ∆𝑉 = 0.225 km/s and a time-of-

arrival of 11.19 hr. Although more expensive in terms of ∆𝑉, the simple plane change maneuver 

conducted at a 750 km altitude produced the fastest time-of-arrival at 1.86 hr. 

 

 
  
   

Figure 4.8. Maneuver Over-Flight Parameters for Gibraltar, United Kingdom 
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  Lastly, for the equatorial case of Pontianak, Indonesia, over-flights originating from an 

initial altitude of 1000 km occur at elapsed times of approximately 4.7, 16.6, 28.6, and 40.6 hr 

for the phasing maneuver cases. As compared with Moscow and Gibraltar, the 40.6 hr band 

represents the longest for time-of-arrival and results from the transformation of “descending” 

phasing maneuvers into the “ascending” alternative. Depicted in Fig. 4.9, the phasing maneuvers 

commencing at both the 750 km and 1000 km iniital altitude cases maintained a considerably 

lower ∆𝑉 than the simple plane change maneuvers, with the most expensive phasing maneuver at 

a ∆𝑉 of 4.293 km/s, a value 45.1% lower than ∆𝑉 = 7.815 km/s for the 1000 km-altitude 

simple plane change. Overall, such disparity in ∆𝑉 between the phasing and simple plane change 

maneuvers stems from the mechanics of the maneuvers: the former achieves over-flight by either 

increasing or decreasing the reference orbit semi-major axis while retaining the original heading 

angle and inclination; the latter achieves over-flight by decreasing the inclination angle from 

70 deg to 0 deg.  As a consequence of its equatorial location, Table 4.4 shows that Pontianak 

requires the highest ∆𝑉 among the various sample ground targets to achieve over-flight via 

simple plane change. For the remaining locations, a direct relationship between ∆𝑉 and target 

latitude cannot be conclusively established since the values listed reflect the ∆𝑉 required to shift 

the reference orbit ground track towards the target with the intent of creating an over-flight. 

 
Table 4.4. Simple Plane Change Maneuver Parameters (ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg) 

 

Ground Target 𝜓𝑆𝑖𝑚𝑝𝑙𝑒, deg Time-of-
Arrival, hr ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒, km/s 

Reykjavik, Iceland 66.65 9.254 0.418 
Moscow, Russia 73.25 2.043 0.491 

Tokyo, Japan 64.65 15.96 0.666 
Gibraltar, United Kingdom 68.20 11.19 0.225 

Pontianak, Indonesia 0.000 4.355 7.815 
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Analysis of Out-of-Plane Skip Entry Maneuvers 

 For the Moscow over-flight scenario, the first skip maneuver executed set the TAV bank 

angle to 𝜎 = +90 deg and the perigee altitude at 88.39 km so as the shift the target latitude 

crossing at 26.36 deg E eastward to overfly the target. By performing a rightward-bank, the skip 

maneuver not only shifted the ground track trajectory of the reference orbit to the south and east, 

but also decreased the maximum orbit inclination from 60 deg to 57.95 deg, a reduction of 

3.42%. Even though 𝜎 = +90 deg at the start of the simulation, a shifting in the perturbed orbit 

with respect to the reference orbit does not occur until the altitude of the TAV approaches the 

upper limit of the sensible atmosphere and descends below it.  

Figure 4.9. Maneuver Over-Flight Parameters for Pontianak, Indonesia 
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Representing an ascending node over-flight opportunity, the ground track trajectory of 

the first skip maneuver is shown in detail in Fig. 4.10. As a result of aerodynamic drag 

encountered by the TAV near perigee, the skip apogee altitude and resulting re-circularized orbit 

altitude of 876.57 km is 12.34% lower than the initial 1000 km altitude. Re-circularized at a 

comparatively high altitude low-Earth orbit, the TAV is capable of performing either subsequent 

exo- or trans-atmospheric maneuvers due to the higher orbital potential energy available. 

 

  For the second skip maneuver, the TAV bank angle was set to 𝜎 = −90 deg and perigee 

optimized at a higher altitude of 103.1 km so as to shift the target latitude crossing at 

35.06 deg E eastward towards the target. By performing a maximum bank to the left as opposed 

to the right as in the first out-of-plane case, the skip maneuver in Fig. 4.11 shifted the ground 

track trajectory of the reference orbit to the north and east, thereby decreasing the maximum 

orbit inclination from 60 deg to 59.82 deg, a reduction of 0.3%. Since the skip entry seeks to 

Figure 4.10. Over-Flight Detail of Ascending Node Out-of-Plane Skip Maneuver 
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line) 
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shift a descending node segment of the reference orbit, more flight time is available to propagate 

the change in the orbital plane created by the skip maneuver. As a result, the perigee altitude is 

optimized at a higher altitude of 103.1 km in order to reduce the aerodynamic drag encountered 

by the TAV and limit the overall change in orbit inclination. When simulated, the second skip 

maneuver case re-circularized at an orbit altitude of 989.97 km, a reduction of 1.00% from the 

initial 1000 km altitude. 

 

 Similar to the preceding maneuver case, the skip entry performed at an initial inclination 

of 70 deg also maintained a bank angle of 𝜎 = −90 deg. Transiting a perigee altitude of 95.9 

km, this maneuver achieved a time-of-arrival of 7.361 hr with ∆𝑉 = 0.482 km/s. While out-

performed by phasing maneuvers executed at the same initial conditions, the skip maneuver at 

𝑖𝑖 = 70 deg still provides a responsive over-flight trajectory with a time-of-arrival less than 18 

hr and ∆𝑉 = 0.5 km/s. 

Figure 4.11. Over-Flight Detail of Descending Node Out-of-Plane Skip Maneuver 
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line) 
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Maneuver Performance Comparison for All Ground Targets 

 For the complete list of sample ground targets, encompassing both northern and southern 

hemisphere locations, only the skip entry and simple plane change maneuvers were simulated to 

determine the relative performance of each out-of-plane maneuver option. Starting from the 

latitude/longitude coordinates (𝜃,𝜙) = (0,0) deg, a simulation time of 𝑡 = 0, and an initial 

inclination of 60 deg, Table 4.5 illustrates the target time-of-arrival, ∆𝑖, and ∆𝑉 required to 

achieve target over-flight. Since the simple plane change maneuvers occur in vacuo, then metrics 

related to maximum deceleration and maximum stagnation heat flux are provided only for the 

skip maneuver alternative. While only one simple plane change opportunity is available for each 

target, upwards of one to possibly four maneuver opportunities are available for skip entry based 

on the placement of the reference orbit ground track vis-à-vis the target. For example, two skip 

maneuver opportunities exist for Tokyo, while four opportunities exist for Cape Town.  

Upon comparison, the skip maneuvers produced the lowest mean ∆𝑉, with the required 

∆𝑉 expenditure for each target and associated set of maneuver opportunities being less than 

0.5 km/s. Shown in Fig. 4.9 and Table 4.4, the simple plane change produced the highest ∆𝑉 

expenditure for the over-flight of Pontianak at 7.096 km/s, compared with ∆𝑉 = 0.443 km/s 

for skip entry. Although the simple plane change maneuver demonstrated a faster time-of-arrival 

for the targets of Buenos Aires, Brasilia, Canberra, Pontianak, Reykjavik, and Tokyo, the skip 

maneuvers out-performed each of these cases in terms of ∆𝑉. Of the sample targets selected, 

Gibraltar and Moscow represent the only over-flight cases in which the ∆𝑉 expenditure for the 

simple plane change out-performed that of the skip maneuver. 
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Table 4.5. Skip Entry and Simple Plane Change Maneuver Comparison 
 (ℎ𝑖 = 1000 km, 𝑖𝑖 = 60 deg) 

 

Ground 
Target 

Simple Plane Change Skip Entry 

∆𝑖, deg 
Time-of-
Arrival, 

hr 
∆𝑉, 𝑘𝑚/𝑠 ∆𝑖, deg 

Time-of-
Arrival, 

hr 
∆𝑉, 𝑘𝑚/𝑠 Max. 

Decel., g 
�̇�𝑠,𝑚𝑎𝑥 , 

 𝑘𝑊/𝑚2 

Reykjavik 4.13 7.446 0.511 4.61 8.224 0.364 0.278 497.32 

Moscow 0.74 5.785 0.092 
0.05 1.947 0.466 0.135 344.87 
0.05 3.652 0.434 0.267 487.84 
0.07 5.611 0.485 0.131 82.73 

Tokyo 4.67 15.963 0.578 4.14 15.991 0.378 0.253 474.53 
0.05 16.609 0.425 0.304 519.92 

Gibraltar 0.78 1.959 0.097 4.11 1.731 0.379 0.252 473.64 
0.05 9.532 0.311 0.572 708.11 

Pontianak 60.00 4.355 7.096 0.05 16.644 0.443 0.230 452.13 

Brasilia 24.78 1.615 3.045 10.64 15.433 0.304 0.375 577.43 

Buenos 
Aires 10.09 1.519 1.248 8.97 2.837 0.299 0.369 572.91 

0.05 18.076 0.355 0.476 649.00 

Canberra 4.97 12.046 0.615 3.48 12.636 0.396 0.219 441.23 
0.05 10.921 0.392 0.391 589.73 

Cape Town 5.29 20.813 0.655 

5.17 21.501 0.350 0.302 518.84 
4.17 12.004 0.376 0.256 477.52 
0.05 20.677 0.397 0.379 580.70 
0.05 12.543 0.432 0.277 496.63 

 

  Increasing the initial inclination of the reference orbit from 60 deg to 70 deg produced 

similar results to those given in Table 4.5, with the skip maneuvers maintaining a mean ∆𝑉 less 

than 0.5 km/s for each target over-flight, as well as a maximum deceleration and stagnation heat 

flux less than 1.0 g and 1000 kW/m2, respectively. Although the simple plane change maneuver 

provided a faster time-of-arrival than skip entry for several targets in both Tables 4.5 and 4.6, to 

include Brasilia and Pontianak, the ∆𝑉 expenditure is considerably greater. For example, an 

over-flight of Buenos Aires commencing from a 𝑖𝑖 = 60 deg reference orbit achieves a time-of-

arrival of 1.519 hr for a simple plane change, compared with 2.837 hr for the fast skip entry 

opportunity. Despite saving 1.318 hr in flight time, the simple plane change requires ∆𝑉 =
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1.248 km/s, a 317% increase from the ∆𝑉 required for the skip maneuver. Similarly, an over-

flight of Canberra commencing from a 𝑖𝑖 = 70 deg reference orbit achieves a time-of-arrival of 

2.807 hr for a simple plane change, while the fastest skip entry opportunity achieves over-flight 

in 12.546 hr. Despite producing a faster time-of-arrival of 9.739 hr, the simple plane change 

requires a 77% greater ∆𝑉 expenditure than the skip entry alternative.   

Even though values for maximum deceleration and stagnation heat flux are presented in 

Tables 4.5 and 4.6, the relative impact of these parameters as maneuver performance measures 

only attain significance when compared with existing re-entry deceleration and heat flux data. 

When trajectory data for vehicles such as the Apollo Command Module or Space Shuttle is 

examined, it becomes apparent that the simulated deceleration and heat flux experienced by the 

TAV are considerably lower in magnitude, with deviations primarily arising due to the perigee 

altitude selected for the skip trajectory. With Apollo and the Space Shuttle performing a terminal 

re-entry rather than a skip entry aeroassisted maneuver, the vehicles experience an exponentially 

increasing dense atmosphere as the altitude decreases towards sea-level. Consequently, increased 

atmospheric density translates into greater deceleration and heat flux experienced by the vehicle 

as kinetic energy decreases and is frictionally converted into heat during re-entry. 

  In terms of TAV survivability during the skip maneuver, the maximum deceleration of 

0.304 g for Gibraltar from Table 4.5 is favorable since it is less than 1.0 g and one order of 

magnitude less than the maximum deceleration experienced by vehicles such as Apollo. For 

example, re-entry of the Apollo 10 Command Module from lunar transfer orbit produced a 

maximum deceleration of approximately 6.75 g.116 As for stagnation heat flux, TAV 

survivability is not explicitly evident and thus a comparison with known re-entry data is 

                                                 
116 Hicks, 411. 
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required. Recorded at an approximate altitude of 70 km, STS-5 experienced a maximum heat 

flux of 1400 kW m2⁄  on the lower surface of the wing leading-edge.117 Despite being lower in 

magnitude, the maximum skip entry value of  �̇�𝑠,𝑚𝑎𝑥 = 708.11 kW m2⁄   from Table 4.5 (also 

for Gibraltar) only represents an estimate of stagnation heat flux, whereas the STS-5 

measurement is total heat flux, to include contributions by radiative heating. Based on the 

comparatively shallower entry of the TAV, however, the total heat flux is assumed to be less 

than the maximum STS-5 measurement and is deemed survivable for the notional TAV. 

Table 4.6. Skip Entry and Simple Plane Change Maneuver Comparison  
(ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg) 

 

Ground 
Target 

Simple Plane Change Skip Entry 

∆𝑖, deg 
Time-of-
Arrival, 

hr 
∆𝑉, 𝑘𝑚/𝑠 ∆𝑖, deg 

Time-of-
Arrival, 

hr 
∆𝑉, 𝑘𝑚/𝑠 Max. 

Decel., g 
�̇�𝑠,𝑚𝑎𝑥 , 
𝑘𝑊/𝑚2 

Reykjavik 3.29 9.254 0.412 7.49 3.285 0.305 0.376 575.69 
0.03 6.862 0.419 0.363 564.67 

Moscow 2.16 7.591 0.271 0.41 7.361 0.482 0.109 166.40 

Tokyo 5.31 15.963 0.666 

6.05 15.335 0.328 0.356 559.45 
8.44 2.107 0.297 0.387 583.99 
0.03 16.084 0.388 0.444 626.81 
0.03 15.681 0.486 0.110 206.77 

Gibraltar 1.74 11.196 0.218 0.03 1.743 0.408 0.392 506.03 
4.56 11.552 0.365 0.295 587.67 

Pontianak 70.00 4.355 8.241 0.03 16.650 0.448 0.256 469.08 

Brasilia 34.78 1.615 4.294 0.03 15.640 0.426 0.344 548.67 

Buenos 
Aires 0.15 16.825 0.019 2.55 3.042 0.424 0.183 388.82 

0.03 17.151 0.409 0.389 585.17 

Canberra 4.47 2.807 0.560 6.52 13.384 0.316 0.363 564.60 
0.03 12.546 0.390 0.440 624.07 

Cape Town 2.41 11.562 0.302 

7.20 22.138 0.303 0.376 575.32 
7.04 11.347 0.308 0.372 572.12 
0.03 21.563 0.450 0.241 453.08 
0.03 12.091 0.388 0.444 626.52 

 

                                                 
117 Ko, “Finite Element,” 16, 18, 32. 
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Summary and Conclusion 

Based on a notional trans-atmospheric, lifting re-entry vehicle design with 𝐿/𝐷 = 6, a 

series of planar phasing, out-of-plane skip entry, and simple plane change maneuvers were 

simulated to overfly a set of sample ground targets located at high-, medium-, and low-latitudes, 

in the northern and southern hemispheres. From these simulations the creation of time-of-arrival 

bands was shown, each comprised of a family of phasing maneuver solutions with a 

corresponding total ∆𝑉 dependent on both the type and number of maneuvers performed. 

Whether characterized as “ascending” or “descending,” phasing maneuvers maintain consistently 

low ∆𝑉 requirements of less than 0.5 km/s, with times-of-arrival less than 18 hr for a variety of 

ground targets, both east and west of the Prime Meridian. While the ∆𝑉 for the simple plane 

change is lower than most phasing maneuvers executed for over-flights of Moscow and 

Gibraltar, the equatorial target of Pontianak, Indonesia illustrated that the choice of ground target 

can have a detrimental impact on ∆𝑉 with values approaching 8.0 km/s for a single simple plane 

change. For a limited sample ground target set, the skip entry aeroassisted maneuvers have been 

shown to consistently provide responsive mission execution in terms of target time-of-arrival, 

with maximum deceleration and stagnation heat flux less than 1.0 g and 1000 kW/m2, 

respectively.   
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V. Design of Experiments Approach to Atmospheric  
Skip Entry Maneuver Optimization 

 

Chapter Overview 

An optimal trans-atmospheric vehicle and trajectory design are presented to 

simultaneously maximize the change in inclination angle and minimize total ∆𝑉 for an 

atmospheric skip entry maneuver. Utilizing a Design of Experiments approach featuring 

orthogonal arrays of experiments, the optimal vehicle and trajectory designs are determined 

within the context of main effects and Pareto front analysis by evaluating the relative 

performance of six design variables, to include mass, planform area, aerodynamic coefficients, 

perigee altitude, and bank angle. Depending on the chosen re-circularization altitude, the optimal 

design performing a skip entry aeroassisted maneuver can achieve an inclination change 

of 19.91 deg with 50-85% less ∆𝑉 than a simple plane change.  

Introduction 

For the skip entry type of aeroassisted maneuver, maneuver design represents a multi-

objective optimization problem (MOP) with a decision space containing not only TAV and 

trajectory design parameters, but also constraints related to TAV capability, such as 

available ∆𝑉, maximum deceleration g-loading, and maximum heat flux. With the MOP assumed 

to be unconstrained in terms of TAV capability, the decision space then focuses on optimizing 

only the TAV and trajectory designs in order solve the primary MOP defined by: 

 
MOP = �

max𝑓(�⃑�) ∆𝑖
min𝑓(�⃑�) ∆𝑉

�

subject to �⃑� ∈ �𝑚, 𝑆,𝐶𝐷 ,𝐶𝐿 ,ℎ𝑝,ℎ𝑖 ,𝜎�
 (5.1)   
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As a sample scenario in which to solve the MOP, a TAV – launched from Wallops Island, VA 

into a circular orbit with an inclination equal to the launch site latitude (37.84 deg N) – is to 

perform a skip entry maneuver at a bank angle of 𝜎 < 0 deg. Since the initial reference orbit is 

prograde, then a negative bank angle produces a leftward turn and, therefore, an increase in orbit 

inclination angle. Conversely, a positive bank angle creates a rightward turn and a negative 

change in inclination. Furthermore, the scenario neither requires ground target over-flights at 

specified times, nor adheres to imposed no-fly zones when conducting the maneuver.   

While all simulations conducted within the present research perform a single skip entry 

maneuver, the user of a given TAV maintains the prerogative of performing as many exo- or 

trans-atmospheric maneuvers as permitted by the ∆𝑉 capacity of the vehicle. Consequently, the 

ability to perform consecutive maneuvers is contingent on the orbital energy of the TAV. With 

re-circularization required for continued mission operations, the altitude of re-circularization 

becomes important since the ∆𝑉 necessary for orbit injection decreases as the altitude of desired 

re-circularization increases. Presented as a secondary MOP, the corollary objective space of re-

circularization altitude (ℎ𝑟𝑒𝑐𝑖𝑟𝑐) vs. ∆𝑖 is given in Eq. (5.2). As a tertiary MOP, Eq. (5.3) 

illustrates the objective space of ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑉. 

 
MOP = �

max𝑓(�⃑�) ∆𝑖
max𝑓(�⃑�) ℎ𝑟𝑒𝑐𝑖𝑟𝑐

�

subject to �⃑� ∈ �𝑚, 𝑆,𝐶𝐷 ,𝐶𝐿 ,ℎ𝑝,ℎ𝑖 ,𝜎�
 (5.2) 

 

 
MOP = �

min𝑓(�⃑�) ∆𝑉
max𝑓(�⃑�) ℎ𝑟𝑒𝑐𝑖𝑟𝑐

�

subject to �⃑� ∈ �𝑚, 𝑆,𝐶𝐷 ,𝐶𝐿 ,ℎ𝑝,ℎ𝑖 ,𝜎�
 (5.3) 

For each MOP, re-circularization is assumed to occur following the trans-atmospheric flight 

segment at skip apogee. 



www.manaraa.com

102 

Methods of Maneuver Optimization 

 Whether exo- or trans-atmospheric in nature, maneuver optimization seeks to maximize 

the ability of a spacecraft to change orbital states while managing constraints linked to propellant 

availability, mission time factors, and trajectory design. Saddled with limited computing 

resources, early research into trans-atmospheric maneuver optimization sought to simplify the 

problem by linearizing the system dynamics as well as introducing dimensionless state variables 

into the differential equations of motion.118 Once simplified, a classical optimization approach 

was applied to produce optimal solutions by evaluating expressions for the variational 

Hamiltonian, Lagrange multipliers, adjoint variables, and terminal transversality conditions. 

Following this general method, several Mayer-style performance indices were solved for skip 

entry, to include: (1) maximizing 𝑉𝑓 with ℎ𝑓 prescribed, and vice versa for a single maneuver;119 

(2) maximizing the orbit inclination change, ∆𝑖, for a vehicle conducting a transfer from high 

Earth orbit to LEO via aerobraking;120 (3) maximize inclination change and range for multiple-

skip maneuvers;121 and (4) simultaneously minimize ∆𝑉 and maximize skip entry time-of-flight 

(TOF) while minimizing peak heat flux.122  

Modern advancements in computing have enabled the formulation of increasingly robust 

numerical algorithms which support multiple degrees of freedom trajectory simulations and 

produce optimal solutions without system linearization or equation non-dimensionalization. 
                                                 
118 Dean R. Chapman, “An Approximate Analytical Method for Studying Entry into Planetary Atmospheres,” NACA 

TN 4276 (Moffett Field, CA: AMES Aeronautical Laboratory, 1958), 1-101; Eggers and Wong, 1364-1375; J. L. 
Speyer and M. E. Womble, “Approximate Optimal Atmospheric Entry Trajectories,” Journal of Spacecraft and 
Rockets 8 (1971): 1120-1125. 

119 N. X. Vinh, A. Busemann, and R. D. Culp, “Optimum Three-Dimensional Atmospheric Entry,” Acta 
Astronautica 2 (1975): 593-611. 

120 N. X. Vinh and John M. Hanson, “Optimal Aeroassisted Return from High Earth Orbit with Plane Change,” Acta 
Astronautica, 12 (1985): 11-25. 

121 N. X. Vinh and Der-Ming Ma, “Optimal Multiple-Pass Aeroassisted Plane Change,” Acta Astronautica 21 
(1990): 749-758; N. X. Vinh and Ya-Wen Shih, “Optimum Multiple-Skip Trajectories,” Acta Astronautica 41 
(1997): 103-112. 

122 Miele et al., 99-122. 
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Identified as a class of direction collocation, pseudospectral methods parameterize the state and 

control trajectories and path constraints using interpolating polynomials, thereby converting an 

optimal control problem into a nonlinear programming problem. When the polynomials are 

obtained from a Gaussian quadrature, then the method is identified as a Gaussian pseudospectral 

method.123 A subtype of algorithms which numerically calculate the value of a definite integral 

in one or more dimensions, Gaussian quadrature utilizes polynomial approximations of the 

integrand f of increasing degree. The roots of the polynomials, also referred to as nodes, are then 

chosen optimally to “maximize the degree of polynomials that the quadrature integrates 

exactly.”124 As examples of pseudospectral method implementation, Sun and Zhang maximized 

the range of a single skip maneuver subject to several path constraints to include g-loading, 

dynamic pressure, and heat flux,125 while Rao et al.126 and Darby and Rao127 minimized ∆𝑉 for 

multiple-skip maneuvers subject to only heat flux path constraints.  

 In addition to the implementation of numerical algorithms such as pseudospectral 

methods to solve optimal control problems, computing advances have also enabled the increase 

in problem complexity with the development of multidisciplinary design optimization (MDO) 

and metaheuristic methods to solve multistate, multi-objective problems (MOPs).128 One method 

of solving a MOP, and the focus of the present research, utilizes the Design of Experiments 

(DOE) method of orthogonal arrays to provide optimal solutions based on the simulation of 

                                                 
123 Yong Sun and Maorui Zhang, “Optimal Re-Entry Range Trajectory of Hypersonic Vehicle by Gauss 

Pseudospectral Method” (Paper presented at the 2nd International Conference on Intelligent Control and 
Information Processing, Harbin, China, 25-28 July 2011): 545-549. 

124 Narayan Kovvali, Theory and Applications of Gaussian Quadrature Methods (New York: Morgan & Claypool 
Publishers, 2011), 2. 

125 Sun and Zhang, 545-549. 
126 Rao et al., “Numerical Optimization Study,” 215-238. 
127 Darby and Rao, “Optimal Impulsive,” 39-52. 
128 El-Ghazali Talbi, Metaheuristics: From Design to Implementation (Hoboken, NY: John Wiley & Sons, Inc., 

2009), 308. 
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optimal control design experiments formulated from a user-defined design space. Besides 

orthogonal arrays, other statistical techniques exist within the DOE framework to characterize 

objective space behavior (output) with respect to the points comprising the design space (inputs), 

to include full-factorial design and Latin-hypercube spacing.129 The most computationally 

intensive, full-factorial design evaluates every combination of design variable, or factor, at every 

design variable value, or level. As the number of factors and levels increase for a given MOP, the 

number of experiments within a full-factorial design increases exponentially.130 Requiring fewer 

design experiments than either the full-factorial or orthogonal array alternatives, Latin-hypercube 

spacing seeks to maximize design space coverage by not only maximizing the distance between 

design points, but also preserving near-uniform spacing between the points.131 

 Although requiring more design experiments than Latin-hypercube spacing, orthogonal 

arrays permit the calculation of main effects for each factor, which represents the effect of a 

given factor averaged across all levels of the remaining factors.132 Similar to the other statistical 

techniques, the objective space resulting from the orthogonal array experiment simulations allow 

for the determination of optimal solutions based on Pareto front analysis and the identification of 

non-dominated design solutions.133 Apart from disciplines such as biology and chemical 

engineering,134 DOE methods – specifically orthogonal arrays – have been utilized in various 

aerospace optimization applications to include multi-layer insulation design for re-entry 
                                                 
129 Jeremy S. Agte, “Multistate Analysis and Design: Case Studies in Aerospace Design and Long Endurance 

Systems” (Ph.D Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of 
Technology (MIT), 2011), 103. 

130 Roger P. Peterson, Design and Analysis of Experiments (New York, NY: Marcel Dekker, Inc., 1985), 116. 
131 Jack P. C. Kleijnen, Design and Analysis of Simulation Experiments (New York, NY: Springer Science + 

Business Media, LLC, 2008), 129. 
132 A. S. Hedayat, N. J. A. Sloane, and John Stufken, Orthogonal Arrays: Theory and Applications (New York, NY: 

Springer Verlag New York, Inc., 1999), 252. 
133 Talbi, 309, 311. 
134 Torbjörn Lundstedt, Elisabeth Seifert, Lisbeth Abramo, Bernt Thelin, B., Åsa Nyström, Jarle Petterson, and Rolf 

Bergman, “Experimental Design and Optimization,” Chemometrics and Intelligent Laboratory Systems 42, no. 1-
2 (1998): 3-40. 
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heating,135 supersonic transport design,136 and UAV design.137 Despite the breadth of aerospace 

applications, orthogonal arrays have as of yet to be applied to the optimization of skip entry 

maneuvers within the current literature. While providing optimal solutions congruent with 

pseudospectral and meta-heuristic methods, orthogonal arrays permit an augmented exploration 

of the objective space with the ability to perform main effects analysis. 

Methodology 

The implementation of the DOE method of orthogonal arrays first requires the formation 

of the orthogonal array itself. A matrix of dimension (𝑛 x 𝑚), an orthogonal array represents a 

subset of a full-factorial experiment campaign with each row and column corresponding to one 

experiment and factor (design variable), respectively. Signifying one simulation run, an 

experiment corresponds to a different combination of factors levels, or design variable values. As 

an example, the following (2 x 1) matrix represents two consecutive experiments extracted from 

an orthogonal array constructed for the present research with six factors (TAV mass, planform 

area, aerodynamic coefficients, perigee altitude, and bank angle): 

�
𝑚1 𝑆1 𝐶𝐷1 𝐶𝐿1 ℎ𝑝1 𝜎1
𝑚2 𝑆2 𝐶𝐷2 𝐶𝐿2 ℎ𝑝2 𝜎2

� = �
3500 kg 18.9375 m2 0.81875 0.5000 102.2500 km −83.75 deg
5500 kg 16.7500 m2 1.13750 2.0625 104.1875 km −82.50 deg� 

With the number of experiments as well as the upper and lower bounds for each factor defined as 

inputs, orthogonal arrays can be constructed using various existing mathematical software suites. 

                                                 
135 Kamran Daryabeigi, “Thermal Analysis and Design of Multilayer Insulation for Re-Entry Aerodynamic 

Heating,” Journal of Spacecraft and Rockets 39, no. 4 (2002): 509-514. 
136 Anthony A. Giunta, Vladimir Balabanov, Dan Haim, Bernard Grossman, William H. Mason, Layne T. Watson, 

and Raphael T. Haftka, “Multidisciplinary Optimization of a Supersonic Transport Using Design of Experiments 
Theory and Response Surface Modeling,” TR 97-10 (Blacksburg, VA: Virginia Polytechnic Institute and State 
University, 2001). 

137 Jeremy S. Agte, Nicholas Borer, and Olivier de Weck, “Design of Long Endurance Systems with Inherent 
Robustness to Partial Failures during Operations,” Journal of Mechanical Design 134, no. 10 (2012): 100903-
100918. 
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Once the experiments comprising the orthogonal array are simulated, the resulting 

objective space can be analyzed in terms of main effects and Pareto optimality. For examples 

outlining the calculation of main effects for simple orthogonal arrays, see An Introduction to 

Design of Experiments: A Simplified Approach by Barrentine and Statistical Design of 

Experiments with Engineering Applications by Rekab and Shaikh.138 For information related to 

the mathematical theory underpinning orthogonal arrays and main effects analysis, see 

Orthogonal Arrays: Theory and Applications by Hedayat, Sloane, and Stufken.139  

 Fundamentally, Pareto analysis seeks to identify a set of optimal solutions for a given 

objective space and is utilized for multi-objective optimization within a diverse range of 

disciplines from economics and management to science and engineering. As stated by Talbi, a 

solution is considered Pareto optimal if it is “not possible to improve a given objective without 

deteriorating at least [one other] objective” within the MOP.140 Alternatively, a Pareto optimal 

solution represents a non-dominated solution within the objective space.141 For each objective 

space obtained from the experiment campaigns comprising this research, the Pareto optimal set, 

or Pareto front, is determined with a heuristic filter algorithm which identifies solutions as either 

dominated or non-dominated and discards the former.142 

 

 

                                                 
138 Larry B. Barrentine, An Introduction to Design of Experiments: A Simplified Approach, (Milwaukee, WI: Quality 

Press, 1999); Kamel Rekab and Muzaffar Shaikh, Statistical Design of Experiments with Engineering 
Applications (Boca Raton, FL: Taylor and Francis Group, LLC., 2005). 

139 Hedayat et al., Orthogonal Arrays: Theory and Applications. 
140 Talbi, 308. 
141 J. Dario Landa Silva, Edmund K. Burke, and Sanja Petrovic, “An Introduction to Multiobjective Metaheuristics 

for Scheduling and Timetabling,” in Metaheuristics for Multiobjective Optimization, ed. Xavier Gandibleux, 
Marc Sevaux, Kenneth Sörensen, and Vincent T’kindt (Berlin, Germany: Springer-Verlag Berlin Heidelberg, 
2004), 96. 

142 J. S. Arora, Introduction to Optimum Design, Third Edition (Waltham, MA: Academic Press, 2012), 670. 
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Since the optimal set of TAV design parameters is unknown, the DOE framework can be 

employed to create an orthogonal array of experiments formulated according to the notional 

factor level bounds outlined in Table 5.1 for each design parameter, or factor.  

 
Table 5.1. Factors and Associated Level Bounds for TAV Design Parameters 

Factor Minimum Value Maximum Value 

Mass, kg 2000 6000 
Planform Area, m2 15 22 
Drag Coefficient 0.5 2.2 
Lift Coefficient 0.5 3.0 

 
 
With the decision space comprising four TAV design factors and three factors of ℎ𝑝, ℎ𝑖,𝜎 related 

to trajectory design, a systematic optimization approach is required. Initially, two consecutive 

sets of experiments (Campaigns #1, 2) are conducted to identify appropriate factor bounds on the 

perigee and initial altitude for the skip entry trajectory, respectively, with 𝜎 = −90 deg. For 

Campaign #1, ℎ𝑝 ∈ [75,100] km with ℎ𝑖 = 1000 km; for Campaign #2, the perigee altitude 

varies according to the preceding campaign results, with ℎ𝑖 ∈ [300,1000] km. Remaining 

at 𝜎 = −90 deg, Campaign #3 is then run to establish an objective space from which Pareto 

solutions to the three MOPs are identified. Converting the bank angle into an active factor 

varying within the interval 𝜎 ∈ [−120, 0] deg, Campaign #4 produces a set of Pareto solutions 

which are then compared to those obtained from the preceding campaign to determine the 

coupled TAV and trajectory design that satisfies the primary MOP. 
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Results and Analysis 

With the experiment campaigns as a foundation, the constant bank angle analysis is first 

discussed, to include a presentation of the Pareto optimal fronts for the three MOPs as well as a 

comparison of the main effects and Pareto front analysis for the primary MOP. Following the 

selection of the optimal TAV and trajectory design based on a comparison of the constant and 

variable bank angle analysis results, functions for ∆𝑉 = 𝑓(𝜎) and ∆𝑖 = 𝑓(𝜎,∆𝑉) are derived via 

regression analysis. Finally, the performance of the optimal TAV and trajectory design is 

compared with that of an exo-atmospheric simple plane change. 

Constant Bank Angle Analysis 

For Campaign #1, a preliminary orthogonal array with 125 experiments and 5 levels 

yielded a success rate of 49.6%, with 63 experiments failing since particular combinations of 

TAV and trajectory factors result in either planetary impact or a failure to establish a stable re-

circularized orbit following perigee transit, thus producing an eventual impact scenario. With 62 

successful experiments producing a sparse objective space, a higher-density experiment array 

was desired and, therefore, the number of experiments increased to 3125. After processing the 

higher-density experiment array, the number of successful experiments increased from 62 to 

1575. From the objective space, it was observed that the perigee altitude of 

81.25 km represented the lowest of the five levels to produce a successful experiment. Restricted 

by the number of levels employed to create the experiment array, it was concluded that a proper 

lower bound for the perigee altitude factor was not 81.25 km, but rather a value between the 

initial lower bound of 75 km and 81.25 km. Calculating the median of these two values and 

rounding up to the nearest integer thus produced a new lower bound of 79 km for the perigee 

altitude factor.  
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In addition, the perigee altitude upper bound was also modified with the value increasing 

from 100 km to 110 km. While the upper limit of the sensible atmosphere is defined at an 

altitude of 120 km, the altitude of 110 km was selected since it corresponds to a calculated 

atmospheric density of 5.930 x 10−8  kg m3⁄ , a value 300% greater than the density 

of 1.474 x 10−8  kg m3⁄  at 120 km. With a greater atmospheric density, an altitude of 110 km 

permits an increased ability of a given TAV design to perform an out-of-plane maneuver during 

a banked skip entry and thus achieve a change in maximum orbit inclination, albeit small in 

magnitude. Also constructed with 3125 experiments and 5 levels, Campaign #2 was run with 

ℎ𝑝 ∈ [79,110] km and produced a success rate of 54.8% with trajectory solution distribution 

conforming to the a priori expectation that as the initial altitude increases, the likewise increase 

in orbital potential energy contributes to an increase in the maximum inclination change. As a 

result, the initial altitude was set to 1000 km for the remaining experiment campaigns in order to 

satisfy the primary MOP for maximizing ∆𝑖. 

When executed, Campaign #3 (3125 experiments, 5 levels) produced the first objective 

space from which a Pareto optimal front could be determined based on the primary MOP in Eq. 

(5.1). From the 2138 successful experiments, 10 were identified as being non-dominated and 

comprising the Pareto optimal set as shown in Fig. 5.1.  
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Figure 5.1. Pareto Optimal Front for Campaign #3: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)} 

 
The Pareto optimal fronts related to the MOPs in Eqs. (5.2) and (5.3) are given in Figs. 5.2 and 

5.3, respectively:  

 

Figure 5.2. Pareto Optimal Front for Campaign #3: {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} 
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Figure 5.3. Pareto Optimal Front for Campaign #3: {min(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} 

One data analysis option available for determining the optimal TAV and trajectory 

designs is to map the Pareto optimal set from the objective space ∆𝑉 vs. ∆𝑖 in Fig. 5.1 onto the 

objective spaces ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑖 and ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑉 in Figs. 5.2 and 5.3, respectively. Shown in 

Fig. 5.4, the Pareto optimal set identified with circles in Fig. 1 is mapped to the squares in Fig. 

5.4(a). Upon comparison, the two sets of Pareto optimal points yield a set of intersecting points 

which satisfy both the primary MOP and the secondary MOP of {max(∆𝑖) , min(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}. When 

mapped to the objective space in Fig. 5.4(b), however, the set of intersecting Pareto points do not 

coincide with any of the Pareto points satisfying the tertiary MOP of {min(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}. 

While non-intersection persists in Subplot (b) when the boundaries {max(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} 

and {min(∆𝑉) , min(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} are plotted, a single point of intersection does arise for the 

boundary representing {max(∆𝑉) , min(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} – a non-optimal flight condition. Overall, 

Pareto intersection analysis produces four candidate TAV designs which maximize ∆𝑖, while 

minimizing both the total ∆𝑉 and re-circularization altitude. Since these designs do not maximize 

re-circularization altitude while minimizing total ∆𝑉, subsequent analysis is restricted to 

satisfying only the primary MOP. 
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Figure 5.4. Mapping of Pareto Optimal Set from  ∆𝑉 vs. ∆𝑖 onto  
Secondary and Tertiary Objective Spaces 
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 Besides forming objective spaces, the solutions obtained from the orthogonal array 

experiment campaigns can also be employed to calculate the main effects of each factor on a 

selected measure of performance for the system. Although the MOP is defined as the 

simultaneous optimization of ∆𝑖 and ∆𝑉, the former can be viewed as a primary driver of TAV 

and trajectory optimization based on the exigencies of immediate mission requirements. During 

nominal mission operations, ∆𝑉 performance becomes essential since vehicle mission longevity 

is irrevocably contingent on propellant availability. Focusing on the maximization of ∆𝑖, Fig. 5.5 

depicts the main effects of the TAV design factors on ∆𝑖. 

  

 

Figure 5.5. Main Effect on Maximum Inclination Change for DOE Campaign #3 with 
 (a) TAV Mass, (b) Planform Area, (c) Drag Coefficient, and (d) Lift Coefficient 
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Referencing Fig. 5.5(a) as an example, the main effect of TAV mass on maximum 

inclination change, at a sample level of 4000 kg, is the mean inclination change of all factors 

within the orthogonal array with the TAV mass equal to 4000 kg. Graphically, the number of 

discrete points in each subplot in Fig. 5.5 is equal to the number of levels for each factor within 

the orthogonal array. When plotted, the slope of the points as well as any curve fits indicates the 

relative strength of the main effect on the desired measure of performance. Of the TAV design 

factors, the drag and lift coefficients produce the greatest relative slopes and, therefore, are 

considered to contribute the greatest influence on maximum inclination change; nearly horizontal 

in slope, planform area has the least influence. In order to maximize ∆𝑖, the main effects from 

Fig. 5.5 coalesce to form a potential TAV design with 𝑚 = 2000 kg, 𝐶𝐷 = 0.5, and 𝐶𝐿 = 3.0. 

Based on the approximate horizontal distribution of the planform area main effects, the mean of 

the planform area decision space of 𝑆 = 18.5 m2 is selected as the final component of the 

potential TAV design.  

Similar to the TAV design factors, the main effects of the perigee altitude factor can also 

be calculated and plotted (see Fig. 5.6). Of the five design factors evaluated within the 

orthogonal array, perigee altitude features the greatest comparative impact on maximum 

inclination change. At the minimum factor bound of ℎ𝑝 = 79 km the mean response is 6 deg – a 

value one order of magnitude greater than the mean response of 0.75 deg obtained from the main 

effect plots for the aerodynamic coefficients. As expected, Fig. 5.6 illustrates that as perigee 

altitude decreases, the ability of a TAV to perform aeroassisted out-of-plane maneuvers increase 

due to the exponential increase in atmospheric density. 
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Figure 5.6. Main Effect of Perigee Altitude on Maximum Inclination Change for  
DOE Campaign #3 

 
With a potential TAV and trajectory design established from the main effects analysis, 

the optimality of the design in terms of the MOP must be evaluated through a comparison with 

the Pareto optimal set obtained from the ∆𝑉 vs. ∆𝑖 objective space. Prior to any comparison, two 

supplementary experiment campaigns were run in an effort to populate the sparse objective space 

in the range 10 deg ≤ ∆𝑖 ≤ 20 deg. Shown in Table 5.2, the first of the supplemental campaigns 

focused on exploring the decision space arising from the Pareto optimal set, while the second 

was more limited and focused on two outlier points observed from preliminary inspections of the 

objective space. Of these outlier points, the first corresponded to the Pareto optimal solution 

which yielded ∆𝑖 = 19.91 deg for ∆𝑉 = 0.345 km/s  as shown in Fig. 5.1. For the second point, 

outlier status was assigned not for inclination change performance, but rather the maximum 

deceleration and stagnation heat flux experienced during skip entry. While the solutions 

comprising the objective space maintained an average deceleration and heat flux of 0.17 g 

and 129.20 kW m2⁄  , the identified outlier point was considerably higher with 5.56 g 

and 1351.5 kW m2⁄ . 
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Table 5.2. Factors and Associated Level Bounds for Supplementary DOE Campaigns 

Factor Campaign 
1 2 

Mass, kg [2000, 5000] [2000, 2000] 
Planform Area, m2 [15, 22] [18, 22] 
Drag Coefficient [0.5, 0.5] [0.5, 0.5] 
Lift Coefficient [2.0, 3.0] [0.5, 3.0] 

Perigee Altitude, km [86, 87] [86, 87] 

 

Due to the restricted decision space of the design factors, low-density orthogonal arrays of 125 

experiments were constructed for each of the supplementary campaigns. With success rates of 

36% each, these campaigns further populated the ∆𝑉 vs. ∆𝑖 objective space from Fig. 5.1 and, as 

a result, created an augmented Pareto optimal front based on the addition of more solutions to the 

objective space as shown in Fig. 5.7. 

 

Figure 5.7. Augmented Pareto Optimal Front for DOE Campaign #3  
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Demarcated by squares in Fig. 5.7, the augmented Pareto optimal set is given in Table 5.3 

in ascending order of maximum inclination change with associated TAV and trajectory design 

factors, as well as values related to maximum deceleration and stagnation heat flux performance. 

From the Pareto optimal set, the TAV design which produced the greatest change in inclination 

(∆𝑖 = 19.91 deg) is identical to that estimated through the main effects analysis, with 𝑚 =

2000 kg, 𝑆 = 18.5 m2, 𝐶𝐷 = 0.5, and 𝐶𝐿 = 3.0. The only design difference arises from the 

trajectory, with the main effects and Pareto front analyses yielding perigee altitudes of 86.75 km 

and 79 km, respectively. 

   
 

Table 5.3. Maneuver Parameters of Augmented Pareto Optimal Front 

Mass, kg Planform 
Area, 𝑚2 𝐶𝐷 𝐶𝐿 Perigee, km ∆𝑖, deg Max. 

Decel., g 
�̇�𝑠,𝑚𝑎𝑥 , 
𝑘𝑊 𝑚2⁄  

2000 19.00 0.500 1.125 86.50 5.31 0.17 370.48 
2000 18.00 0.500 1.125 86.25 5.38 0.17 380.81 
2000 18.50 0.500 1.750 86.75 6.42 0.21 363.91 
2750 22.00 0.500 1.750 86.00 7.49 0.22 396.45 
2000 19.00 0.500 1.750 86.75 7.64 0.22 364.00 
2000 16.75 0.500 3.000 86.75 9.34 0.35 367.01 
2000 18.00 0.500 3.000 87.00 10.38 0.35 356.20 
2000 18.50 0.500 2.375 86.75 10.70 0.30 364.48 
4000 22.00 0.925 2.375 86.75 11.88 0.17 360.97 
3500 16.75 0.875 3.000 86.00 12.99 0.22 395.01 
2000 18.00 0.500 2.375 86.50 14.90 0.30 373.39 
2000 19.00 0.500 2.375 86.75 14.98 0.30 363.20 
2000 18.00 0.500 3.000 86.75 16.38 0.37 363.96 
2000 19.00 0.500 3.000 87.00 16.43 0.37 354.04 
2000 20.00 0.500 1.750 86.75 16.89 0.23 362.52 
2000 18.00 0.500 1.750 86.25 16.95 0.23 382.86 
2000 19.00 0.500 1.750 86.50 16.98 0.23 372.45 
2000 18.50 0.500 3.000 86.75 19.91 0.38 362.96 
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Variable Bank Angle Analysis  

From the main effects and Pareto front analysis of Campaign #3, a candidate design for 

TAV and skip trajectory was generated for a bank angle of 𝜎 = −90 deg. So as to ensure the 

optimality of the candidate design, Campaign #4 was conducted to ascertain if 𝜎 = −90 deg 

satisfies the MOP by introducing bank angle as a sixth factor which varies within 𝜎 ∈

[−120, 0] deg. Overall, five orthogonal arrays (729 experiments, 9 levels each) were created 

with the TAV design parameters from Table 5.1 and ℎ𝑝 ∈ [79,110] km as the baseline factors, 

and bank angle varying according to the following: 𝜎 ∈ [−120,−100] deg, 

𝜎 ∈ [−100,−80] deg, 𝜎 ∈ [−80,−50] deg, 𝜎 ∈ [−50,−20] deg, and 𝜎 ∈ [−20, 0] deg. When 

combined, the solutions from each of the five orthogonal arrays produced the objective space 

illustrated in Fig. 5.8 with a success rate of 75.8% from the 3645 total experiments.   

 

 

Figure 5.8. Pareto Optimal Front for DOE Campaign #4: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)} 



www.manaraa.com

119 

 A total of 20 points, the Pareto optimal set from Campaign #4 in Fig. 5.8 is listed in 

Table 5.4 in ascending order of maximum inclination change. When compared with the objective 

space from the preceding campaign, the Pareto optimal set from Campaign #4 yielded a TAV 

and trajectory design which achieved a 0.05 deg greater inclination change of ∆𝑖 = 19.96 deg 

at 𝜎 = −57.50 deg and ℎ𝑝 = 79 km. By examining required ∆𝑉, however, the hundredths-place 

increase to inclination change corresponds to ∆𝑉 = 0.51 km/s, an increase of 47.8% in ∆𝑉 

expenditure from Campaign #3 for ∆𝑖 = 19.91 deg. In addition to requiring a higher ∆𝑉, the 

design also features a maximum deceleration greater than 1.0 g and a maximum stagnation heat 

flux nearly double the value calculated for the design from Campaign #3. 

 
 

Table 5.4. Maneuver Parameters of Pareto Optimal Front for DOE Campaign #4 

Mass, kg Planform 
Area, 𝑚2 𝐶𝐷 𝐶𝐿 Perigee, 

km 𝜎, deg ∆𝑖, deg Max. 
Decel., g 

�̇�𝑠,𝑚𝑎𝑥 , 
𝑘𝑊 𝑚2⁄  

4500 15.88 0.500 0.500 82.88 -115.00 1.30 0.17 528.35 
2000 17.63 1.988 3.000 94.50 -107.50 1.91 0.17 162.59 
3500 17.63 1.775 2.375 90.63 -102.50 2.17 0.17 247.41 
4000 20.25 1.775 3.000 90.63 -107.50 2.66 0.17 225.41 
6000 17.63 1.563 1.125 86.75 -112.50 5.47 0.17 435.18 
2000 17.63 1.350 1.125 90.63 -120.00 6.87 34.34 1471.03 
5000 15.00 0.925 0.813 82.88 -76.25 6.89 0.17 537.23 
5000 17.63 0.713 3.000 82.88 -85.00 11.09 0.32 543.80 
4500 21.13 0.713 1.125 82.88 -68.75 12.12 0.17 546.48 
6000 20.25 1.775 1.750 82.88 -20.00 12.19 0.24 529.81 
2000 19.38 2.200 2.063 90.63 -15.00 12.49 0.20 259.43 
3500 16.75 2.200 2.063 86.75 -20.00 13.80 0.20 371.35 
4000 19.38 2.200 2.688 86.75 -38.75 14.63 0.23 369.96 
3500 22.00 1.775 2.688 86.75 -50.00 15.84 0.27 366.78 
5000 19.38 0.925 2.063 79.00 -38.75 16.06 0.46 710.99 
6000 20.25 1.138 2.688 79.00 -38.75 16.32 0.53 712.46 
5500 22.00 0.925 2.688 79.00 -46.25 17.07 0.62 715.91 
4500 17.63 0.925 3.000 79.00 -50.00 17.63 0.67 714.22 
3000 22.00 0.500 2.063 79.00 -50.00 17.84 0.88 721.67 
2500 20.25 0.500 3.000 79.00 -57.50 19.96 1.41 719.15 

 



www.manaraa.com

120 

 When plotted, the main effects for each factor reveal greater dynamism than shown for 

Campaign #3. So as to maximize ∆𝑖, the main effects of the subplots in Fig. 5.9 create a potential 

TAV design with  𝑚 = 2000 kg, 𝐶𝐷 = 0.5, and 𝐶𝐿 = 3.0. With the main effects point 

distribution for planform area producing a cubic curve fit, the approximate local maxima of the 

planform area decision space of 𝑆 = 20.25 m2 is selected to complete the TAV design. Although 

Fig. 5.10(a) mirrors the same trend for perigee altitude from Campaign #3, Subplot (b) indicates 

a local maximum change in inclination for a bank angle of approximately 𝜎 = −20 deg.  

 

Figure 5.9. Main Effect on Maximum Inclination Change for DOE Campaign #4 with 
(a) TAV Mass, (b) Planform Area, (c) Drag Coefficient, and (d) Lift Coefficient 
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Figure 5.10. Main Effect on Maximum Inclination Change for DOE Campaign #4 with  
(a) Perigee Altitude, and (b) Bank Angle 

 
  

Unlike Campaign #3, disparities arise in the TAV and trajectory design when the results 

of the main effects and Pareto front analysis are compared from Campaign #4. Even though 

aligning for the factors of planform area, perigee altitude, and the aerodynamic coefficients, the 

two methods differ for TAV mass and bank angle. Based on the higher ∆𝑉, coupled with the 

greater maximum deceleration and stagnation heat flux of the design from Campaign #4, the 

potential TAV and trajectory design from Campaign #3 is thus deemed optimal by satisfying 

both aspects of the MOP  {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)} and is shown in Table 5.5.  

 
Table 5.5. Optimal TAV Design and Trajectory 

Mass, kg 2000 
Planform Area, m2 18.5 
Drag Coefficient 0.5 
Lift Coefficient 3.0 

Initial Altitude, km 1000 
Perigee Altitude, km 86.75 

Bank Angle −90 deg 
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Single TAV Design Analysis 

With the optimization phase completed, a fifth experiment campaign was formulated to 

determine how ∆𝑉 and ∆𝑖 changes as bank angle varies within the interval 𝜎 ∈ [−120, 0] deg for 

single TAV and trajectory design. Composed of 241 experiments incremented at 𝜎 = 0.5 deg, 

the single TAV campaign resulted in a success rate of 62.6% with the ∆𝑉 vs. ∆𝑖 objective space 

and accompanying Pareto optimal front shown in Fig. 5.11:  

 

 

Figure 5.11. Pareto Optimal Front for Single TAV Design: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)} 

 
Although depicting the graphical relationship between ∆𝑉 and ∆𝑖, Fig. 5.11 fails to convey the 

impact of the independent variable 𝜎 on these trajectory performance measures. Therefore, the 

objective space was re-plotted with bank angle as the independent variable in Fig. 5.12. 
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Figure 5.12. Polynomial Fit for Single TAV Design with ∆𝑉 = 𝑓(𝜎) 

 
Based on the grouping of solutions within the ∆𝑉 vs. 𝜎 objective space, a univariate quartic 

polynomial curve fit with constant coefficients was devised. The general expression for a 

polynomial is given by Eq. (5.4a), while the objective space-specific expression is given by Eq. 

(5.4b):143 

 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 (5.4a) 

 ∆𝑉 = 𝑓(𝜎) = 𝑎4𝜎4 + 𝑎3𝜎3 + 𝑎2𝜎2 + 𝑎1𝜎 + 𝑐0 (5.4b) 

where  

Coefficient Coefficient Value 95% Confidence Bounds 

𝑎0 0.497 [0.4924, 0.5015] 
𝑎1 −3.867 x 10−4 [−1.036 x 10−3, 2.627 x 10−4] 
𝑎2 −4.577 x 10−5 [−7.333 x 10−5,−1.821 x 10−5] 
𝑎3 −8.323 x 10−7 [−1.272 x 10−6,−3.922 x 10−7] 
𝑎4 −7.106 x 10−9 [−9.458 x 10−9,−4.753 x 10−9] 

                                                 
143 Edward J. Barbeau, Polynomials (New York, NY: Springer-Verlag New York, Inc., 1989), 1. 
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The square of the correlation coefficient 𝑟 is defined as:144 

 𝑟2 = ss𝑥𝑦2

ss𝑥𝑥ss𝑦𝑦
= (∑𝑥𝑦−𝑛�̅�𝑦�)2

(∑𝑥2−𝑛�̅�2)(∑𝑦2−𝑛𝑦�2) (5.5) 

where ss𝑥𝑥, ss𝑦𝑦, and ss𝑥𝑦 are sum of squared values for a set of 𝑛 points. For the polynomial 

model of the ∆𝑉 vs. 𝜎 objective space, the squared correlation coefficient is computed to be 

𝑟2 = 0.994 with residuals shown in Fig. 5.13.  

 

Figure 5.13. Residuals Plot of Polynomial Fit for Single TAV Design with ∆𝑉 = 𝑓(𝜎) 

 The objective space from Fig. 5.12 can be expanded with introduction of ∆𝑖 as the third 

orthogonal axis. When plotted within three-dimensional space, the new objective space permits 

the creation of a surface fit with 𝜎 and ∆𝑉 as function inputs: ∆𝑖 = 𝑓(𝜎,∆𝑉). Modeled as a 

bivariate cubic polynomial with constant coefficients, the surface fit is shown graphically in Fig. 

5.14 and given symbolically by Eqs. (5.6a) and (5.6b).145 

                                                 
144 Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, Second Edition (Boca Raton, FL: CRC Press 

LLC, 2003), 568. 
145 Keith O. Geddes, Stephen R. Czapor, George Labahn, Algorithms for Computer Algebra (Norwell, MA: Kluwer 

Academic Publishers, 1992), 46. 
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Figure 5.14. Surface Fit for Single TAV Design with ∆𝑖 = 𝑓(𝜎,∆𝑉) 

 
𝑓(𝑥,𝑦) = 𝑎𝑛,𝑚𝑥𝑛𝑦𝑚 + ⋯+ 𝑎22𝑥2𝑦2 + 𝑎21𝑥2𝑦 + 𝑎12𝑥𝑦2 + 

𝑎11𝑥𝑦 + 𝑎10𝑥 + 𝑎01𝑦 +                (5.6a) 

∆𝑖 = 𝑓(𝜎,∆𝑉) = 𝑎03(∆𝑉)3 + 𝑎21(𝜎)2(∆𝑉) + 𝑎12(𝜎)(∆𝑉)2 + 𝑎11(𝜎)(∆𝑉) + 𝑎20(𝜎)2 + 

𝑎02(∆𝑉)2 + 𝑎10(𝜎) + 𝑎01(∆𝑉) + 𝑎00                           (5.6b) 

 
where  

Coefficient Coefficient Value 95% Confidence Bounds 

𝑎00 -1983 [−2347,−1620] 
𝑎10 -22.86 [−26.86,−18.86] 
𝑎01 7534 [5692, 9376] 
𝑎20 -0.02106 [−0.03121,−0.01091] 
𝑎02 -6618 [−9771,−3465] 
𝑎11 81.95 [67.68, 96.21] 
𝑎21 0.03915 [0.01931, 0.5899] 
𝑎12 -72.8 [−85.47,−60.13] 
𝑎03 -976.5 [−2842, 888.6] 
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Regarding goodness of fit, the model for ∆𝑖 = 𝑓(𝜎,∆𝑉) features 𝑟2 = 0.979, a sum-squared 

error of SSE = 6.37 computed from Eq. (5.7), and a three-dimensional plot of residuals shown in 

Fig. 5.15.146 

 SSE = ss𝑦𝑦(1 − 𝑟2) (5.7) 

 

Figure 5.15. Residuals Plot of Surface Fit for Single TAV Design with ∆𝑖 = 𝑓(𝜎,∆𝑉) 

 
 Due to the narrow distribution of solutions within the three-dimensional objective space 

of Fig. 5.14, the surface fit model described by Eq. (5.6b) contains a limited domain. As an 

example, function inputs of 𝜎 = 85 deg and ∆𝑉 = 0.337 km/s will produce a value for ∆𝑖 

corresponding to a three-dimensional section of points comprising the objective space. With 

function inputs of 𝜎 = 85 deg and ∆𝑉 = 0.427 km/s, then the resulting ∆𝑖 is incorrect since it 

resides outside of the objective space. Consequently, Eqs. (5.4b) and (5.6b) must be employed 

sequentially, with bank angle and the function output of Eq. (5.4b) serving as the inputs to the 

function given by Eq. (5.6b). When the surface fit model is solved accordingly, a three-

dimensional solutions curve of the objective space is produced as illustrated by Fig. 5.16.  

                                                 
146 Weisstein, 568. 
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Figure 5.16. Three-Dimensional Solution for Single TAV Design with 
 𝜎 ∈ [−120,0] deg, ∆𝑉 = 𝑓(𝜎), and ∆𝑖 = 𝑓(𝜎,∆𝑉) 

 
  
 Aligning with the results from Campaign #3, an analysis of the ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑖 objective 

space for the single TAV design indicates that the re-circularization altitude decreases as the 

inclination change increases. This trend is valid since the deeper penetration of the TAV into the 

atmosphere increases the amount of inclination change, which, in turn, decreases both the orbital 

energy and re-circularization altitude. Plotted in Fig. 5.17, the re-circularization altitudes vary 

from 131.2 km to 789.4 km for 𝜎 ∈ [−120,0] deg and ℎ𝑖 = 1000 km. Although lucrative for 

certain mission taskings, the maximum inclination change of ∆𝑖 = 19.91 deg is detrimental to 

the prospect of continued orbital operations since re-circularization occurs at the skip apogee 
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altitude of 131.2 km. Alternatively, one option available to achieve a high inclination change 

and regain orbital energy is to perform a maneuver which re-circularizes the trajectory at an 

orbital altitude higher than skip apogee. Shown in Fig. 5.18(b), the ∆𝑉 vs. ∆𝑖 objective space 

reflects the completion of a Hohmann transfer up to an example altitude of 500 km for all skip 

entry trajectories resulting in a skip apogee less than 500 km. While ∆𝑖 = 19.91 deg is still 

achievable, the combined orbit raising and re-circularization increases the total ∆𝑉 expenditure 

for the skip entry by 133.6%, from ∆𝑉 = 0.345 km/s  in Fig. 5.18 (a), to ∆𝑉 = 0.806 km/s in 

Subplot (b). 

 

 

 

Figure 5.17. Pareto Optimal Front for Single TAV Design: {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} 
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Figure 5.18. Pareto Optimal Fronts for Single TAV Design with (a) Re-Circularization at Skip 
Apogee, and (b) Re-Circularization at ℎ = 500 km via Hohmann Transfer 

 

TAV Design Application 

Employing the optimal TAV design listed in Table 5.5, the optimal skip entry trajectory 

was simulated with respect to a circular reference orbit with the following initial states: 

Table 5.6. Reference Orbit Initial States for Optimal Design Simulation 

Eccentricity 0.0 
Altitude, km 1000 

Longitude 0 deg 
Latitude  0 deg 

Inclination Angle 37.84 deg 

 

Depicted by a solid line in Fig. 5.19, the reference orbit maintains a maximum orbit inclination 

of 37.84 deg, the result of a due East launch from Wallops Island, VA. So as to achieve ∆𝑖 =

19.91 deg, the TAV must reach a perigee altitude of 86.75 km during skip entry. Also referred 

to as a perturbed orbit, the intial states for the skip entry trajectory are given in Table 5.7. For 

both the reference and perturbed orbits, trajectory time is measured as an elasped quantity from 

𝑡 = 0 at the initial longitude/latitude coordinates (𝜃𝑖,𝜙𝑖) = (0,0) deg. 
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Table 5.7. Perturbed Orbit Initial States for Optimal Design Simulation 

Altitude, km 1000 
Longitude 0 deg 
Latitude 0 deg 

Inclination Angle 37.84 deg 
Flight-Path Angle 0 deg 

Heading Angle  37.84 deg 
Bank Angle −90 deg 

 

Even though 𝜎 = −90 deg at the start of the simulation, a shifting in the perturbed orbit 

with respect to the reference orbit does not occur until the TAV approaches the upper limit of the 

sensible atmosphere at an altitude of 120 km and descends below it. As shown in Fig. 5.19, the 

perturbed orbit begins to shift at an approximate longitude of 140 deg E and reaches the first 

instance of maximum inclination deviation with the reference orbit at 𝜃 ≈ 45 deg E.  

Figure 5.19. Reference Orbit (solid, blue) and Perturbed Orbit (dash, red)  
Ground Track Trajectories of Single TAV Design 
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 Plotting the altitude profile of the skip entry trajectory in Fig. 5.20 indicates that the 

perigee altitude of 86.75 km was reached after an elapsed time of 48.15 min, while re-

circularization at skip apogee occurred after 76.67 min. As a result of losses in kinetic energy 

due to aerodynamic drag encountered by the TAV while transiting perigee, the skip apogee and 

corresponding re-circularized orbit altitude of 131.2 km is 86.88% lower than the 1000 km 

initial reference orbit altitude. With re-circularization near the upper limit of the sensible 

atmosphere, the TAV maintains a limited capability of performing subsequent maneuvers 

resulting from low available orbital potential energy as well as a drag-induced decaying re-

circularized orbit. By performing a combined orbit-raising and re-circularization maneuver at 

skip apogee, a stable orbit can then be established at a higher altitude within LEO. Despite the 

added ∆𝑉 expenditure for such a maneuver at skip apogee, the TAV is then capable of multiple 

over-flights of ground targets within the  37.84 deg ≤ 𝜙 ≤ 57.75 deg and −57.75 deg ≤ 𝜙 ≤

−37.84 deg latitude bands available upon completion of the orbit-raising transfer.  

 

Figure 5.20. Altitude Profile for Perturbed Orbit of Single TAV Design 
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 To ascertain the effectiveness of the skip entry maneuver with respect to ∆𝑉 expended for 

the inclination change achieved, a purely propulsive simple plane change maneuver performed in 

vacuo was simulated based on the equation:147 

 ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒 = 2 𝑉𝑅 𝑖 cos(𝛾) ∙ sin �1
2

|∆𝑖|� (5.8) 

The ∆𝑉 required to achieve a maximum inclination change of ∆𝑖 = 19.91 deg is given in Table 

5.8 with four maneuver cases: (1) Skip entry with re-circularization at skip apogee (131.2 km); 

(2) skip entry with re-circularization at 500 km following a Hohmann transfer performed at skip 

apogee; (3) skip entry with re-circularization at ℎ𝑖 = 1000 km following a Hohmann transfer 

performed at skip apogee; and (4) simple plane change performed at ℎ𝑖 = 1000 km.   

Table 5.8. Maneuver ∆𝑉 Comparison of Orbit Re-Circularization Cases 

Case Total ∆𝑉 Percent Increase 

1 0.345 km/s — 
2 0.806 km/s 133.6% 
3 1.068 km/s 209.6% 
4 2.397 km/s 594.8% 

 
By conducting a Hohmann transfer to boost the TAV altitude from 131.2 to 500 km at skip 

apogee, a ∆𝑉 increase of 133.6% is required with the total ∆𝑉 for the skip entry maneuver 

increasing from 0.345 km/s to 0.806 km/s. For a skip apogee boost to 1000 km, the total ∆𝑉 

increases by 209.6% for the skip entry maneuver. When performed at ℎ𝑖 = 1000 km, the simple 

plane change requires 594.8% more ∆𝑉 than the skip entry maneuver with re-circularization at 

skip apogee. With re-circularization occurring at either skip apogee or a boosted altitude such as 

500 km or 1000 km, the skip entry maneuver demonstrates a considerable reduction in 

propellant expenditure when achieving a maximum inclination change of ∆𝑖 = 19.91 deg. 

                                                 
147 Vallado, 345-346. 
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Summary and Conclusion 

 Employing the Design of Experiments method of orthogonal arrays, an optimal TAV and 

trajectory design can be determined for trans-atmospheric skip entry maneuvers. Satisfying the 

multi-objective optimization problem given in Eq. (5.1) as {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}, the 

optimal solution was obtained through main effects and Pareto front analyses of the objective 

spaces produced by executing a series of orthogonal array experiment campaigns constructed of 

factors related to TAV and skip entry trajectory design. Since certain combinations of TAV and 

trajectory levels yielded planetary impact and mission failure, orthogonal arrays with a high 

density of experiments were created to improve the simulation success rate for each campaign. 

Starting from a circular reference orbit with an inclination of 37.84 deg, a TAV can 

achieve a maximum inclination change of ∆𝑖 = 19.91 deg by performing a skip entry 

aeroassisted maneuver with a vehicle design of 𝑚 = 2000 kg, 𝑆 = 18.5 m2, 𝐶𝐷 = 0.5, and 𝐶𝐿 =

3.0, and a trajectory defined by ℎ𝑖 = 1000 km, ℎ𝑝 = 86.75 km, and 𝜎 = −90 deg. If orbit re-

circularization occurs at skip apogee, then ∆𝑉 = 0.345 km/s for the maneuver. With re-

circularization at an altitude higher than skip apogee, such as 500 km, the total ∆𝑉 required to 

perform both the skip entry maneuver and Hohmann transfer is 0.806 km/s. Without an orbit-

raising transfer, the preceding analysis demonstrates that a skip entry maneuver out-performs a 

simple plane change, with the former requiring approximately 50-85% less ∆𝑉 to achieve a 

maximum inclination change of ∆𝑖 = 19.91 deg. Based on the vehicle and trajectory designs, the 

amount of inclination change achievable by a TAV is a function of the duration of atmospheric 

flight: longer transit-times in the atmosphere increase the exposure of a TAV to aerodynamic 

forces and, as a result, enhance the ability of the TAV to perform an aerodynamic turn and 

change orbit inclination.  
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VI. Low Earth Orbit Injection and Reachability Utilizing Descent-Boost Maneuvers 
 

Chapter Overview 

Similar to an aerobang trans-atmospheric maneuver, the descent-boost maneuver is 

introduced as an alternative to the exo-atmospheric combined Hohmann and bi-elliptic transfers 

for injection into a desired low Earth orbit. Utilizing a notional trans-atmospheric, lifting re-entry 

vehicle with 𝐿/𝐷 = 6, circular orbit injection simulations demonstrate that despite requiring a 

longer time-of-flight than bi-elliptic transfers, descent-boost maneuvers require 6-12% less ∆𝑉 

for injection altitudes lower than 650 km for initial altitude cases of 1000, 1100, and 1200 km. 

In addition, the concept of the Maneuver Performance Number is introduced as a dimensionless 

means of comparative effectiveness analysis for both exo- and trans-atmospheric maneuvers.  

Introduction 

Defined as a special case of lifting entry, a descent-boost maneuver is comprised of exo- 

and trans-atmospheric trajectory segments as described by the example in Fig. 6.1. For the 

present research, a descent-boost maneuver commences with two consecutive impulses applied 

by the TAV at an initial circular orbit altitude, ℎ𝑖 (A). The first impulse �∆𝑉𝛾�, or “descent” ∆𝑉, 

creates a de-orbit trajectory by altering the flight-path angle such that 𝛾𝑖 < 0. The second 

impulse (∆𝑉𝐵𝑜𝑜𝑠𝑡), or “boost” ∆𝑉, increases the orbital velocity of the TAV. Following (A), 

orbital altitude decreases until perigee transit at (B), which occurs below the upper limit of the 

sensible atmosphere at an altitude of approximately 120 km. As the perigee altitude of a descent-

boost trajectory decreases, the TAV encounters increasing atmospheric density and, therefore, 

greater aerodynamic drag and heating effects. With the completion of an orbit injection impulse 

�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� at skip apogee (C), the TAV enters either a circular or elliptical orbit as prescribed by 
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mission requirements. The total ∆𝑉 required to perform a descent-boost maneuver is given by the 

following: 

 ∆𝑉𝐷𝐵 = ∆𝑉𝛾 + ∆𝑉𝐵𝑜𝑜𝑠𝑡 + ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 (6.1) 

 
 

 

Figure 6.1. Descent-Boost Maneuver Diagram 
 

Apart from inclination-centric orbit transfer analysis, the implementation of aeroassisted 

maneuvers for orbit injection via changes to semi-major axis has received minimal attention and 

represents the core focus of the present research of descent-boost maneuvers. 

Maneuver Performance (MP) Number 

Whether formulated according to physical similarity criteria or experimental results, 

Kuneš states that a dimensionless quantity is fundamentally comprised of either a simple ratio of 

two dimensionally equal quantities, or a composed ratio of dimensionally equal products of 
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quantities.148 Despite the existence of numerous dimensionless quantities in the field of 

aerospace engineering, such as those related to fluid mechanics149 and heat transfer,150 no ratios 

have been devised pertaining to spacecraft maneuver effectiveness. For a given maneuver, 

performance can be measured in terms of several parameters of varying scale: ∆𝑉 expenditure, 

time-of-flight, change in orbit altitude and geometry, and change in orbital plane orientation. In 

an effort to reduce to the number of parameters and facilitate maneuver comparative analyses, 

the Maneuver Performance (MP) number is formulated as:151 

 ƥ = (𝑇𝑂𝐹)∆𝑉
|∆ℎ| cos∆𝑖

 (6.2) 

where (𝑇𝑂𝐹) denotes the maneuver time-of-flight in seconds, ∆ℎ is the change in orbit altitude, 

or ∆ℎ = ℎ𝑓 − ℎ𝑖, and ∆𝑖 is the change in orbit inclination in radians, or ∆𝑖 = 𝑖𝑓 − 𝑖𝑖. A form of 

dimensionless cost-effectiveness ratio, the MP number represents the ratio of maneuver cost to 

maneuver action.152  

As examples of MP number implementation, Table 6.1 provides maneuver information 

related to the execution of Hohmann, one-tangent, and bi-elliptic exo-atmospheric transfers for 

two cases: (1) Transfer from LEO to GEO; and (2) transfer from LEO to lunar orbit. With the 

first case, the one-tangent burn yields the lowest MP number of ƥ = 1.6 and is thus considered 

the most effective maneuver option. Even though the Hohmann transfer requires the least ∆𝑉 

expenditure, a 6476.4 sec longer time-of-flight than the one-tangent burn produces a higher MP 

                                                 
148 Joseph Kuneš, Dimensionless Physical Quantities in Science and Engineering (Waltham, MA: Elsevier Inc., 

2012), 1. 
149 Robert A. Granger, Fluid Mechanics (Mineola, NY: Dover Publications, Inc., 1995), 379-384. 
150 E. Marín, A. Calderón, and O. Delgado-Vasallo, “Similarity Theory and Dimensionless Numbers in Heat 

Transfer,” European Journal of Physics 30 (2009): 440-441. 
151 In the Unicode® script, the symbol for MP number represents the “Latin small letter p with hook” from the 

“Latin Extended-B” library (Julie D. Allen, et al., The Unicode Standard, 587). 
152 Henry M. Levin and Patrick J. McEwan, Cost-Effectiveness Analysis, Second Edition (Thousand Oaks, CA: Sage 

Publications, Inc., 2001), 133. 
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number at ƥ = 2.1. With a time-of-flight nearly 535% greater than the one-tangent burn as a 

result of transiting an intermediate orbit apogee of 47836.00 km prior to GEO injection, the bi-

elliptic transfer maintains the highest MP number at ƥ = 9.0. Similarly, MP number analysis of 

the second case indicates that the one-tangent burn is again the most effective option, while the 

bi-elliptic transfer remains the least effective. For a ∆𝑉 savings of 4.76%, the bi-elliptic transfer 

requires a longer time-of-flight than the one-tangent burn at ∆𝑇𝑂𝐹 = 1839088.4 sec = 21.2 

days, thus substantiating the higher MP number of ƥ = 22.2. 

 
Table 6.1. MP Number Usage Examples with Exo-Atmospheric Maneuvers153 

Type ℎ𝑖, km ℎ𝑓, km ∆𝑉, km/s TOF, sec ∆𝑖, deg ƥ 

Hohmann 
191.344 
(LEO) 

35781.35 
(GEO) 

3.935 18921.6 0.0 2.1 
1-Tangent 4.699 12445.2 0.0 1.6 
Bi-Elliptic 4.076 78998.4 0.0 9.0 

Hohmann 
191.344 
(LEO) 

376310 
(Lunar) 

3.966 427258.8 0.0 4.5 
1-Tangent 4.099 299019.6 0.0 3.3 
Bi-Elliptic 3.904 2138108 0.0 22.2 

 
 

While applicable for both exo- and trans-atmospheric maneuvers, the MP number as 

expressed in Eq. (6.2) is restricted to maneuvers cases with unequal initial and final altitudes, 

thus precluding the analysis of phasing maneuvers. For maneuvers featuring ℎ𝑖 = ℎ𝑓, the 

following variation can be utilized: 

 ƥ𝑝 = (𝑇𝑂𝐹)∆𝑉
|∆ℎ𝑚𝑎𝑥| cos∆𝑖

 (6.3) 

 
where the subscript 𝑝 indicates “phasing,” and ∆ℎ𝑚𝑎𝑥 is given by ∆ℎ𝑚𝑎𝑥 = ℎ𝑚𝑎𝑥 − ℎ𝑖, with 

ℎ𝑚𝑎𝑥 representing the altitude of the greatest spatial deviation from the initial orbit altitude. 

                                                 
153 Vallado, 338. 
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Descent-Boost Maneuver Sensitivity Study  

In contrast to the skip entry maneuver which relies on changes to both bank angle and the 

depth of atmospheric penetration as dictated by the perigee altitude, the descent-boost maneuver 

instead alters the orbital trajectory of a TAV by modifying the initial flight-path angle and orbital 

velocity. The impact of varying these parameters on TAV trajectory geometry is explored though 

a sensitivity study comprising the following phases: 

(1) Commencing from a circular reference orbit as defined by Table 6.2 and the initial 

altitudes of ℎ𝑖 = 500, 1000, 2000, 5000 km, the initial orbital velocity is modified 

according to changes in the boost impulse of  ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3, 0.5, 0.8,  and 1.0 km/s 

applied at 𝑡 = 0 with a constant initial flight-path angle and a bank angle of 𝜎 = 0 deg.  

Table 6.2. Reference Orbit Initial States for Descent-Boost Simulations 

Eccentricity, 𝑒 0.0 
Longitude, 𝜃𝑖 0 deg 
Latitude, 𝜙𝑖 0 deg 

Inclination, 𝑖𝑖 70 deg 
Flight-Path Angle, 𝛾𝑖 0 deg 
Heading Angle, 𝜓𝐼 𝑖 70 deg 

 

(2) Based on constant values for initial altitude and ∆𝑉𝐵𝑜𝑜𝑠𝑡, the initial flight-path and 

inclination angles are varied within the respective intervals 𝛾𝑖 ∈ [−19.5 deg,−1 deg] 

and 𝑖 ∈ [0 deg, 80 deg], with 𝜎 = 0 deg.  

 
For each sample initial altitude within the first phase, the initial flight-path angle 

represents the greatest angle magnitude that does not produce a planetary impact trajectory for a 

descent-boost maneuver with ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s. As shown in Table 6.3, the skip apogee 

altitude is a function of both boost impulse and perigee altitude. With ∆𝑉𝐵𝑜𝑜𝑠𝑡 increasing from 
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0.3 km/s  to 1.0 km/s, the skip apogee altitude increases since the higher initial levels of orbital 

kinetic energy produce a shallower depth of atmospheric penetration. Accordingly, a shallower 

perigee altitude with respect to a given initial orbit altitude creates an increase in skip apogee 

altitude due to diminished aerodynamic drag losses. For ℎ𝑖 = 500 km, the increase in perigee 

altitude from 63 km to 214 km produces a change in skip apogee altitude of 4762 km as  

∆𝑉𝐵𝑜𝑜𝑠𝑡 increases from 0.3 km/s  to 1.0 km/s. Commencing from the higher altitude of 

ℎ𝑖 = 5000 km, the same increase in boost impulse produces a skip apogee change of 16929 km 

– an increase approximately 3.5 times greater than the ℎ𝑖 = 500 km case. When ℎ𝑎  vs. ℎ𝑖 is 

plotted for each boost impulse case as shown in Fig. 6.2, linear regression analysis yields a 

squared correlation coefficient of 𝑅2 = 0.9993 for ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s, 𝑅2 = 0.9989 for 

∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝑅2 = 0.9965 for ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.8 km/s, and 𝑅2 = 0.9977 for ∆𝑉𝐵𝑜𝑜𝑠𝑡 =

1.0 km/s. Despite penetrating the deepest into the sensible atmosphere and experiencing greater 

nonlinear drag effects, the skip apogee altitudes reached with ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s retain the 

strongest linear relationship with initial orbit altitude for all simulated cases. 

 

Figure 6.2. Descent-Boost Apogee Altitude with Variable Initial Altitude and Boost Impulse 
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In addition to skip apogee altitude, the boost impulse and perigee altitude also influence 

the maximum deceleration and stagnation heat flux experienced by the TAV during the trans-

atmospheric segment of the descent-boost trajectory. From Table 6.3, the deceleration increases 

as the depth of atmospheric penetration increases, with the greatest deceleration of 63.25 g 

resulting from the TAV transiting the lowest perigee altitude with the highest velocity of the 

sample cases. As periapsis becomes shallower and higher in altitude than the upper atmosphere 

limit, the deceleration thus decreases as aerodynamic drag decreases. For descent-boost 

maneuvers featuring a perigee altitude of ℎ𝑝 > 120 km, the deceleration experienced by the 

TAV becomes less than unity. Adhering to the same physical trends as deceleration, stagnation 

heat flux reached a maximum among the sample simulations cases of 10709 kW/m2 for the 

initial conditions ℎ𝑖 = 5000 km and ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s. By comparison, the Space Shuttle 

mission STS-5 experienced a maximum re-entry heat flux of 1400 kW m2⁄  on the lower surface 

of the wing leading-edge at an approximate altitude of 70 km.154 Unlike the descent-boost case 

which only represents an estimate of stagnation heat flux, the STS-5 measurement is total heat 

flux and, therefore, includes contributions by radiative heating.  

 

 

 

 

                                                 
154 Ko, “Finite Element,” 16, 18, 32. 
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Table 6.3. Trajectory Parameters for Descent-Boost Maneuvers with  
Variable Boost ∆𝑉 at 𝜎 = 0 deg 

 

Parameter ∆𝑉𝐵𝑜𝑜𝑠𝑡 ,𝑘𝑚/𝑠 Case 
1 2 3 4 

ℎ𝑖, km — 500 1000 2000 5000 
𝛾𝑖 , deg — −8.0 −11.7 −19.0 −33.8 

ℎ𝑝, km 

0.3 63 57 50 49 
0.5 71 133 107 158 
0.8 166 319 386 538 
1.0 214 403 532 761 

ℎ𝑎 , km 

0.3 1505 2509 4019 9308 
0.5 2776 4480 7495 18377 
0.8 4852 6334 9910 23214 
1.0 6267 7952 11991 26237 

Max. Decel, g 

0.3 7.186 16.07 50.11 63.25 
0.5 2.393 0.336 0.500 0.884 
0.8 0.340 0.408 0.572 0.950 
1.0 0.397 0.464 0.622 0.950 

�̇�𝑠,𝑚𝑎𝑥, kW/m2 

0.3 2717 4316 8249 10709 
0.5 1627 19.12 82.38 13.99 
0.8 8.600 0.764 0.410 0.140 
1.0 3.511 0.330 0.126 0.038 

 

The second phase of the sensitivity study executed a series of single descent-boost 

maneuvers with constant values for initial altitude and boost impulse of ℎ𝑖 = 2000 km and 

∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, respectively. Based on the preceding phase, these initial conditions 

approximate the median values of the intervals ℎ𝑖 ∈ [500, 5000] km and ∆𝑉𝐵𝑜𝑜𝑠𝑡 ∈

[0.0, 1.0] km/s. As shown in Fig. 6.3(a), the ∆𝑉 required to complete a descent-boost maneuver 

– to include circular orbit injection at skip apogee – increases as initial flight-path angle changes 

from 𝛾𝑖 = −1 deg to 𝛾𝑖 = −19.5 deg since the descent impulse ∆𝑉𝛾 increases as the flight-path 

angle increases in magnitude. In terms of orbital plane orientation, the maneuver ∆𝑉 decreases as 

inclination increments from 0 deg to 80 deg, thus indicating a greater propellant cost for 

performing a descent-boost maneuver near the equator.   
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Although 𝜎 = 0 deg, Fig. 6.3(b) illustrates a change in inclination angle (∆𝑖) for all 

descent-boost maneuvers performed, with the magnitude of ∆𝑖 related to changes in both initial 

flight-path angle and inclination. As the magnitude of these parameters increase, a negative 

inclination change is created and, consequently, a contraction of the orbit trajectory with respect 

to latitude. When the bank angle is changed to 𝜎 = −90 deg, however, the amount of inclination 

change remains relatively constant with a RMS deviation of 2.3318 x 10−4 deg for the 𝑖 =

80 deg case with 𝛾𝑖 ∈ [−18.3,−1] deg. For all inclination cases, the initial flight-path angles of 

𝛾𝑖 ∈ [−19.5,−18.3] deg could not be simulated since they produced planetary impact scenarios 

when 𝜎 = −90 deg. Limited to a single initial altitude case, a cursory assessment of ∆𝑖 solution 

behavior indicates a strong dependence on both initial flight-path angle and inclination, and a 

weak dependence on bank angle for descent-boost maneuvers. 

 

 

Figure 6.3. Descent-Boost Maneuvers with Variable Initial Inclination, ℎ𝑖 = 2000 km,  
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) ∆𝑉 vs. 𝛾𝑖, and (b) ∆𝑖 vs. 𝛾𝑖 
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Figure 6.4(a) shows that as the initial flight-path angle magnitude increases, the apogee 

altitude generally decreases due to a deeper penetration into the sensible atmosphere by the TAV 

as given in Subplot (b). For initial inclinations of 𝑖 > 40 deg, Subplot (b) indicates a shallower 

perigee altitude either near or higher than the upper atmosphere limit. Consequently, 

aerodynamic drag losses are reduced and thus greater apogee altitudes are shown in Subplot (a) 

as initial flight-path angle changes from 𝛾𝑖 = −1 deg to 𝛾𝑖 = −19.5 deg. As the apogee altitude 

increases, Fig. 6.5(a) illustrates a likewise increase in ∆𝑉 that is approximately linear in nature 

for each inclination case. With all descent-boost maneuvers simulated incurring an inclination 

change, the combined Hohmann transfer was selected as the comparative maneuver rather than 

the planar Hohmann or bi-elliptic alternatives since it changes both inclination and semi-major 

axis. Shown in Fig. 6.5(b), the combined Hohmann transfer requires less ∆𝑉 than the descent-

boost maneuvers to reach apogee for all combinations of initial conditions. While the  ∆𝑉 is 

nearly equivalent for 0 deg ≤ 𝑖 < 40 deg, a divergence is seen for 𝑖 ≥ 60 deg as a result of a 

higher ∆𝑖 produced by the descent-boost maneuvers for these initial inclination cases.  

 

Figure 6.4. Descent-Boost Maneuvers with Variable Initial Inclination, ℎ𝑖 = 2000 km,  
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) ℎ𝑎 vs. 𝛾𝑖, and (b) ℎ𝑝 vs. 𝛾𝑖 
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Figure 6.5. Comparison of ∆𝑉 vs. Apogee Altitude Performance with Variable Initial Inclination, 
ℎ𝑖 = 2000 km, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Descent-Boost Maneuvers, and  

(b) Combined Hohmann Transfer Maneuvers 
 

In an effort to reduce the number of comparative parameters between the descent-boost 

maneuver and combined-Hohmann transfer, MP number analysis was performed to yield surface 

plots as given in Figs. 6.6 and 6.7. For descent-boost maneuvers, Fig. 6.6 demonstrates that the 

greatest maneuver effectiveness corresponds to the global minimum of the MP number surface, 

where initial flight-path angle magnitude is at a minimum and initial inclination is a maximum. 

Conversely, descent-boost maneuvers become increasingly less effective due to higher ∆𝑉 costs 

as the initial flight-path angle increases in magnitude and the inclination approaches zero at the 

equator. Mirroring the graphical trend in Fig. 6.5(b), the MP number surface in Fig. 6.7 shows a 

nearly horizontal orientation with the exception of the region corresponding to both high initial 

flight-path angle and inclination. Requiring approximately half of the ∆𝑉 expenditure as the 

descent-boost maneuver, the overall magnitude of the MP number surface for the combined 

Hohmann transfer is likewise approximately half in magnitude.   
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Figure 6.6. Maneuver Performance (MP) Number Analysis for Descent-Boost Maneuvers with 
Variable Initial Inclination,ℎ𝑖 = 2000 km, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg 

 

 

 

Figure 6.7. Maneuver Performance (MP) Number Analysis for Combined Hohmann Transfer 
Maneuvers with Variable Initial Inclination and ℎ𝑖 = 2000 km 
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Results and Analysis 

 Even though the maneuver diagram in Fig. 6.1 assumed orbit injection at skip apogee, 

descent-boost maneuvers are capable of performing ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 impulses within the altitude range 

ℎ𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 < ℎ𝐼𝑛𝑗𝑒𝑐𝑡 ≤ ℎ𝑎 if multiple skips in the atmosphere are permitted by mission time 

requirements. The upper limit of the sensible atmosphere at approximately 120 km is given as 

the lower bound for orbit injection altitude since the region  ℎ𝑝 ≤ ℎ ≤ ℎ𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 cannot produce a 

stable orbit as a result of aerodynamic drag. With orbits near ℎ𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 encountering sufficient 

drag forces to create a decaying trajectory, it is assumed that a subsequent orbit-raising maneuver 

(e.g. Hohmann transfer) will be performed if TAV mission end-of-life re-entry is not desired. 

An example of an orbit injection occurring at an altitude lower than skip apogee is given 

in Fig. 6.8. In Subplot (a) of said figure, a descent-boost maneuver is executed from ℎ𝑖 =

1000 km and 𝛾𝑖 = −12.5°, which places perigee at ℎ𝑝 ≈ 76 km. Rather than injecting into 

either a circular or elliptical orbit at skip apogee, the TAV transits apogee and again reaches 

perigee located within the sensible atmosphere. Due to aerodynamic drag, the apogee of the 

elliptical orbit created by the descent-boost maneuver decays with eventual planetary impact 

occurring between 700 < 𝑡 < 900 min. For a non-apogee orbit injection, the target altitude of 

500 km is selected and illustrated in Subplot (a). So as to minimize the total descent-boost ∆𝑉, 

min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� is achieved by first calculating ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 for each crossing of the trajectory with 

the target altitude, then performing a global comparison of all injection impulses to select the 

minimum value. From Subplot (a), min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� occurs after the sixth perigee passage and 

produces the desired orbit injection after 𝑡 ≈ 550 min in Subplot (b).   
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Figure 6.8. Example Circular Orbit Injection via Descent-Boost Maneuver;  
(a) Truncated Descent-Boost Trajectory with Target Altitude Crossings, and  

(b) Trajectory with Re-Circularization at min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� 
 
 
The circular orbit injection given in Fig. 6.8 is also shown in Fig. 6.9 as a three-dimensional 

polar view so as to highlight the decaying elliptical orbit of the precessing trajectory. Shifting 

from a trajectory color of yellow to red following the sixth perigee passage, injection occurs at 

an altitude of 500 km and the elliptical orbit created by the maneuver is thus re-circularized.     
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Figure 6.9. Three-Dimensional View of Descent-Boost 500 km Circular Orbit Injection with 
𝛾𝑖 = −12.5°, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, ℎ𝑖 = 1000 km, ℎ𝑝 ≈ 76 km, 𝜎 = 0 deg 

 

Circular Orbit Injection 

 Outlined in Table 6.4, a series of six cases were devised to illustrate the circular orbit 

injection performance of descent-boost maneuvers compared with the combined Hohmann and 

bi-elliptic transfer alternatives performed in the vacuum environment. As a result of changes to 

inclination arising with the execution of the descent-boost maneuvers, the combined Hohmann 

transfer is utilized rather than the conventional planar Hohmann transfer since the former alters 

both orbital inclination and semi-major axis during the maneuver. Although planar by definition, 

the bi-elliptic transfer is simulated since it more closely approximates the altitude evolution of 

the descent-boost maneuver than the combined Hohmann. For all bi-elliptic transfers, the apogee 

of the intermediate orbit will equal the altitude of the first skip apogee created by the descent-

boost maneuver, thereby yielding an estimate for ∆𝑉 which reflects not only orbit injection, but 

also the transit of the greatest altitude deviation imparted by the descent-boost maneuver.  
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Table 6.4. Comparison of Circular Orbit Injection Performance for Descent-Boost Maneuvers, 
Combined Hohmann, and Bi-Elliptic Transfers 

 

Parameter Case 
1 2 3 4 5 6 

ℎ𝑖, km 1000 1000 1000 800 800 800 
ℎ𝐼𝑛𝑗𝑒𝑐𝑡, km 1000 1800 500 800 1800 500 
𝛾𝑖, deg −12.5 −12.5 −12.5 −10.9 −10.9 −10.9 

∆𝑉𝛾 , km/s 0.9077 0.9077 0.9077 0.8356 0.8356 0.8356 
∆𝑉𝐵𝑜𝑜𝑠𝑡 , km/s 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 , km/s 0.0157 0.0069 0.0141 0.0194 0.1721 0.0112 
∆𝑉𝐷𝐵, km/s 1.4234 1.4146 1.4218 1.3549 1.5076 1.3468 
∆𝑉𝐶𝑜𝑚𝑏 , km/s 1.1068 1.2055 1.1757 1.0338 1.0641 1.0498 
∆𝑉𝐵𝑖−𝐸𝑙𝑙, km/s 1.1450 1.1205 1.4014 1.0721 1.0453 1.2300 
𝑇𝑂𝐹𝐷𝐵, min 427.36 221.14 548.14 345.15 101.08 428.97 
𝑇𝑂𝐹𝐶𝑜𝑚𝑏 , min 68.50 68.49 68.50 65.25 64.25 64.25 
𝑇𝑂𝐹𝐵𝑖−𝐸𝑙𝑙 , min 136.99 141.71 134.09 128.51 134.30 126.80 

 

As a preliminary examination of descent-boost maneuver performance for orbit injection, 

the initial altitudes of 800 km and 1000 km were selected as well as a set of target injection 

altitudes located above, below, and at the same altitude as the initial condition. Similar to the 

sensitivity study, the initial flight-path angle selected for each case permits the deepest 

atmospheric penetration without planetary impact. In terms of trajectory design, 𝛾𝑖 = −12.5 deg 

produces a perigee altitude of ℎ𝑝 ≈ 76 km, whereas the shallower flight-path angle of 𝛾𝑖 =

−10.9 deg produces a perigee at ℎ𝑝 ≈ 75 km due to a lower initial altitude. 

With a constant ∆𝑉𝛾 and ∆𝑉𝐵𝑜𝑜𝑠𝑡 for each initial altitude set, the variation in total 

maneuver ∆𝑉 arises with the selection of orbit injection altitude. For the ℎ𝑖 = 1000 km case set, 

the lowest injection impulse ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 corresponds to a target altitude of 1800 km. In contrast, the 
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lowest ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 for the ℎ𝑖 = 800 km case set is associated with an altitude of 500 km. By 

decreasing the initial altitude by 200 km, the descent-boost maneuver ∆𝑉 decreases  by 4.9% for 

both ℎ𝑖 = ℎ𝐼𝑛𝑗𝑒𝑐𝑡 and ℎ𝑖 > ℎ𝐼𝑛𝑗𝑒𝑐𝑡, and increases by 7.1% for  ℎ𝑖 < ℎ𝐼𝑛𝑗𝑒𝑐𝑡.  

When compared with the exo-atmospheric maneuvers, however, the descent-boost 

maneuvers maintain the highest ∆𝑉 and longest time-of-flight with the exception of the bi-

elliptic transfer in Case #5. Despite featuring a time-of-flight savings of 33.22 min, the ∆𝑉 

associated with the descent-boost maneuver is 1.5076 km/s – a value 44.2% greater than the bi-

elliptic transfer ∆𝑉. Overall, the combined Hohmann transfer maintains both the lowest ∆𝑉 and 

time-of-flight for each orbit injection case. While explicitly the superior maneuver, the combined 

Hohmann transfer performance is a direct function of maneuver design. Unlike the descent-boost 

and bi-elliptic alternatives which host at least one intermediate trajectory between the initial and 

target orbits, the combined Hohmann produces the most direct orbit injection scenario with the 

maneuver altitude restricted to either ℎ𝐼𝑛𝑗𝑒𝑐𝑡 ≤ ℎ ≤ ℎ𝑖  or ℎ𝑖 ≤ ℎ ≤ ℎ𝐼𝑛𝑗𝑒𝑐𝑡. As a consequence of 

not transiting the first skip apogee altitude of the descent-boost maneuver, the combined 

Hohmann transfer was excluded from subsequent comparative simulations in favor of the bi-

elliptic transfer which provides the closest approximation of the descent-boost altitude evolution.  

Starting from the reference orbit states given in Table 6.2, a series of descent-boost 

maneuvers and bi-elliptic transfers were simulated with ℎ𝑖 = [500: 100: 1200] km. For the 

former maneuver type, the initial flight-path angles as given in Table 6.5 permit multiple skips 

without planetary impact for 𝑡 ∈ [0, 800] min as well as periapsis locations below the upper 

atmosphere limit.   
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Table 6.5. Initial Flight-Path Angles and Associated Perigee Altitudes  
for Descent-Boost Maneuvers 

 
ℎ𝑖, 𝑘𝑚 𝛾𝑖,𝑑𝑒𝑔 ℎ𝑝,𝑘𝑚 

500 −7.9 79 
600 −8.9 79 
700 −10.0 75 
800 −10.9 75 
900 −11.8 74 

1000 −12.5 76 
1100 −13.2 77 
1200 −14.0 76 

 

With ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s and 𝜎 = 0 deg, Fig. 6.10(a) illustrates the ∆𝑉 required for 

circular orbit injection into LEO target altitudes within the range 300 km ≤ ℎ𝐼𝑛𝑗𝑒𝑐𝑡 ≤ ℎ𝑖. Since 

the descent-boost trajectory is a decaying elliptical orbit, the minimization of  ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 creates a 

sinusoidal relationship between the target altitude and total ∆𝑉. As a substitute to the scatterplot 

data obtained from the maneuver simulations, Subplot (a) instead portrays the trigonometric 

functions of injection altitude for each initial altitude case derived via regression analysis as 

listed in Table 6.6. Upon examination, the the mean ∆𝑉 in each sinusoid model substantiates the 

general maneuver performance trend initially identified in Table 6.4: the descent-boost maneuver 

∆𝑉 increases as the initial altitude increases.  

When the descent-boost ∆𝑉 from Fig. 6.10(a) is compared with that for the bi-elliptic 

transfers in Fig. 6.10(b), regions can be demarcated where the former maneuver requires a lower 

∆𝑉 for orbit injection and, therefore, represents the more viable maneuver option in terms of 

propellant expenditure. Shown in detail in Fig. 6.11, a lower descent-boost ∆𝑉 can be identified 

for ℎ𝐼𝑛𝑗𝑒𝑐𝑡 < 480 km with ℎ𝑖 = 1000 km, ℎ𝐼𝑛𝑗𝑒𝑐𝑡 < 630 km with ℎ𝑖 = 1100 km, and ℎ𝐼𝑛𝑗𝑒𝑐𝑡 <

600 km with ℎ𝑖 = 1200 km. 
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Table 6.6. Sinusoid Models for Descent-Boost LEO Injection Maneuvers 

Initial Altitude, 
𝑘𝑚 Sinusoid Model RMS Error, 

𝑘𝑚/𝑠 

500 ∆𝑉 = 0.0215 sin�0.040537ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 1.86469� + 1.223 0.00410 

600 ∆𝑉 = 0.0210 sin�0.040020ℎ𝐼𝑛𝑗𝑒𝑐𝑡 + 2.20112� + 1.257 0.00431 

700 ∆𝑉 = 0.0310 sin�0.025964ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 1.94727� + 1.328 0.00939 

800 ∆𝑉 = 0.0305 sin�0.025234ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.17010� + 1.368 0.00583 

900 ∆𝑉 = 0.0370 sin�0.025751ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.08581� + 1.418 0.01383 

1000 ∆𝑉 = 0.0305 sin�0.030952ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.63089� + 1.433 0.01017 

1100 ∆𝑉 = 0.0318 sin�0.025751ℎ𝐼𝑛𝑗𝑒𝑐𝑡 + 2.08581� + 1.471 0.01663 

1200 ∆𝑉 = 0.0330 sin�0.025033ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.12777� + 1.510 0.01240 

 

By design, an orbit injection descent-boost maneuver is comprised of an initial skip 

apogee which transitions into a decaying elliptical trajectory that terminates when min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� 

is satisfied. A function of 𝛾𝑖 and ∆𝑉𝐵𝑜𝑜𝑠𝑡, the altitude of the first skip apogee ostensibly dictates 

not only the number of feasible elliptical orbit passages before planetary impact, but also the 

upper bound of possible injection orbit altitudes. Implicitly, the first skip apogee provides an 

opportunity for augmented mission operations. Utilizing Case #3 from Table 6.4 as an example, 

a TAV executing a descent-boost maneuver at ℎ𝑖 = 1000 km will reach a skip apogee of ℎ𝑎 ≈

3850 km. While the ultimate mission requirement is to inject into a circular orbit at 500 km, the 

TAV is capable of performing a possible orbital inspection upon transiting skip apogee. 

 



www.manaraa.com

153 

 

 

 
 

 

Figure 6.10. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with Variable 𝛾𝑖, 
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Descent-Boost Maneuver ∆𝑉, and  

(b) Bi-Elliptic Transfer ∆𝑉 
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Figure 6.11. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with Variable 𝛾𝑖, 
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg, and ℎ𝑖 = [1000, 1100, 1200] km 

 

 
Based on the aforementioned utility of skip apogee, Fig. 6.12 portrays the time-of-flight 

to reach the first apogee for both the descent-boost maneuver and bi-elliptic transfer in Subplot 

(a), and a quartic model for skip apogee altitude as a function of initial altitude in Subplot (b). In 

addition to requiring a higher orbit injection ∆𝑉 than bi-elliptic transfers – with a few cited 

exceptions based on the choice of both initial and injection altitudes – Subplot (a) illustrates that 

descent-boost maneuvers entail a longer time-of-flight to reach skip apogee. Starting at ℎ𝑖 =

500 km, the deviation in time-of-flight between the two maneuver options is ∆𝑇𝑂𝐹 ≈ 4 min; 

increasing the initial altitude to ℎ𝑖 = 1200 km, the deviation increases to ∆𝑇𝑂𝐹 ≈ 15 min. 

Pertaining only to descent-boost maneuvers, Subplot (b) depicts a regression-derived quartic 

model for first skip apogee altitude as described by Eq. (6.4): 

 ℎ𝑎 = 𝑓(ℎ𝑖) = 𝑎4ℎ𝑖
4 + 𝑎3ℎ𝑖

3 + 𝑎2ℎ𝑖
2 + 𝑎1ℎ𝑖 + 𝑎0 (6.4) 

 
where 
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Coefficient Value 

𝑎0 −9.161075 x 103 
𝑎1    6.078239 x 101 
𝑎2   −1.140242 x 10−1 
𝑎3       9.422693 x 10−5 
𝑎4   −2.797119 x 10−8 

 
A single variable polynomial with 𝑅2 = 0.9989, Eq. (6.4) assumes an average perigee altitude of 

ℎ�𝑝 ≈ 76 km and is continuous within the interval ℎ𝑖 ∈ [500, 1200] km. 

 

Figure 6.12. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with  
Variable 𝛾𝑖, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Time-of-Flight to Apogee, and  

(b) ℎ𝑎 vs. ℎ𝑖 for Descent-Boost Maneuvers (Quartic Model, 𝑅2 = 0.9989) 
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Molniya Orbit Injection 

The altitude reachability of descent-boost maneuvers for orbit injection is dependent on 

the magnitude of both the descent and boost impulses applied at 𝑡 = 0, as well as the initial orbit 

altitude. With available propellant onboard the TAV representing the fundamental limiting 

factor, the reachability envelope becomes constrained by not only the requirements of an 

immediate mission tasking, but also the prospect of continued on-orbit operations. As a 

consequence of minimizing total ∆𝑉 expenditure, the utilization of descent-boost maneuvers for 

orbit injection limits the feasible reachability envelope to LEO and the transition region between 

LEO and medium Earth orbit (MEO), specifically 2000 ≤ ℎ𝐼𝑛𝑗𝑒𝑐𝑡 < 5000 km.155 Although 

precluding injection into MEO trajectories with 12 hr periods such as those associated with the 

Global Positioning System (GPS) constellation, descent-boost maneuvers proffer the ability for 

injection into Molniya orbits. Highly elliptical orbits with eccentricities greater than 0.7 and a 

period approximately equal to half of one sidereal day, Molniya orbits feature a periapsis within 

the LEO altitude regime.156  

Based on the two-line element (TLE) set for the Molniya 3-42 communications satellite, 

an example Molniya injection orbit can be defined by a perigee and apogee altitude of 

501.1350 km and ℎ𝑎 = 36621.9905 km, respectively, with an orbit inclination of 62.8 deg.157 

Commencing from ℎ𝑖 = 1000 km, the initial latitude/longitude coordinates (𝜃𝑖 ,𝜙𝑖) = (0,0) deg, 

and 𝑖 = 62.8 deg, Molniya orbit injection performance is given in Table 6.7 for the descent-

boost maneuver as well as the bi-elliptic and combined Hohmann transfers. Depicted in Fig. 
                                                 
155  I. H. Ph. Diederiks-Verschoor and V. Kopal, An Introduction to Space Law, Third Edition (Alphen aan den Rijn, 

The Netherlands: Kluwer Law International, 2008), 20. 
156 Charles D. Brown, Elements of Spacecraft Design (Reston, VA: American Institute of Aeronautics and 

Astronautics, Inc., 2002), 109. 
157 The Center for Space Standards & Innovation, “Molniya 3-42 TLE,” NORAD Two-Line Element Sets, 

CelesTrak, last modified 29 January 2014, accessed 29 January 2014, http://www.celestrak.com/NORAD/ 
elements/molniya.txt; See Appendix C for a guide to convert TLE data into Keplerian elements.  
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6.13, the descent-boost maneuver completes the injection impulse between the first skip apogee 

and the second perigee passage. Similar to previous simulations, the apogee of the bi-elliptic 

intermediate transfer orbit is equal to the altitude of the first skip apogee, which, for the Molniya 

orbit injection example is ℎ𝑎 = 3906 km. As alternatives to the descent-boost maneuver and bi-

elliptic transfer, two variations of the combined Hohmann transfer are simulated: (1) Transfer 

from ℎ𝑖 = 1000 km to the Molniya orbit periapsis; and (2) Transfer from ℎ𝑖 = 1000 km to the 

Molniya orbit apoapsis. 

Table 6.7. Comparison of Molniya Orbit Injection Performance for Descent-Boost Maneuver 
(∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km s⁄ ,𝜎 = 0 deg), Bi-Elliptic, and Combined Hohmann Transfer 

 

Parameter Descent-Boost Bi-Elliptic Combined Hohmann 
Perigee Transfer Apogee Transfer 

ℎ𝑖, km 1000 1000 1000 1000 
ℎ𝐼𝑛𝑗𝑒𝑐𝑡, km 501.1350 501.1350 501.1350 36621.9905 
𝛾𝑖, deg −12.3 0.0 0.0 0.0 

∆𝑉𝛾 , km/s 0.8887 — — — 
∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡, km/s 2.0231 — — — 
∆𝑉𝑇𝑜𝑡𝑎𝑙 , km/s 3.4118 2.4090 2.4301 2.3517 
𝑇𝑂𝐹, min 127.52 134.75 49.92 331.55 

MP Number, ƥ 52.3 39.0 14.6 1.3 

 

Despite maintaining the lowest total ∆𝑉 of the maneuvers simulated, the combined 

Hohmann apogee transfer requires the longest time-of-flight at 331.55 min. As a result of 

featuring the most direct transfer trajectory between ℎ𝑖 and the target orbit, the combined 

Hohmann perigee transfer requires the shortest time-of-flight, with a savings of 281.63 min for a 

7.8% increase in ∆𝑉 when compared with the apogee transfer. While representing the highest ∆𝑉 

expenditure for Molniya orbit injection, the descent-boost maneuver maintains a lower time-of-
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flight than both the bi-elliptic and apogee transfers. In terms of MP number, the apogee transfer 

is cast as the most effective maneuver since the greatest spatial distance is traversed for the 

lowest ∆𝑉 even though the longest time-of-flight is required. For the perigee injection cases, the 

combined Hohmann perigee transfer is the more effective maneuver option based primarily on a 

60.9% and 63% lower time-of-flight than the descent-boost and bi-elliptic alternatives, 

respectively.  

 

 

Figure 6.13. Descent-Boost Maneuver with Molniya Orbit Injection with 𝛾𝑖 = −12.3°,  
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, ℎ𝑖 = 1000 km, ℎ𝑝 ≈ 78 km, 𝜎 = 0 deg 

 

When viewed with respect to the Earth, the orbit injection scenario as shown in Fig. 6.14 

reveals several details unavailable in the preceding figure, to include the first perigee passage 

occurring over northern Asia, skip apogee located over the South Pacific, and the signature 

“figure-8” geometry of the Molniya orbit. 
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Figure 6.14. Three-Dimensional Polar View of Descent-Boost Molniya Orbit Injection 

 
In order to reduce the total ∆𝑉 expenditure, the descent-boost maneuver was initiated 

without any preliminary phasing maneuver to ensure alignment with the Molniya 3-42 orbit in 

terms of RAAN and argument of perigee. Consequently, the Molniya injection and Molniya 3-42 

trajectories share the same geometric shape, but not the same orbital orientation with respect to 

the Earth as shown in Fig. 6.15. Limited to a simulation time duration of 1600 min, both the 

Molniya injection (yellow) and Molniya 3-42 (green) trajectories only represent two complete 

orbital revolutions. If the simulation time were to be extended, precession effects would become 

evident since the Earth is modeled as a rotating central body. Even though the two trajectories do 

not intersect within the interval 0 ≤ 𝑡 ≤ 1600 min, several opportunities for possible orbit 

inspection exist during periods of trajectory close-approach. Located on the right-side of Fig. 

6.16, the apparent point of orbit intersection corresponds to the closest approach of the two 

trajectories for 0 ≤ 𝑡 ≤ 1600 min. Employing the Hausdorff distance formula, the close-

approach can be characterized as a trajectory separation distance of approximately 492 km. 
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Given two sets of finite points 𝐴 = {𝑎1,𝑎2, … ,𝑎𝑚} and 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛}, the Hausdorff 

distance is defined by:158 

 𝐻(𝐴,𝐵) = max�ℎ(𝐴,𝐵),ℎ(𝐵,𝐴)� (6.5) 
 

where 
 
 ℎ(𝐴,𝐵) = max𝑎∈𝐴 min𝑏∈𝐵 𝑑𝐸(𝑎, 𝑏) (6.6) 

 
From Eq. (6.6), the term 𝑑𝐸(𝑎, 𝑏) represents the Euclidean norm of the points between sets 𝐴 and 

𝐵.159 In terms of time-of-flight, the close-approach occurs after an elapsed time of 375.5 min for 

the Molniya injection trajectory, to include the initial descent-boost maneuver and the Molniya 

perigee injection impulse. Also starting from 𝑡 = 0, the close-approach for the Molniya 3-42 

trajectory occurs after 369.5 min. 

 

Figure 6.15. Three-Dimensional Polar View of Descent-Boost Orbit Injection  
and Molniya 3-42 Orbit Trajectories 

                                                 
158 Yalin Wang, Qilong Han, and Haiwei Pan, “A Clustering Scheme for Trajectories in Road Networks,” in 

Advanced Technology in Teaching – Proceedings of the 2009 3rd International Conference on Teaching and 
Computational Science, ed. Yanwen Wu (Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2012), 14; 
Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge, “Comparing Images Using the 
Hausdorff Distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence 15, no. 9 (1993): 850. 

159 Michel M. Deza and Elena Deza, Encyclopedia of Distances, Second Edition (Berlin, Germany: Springer-Verlag 
Berlin Heidelberg, 2013), 323. 
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Figure 6.16. Detail of Close-Approach of Descent-Boost Orbit Injection  

and Molniya 3-42 Orbit Trajectories 
 

Summary and Conclusion 

A series of descent-boost maneuvers were executed to investigate maneuver performance 

sensitivity and the prospect of LEO injection for a notional trans-atmospheric, lifting re-entry 

vehicle with 𝐿/𝐷 = 6. When initial altitude and boost impulse are constant, simulations indicate 

that the total descent-boost maneuver ∆𝑉 is a strong function of initial flight-path angle and 

inclination, with ∆𝑉 increasing as the magnitude of both of these parameters increases. Based on 
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the design of the descent-boost maneuver, the requirement for an initial ∆𝑉 impulse to alter 

trajectory flight-path angle and orbital velocity produces an approximately 1.5 to 2.0 times 

greater ∆𝑉 expenditure when compared with the exo-atmospheric combined Hohmann transfer. 

Although requiring a longer time-of-flight for orbit injection than bi-elliptic transfers, descent-

boost maneuvers are shown here to require 6-12% less ∆𝑉 for injection altitudes lower than 

650 km for circular orbits with an initial altitude of 1000, 1100, and 1200 km. While MP 

number analysis casts the combined Hohmann transfer as the more effective option for orbit 

injection in terms of both ∆𝑉 expenditure and time-of-flight, descent-boost maneuvers provide 

two capabilities not available for the Hohmann. First, the TAV can perform an orbital inspection 

upon transiting skip apogee when conducting a descent-boost orbit injection; second, a degree of 

maneuver unpredictability is garnered since the descent-boost trajectories are trans-atmospheric 

by design and maintain a decaying elliptical flight-path which produces multiple orbit injection 

possibilities. 
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VII. Aeroassisted Maneuvers: Potential Air and Space Law Challenges 

Chapter Overview 

Diverging from the paradigm that spacecraft exclusively operate within the vacuum of 

outer space, current engineering efforts are seeking to create vehicles that can exploit the 

aerodynamic forces of the upper atmosphere in order to implement an aeroassisted, trans-

atmospheric maneuver. By transcending both the airspace and outer space environments, 

aeroassisted maneuver represent a source of potential air and space law challenges arising due to 

current ambiguities surrounding the atmospheric delimitation debate as well as the question of 

airspace sovereignty limits vis-à-vis space law. 

Introduction 

Spacecraft can be divided functionally into two categories: (1) Vehicles that operate 

exclusively in the vacuum environment of space; and (2) vehicles that are hybrid in nature and 

capable of re-entering the Earth’s atmosphere following the completion of a given on-orbit 

mission. While the former category is referred to as satellites, the latter are identified trans-

atmospheric vehicles, or TAVs. Since the 1970s, TAVs have been limited to boost-glider 

designs, such as the Space Shuttle and X-37B Orbital Test Vehicle (OTV), which achieve orbit 

as either a secondary or tertiary stage on a rocket-propelled spacelift system. Following re-entry, 

a TAV then utilizes aerodynamic lift to perform a gliding maneuver in order to land. Seeking to 

evolve the boost-glider design concept, the early 21st century has witnessed an emergence of 

both national and corporate efforts to create a hypersonic spaceplane capable of taking off and 

landing horizontally on a conventional runway.160 Designed as a single-stage-to-orbit vehicle, 

                                                 
160 Carl Q. Christol, “The Aerospace Plane: Its’ Legal and Political Future,” Space Policy 9, no. 1 (1993): 36. 
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the spaceplane is able to attain a level of mission “availability and flexibility of use” hitherto 

limited by mass budget, launch window, and launch site location restrictions inherent in existing 

rocket booster systems.161      

Whether designed as a boost-glider or spaceplane, TAVs offer the capability of utilizing 

the upper atmosphere as an alternative maneuver environment rather than an interface solely for 

the purpose of re-entry at the mission end-of-life for manned and unmanned spacecraft. 

Traditionally, orbital states and orbit geometry are modified via various maneuvers performed in 

vacuo which, depending on both the initial mission altitude and desired orbital change, have the 

propensity of becoming prohibitively expensive in terms of propellant expenditure. 

Alternatively, atmospheric re-entry can be employed as a means of operational maneuver 

whereby the aerodynamic drag of the upper atmosphere is exploited by a TAV to create an 

aeroassisted maneuver. Such maneuvers have been analytically demonstrated to achieve a 

desired orbital change for less propellant than required by an exo-atmospheric maneuver, thus 

extending the spacecraft mission life.   

Applicability of Air and Space Law 

Not officially defined by international treaty, the demarcation between airspace and outer 

space has created an extant legal debate concerning where air law ends and space law begins. As 

codified in Article I of the Convention on International Civil Aviation, Chicago, 1944, air law 

grants each state “sovereignty and exclusive territorial jurisdiction” over its’ respective airspace, 

only to be infringed upon by prior formal agreement or treaty.162 By contrast, Article II of the 

Outer Space Treaty of 1967 declares outer space to be an international zone outside the realm of 
                                                 
161 Pierre Betin, “Reflections on the Spaceplane,” Space Policy 7, no. 2 (1991): 138. 
162 Alexandra Harris and Ray Harris, “The Need for Air Space and Outer Space Demarcation,” Space Policy 22, no. 

1 (2006): 4; Stephan Hobe, Gerardine M. Goh, and Julia Neumann, “Space Tourism Activities – Emerging 
Challenges to Air and Space Law?” Journal of Space Law 33, no. 2 (2007): 361. 
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state sovereignty.163 In order to define the transition between air and space law, two differing 

methods of airspace and outer space delimitation have arisen: spatialism and functionalism. For 

spatialists, the boundary between air and space is defined physically in terms of altitude, such as 

the von Kármán Line devised in the 1950s. Rather than an altitude boundary, the functionalist 

approach seeks to delimit airspace and outer space according to the function and “distinctive 

traits” of the vehicle operating within the environment in question.164      

Compounding the demarcation debate is the absence of any conventional or customary 

rule of international law addressing the “innocent passage” of vehicles ascending to or 

descending from space. While such passages do occur within foreign airspace, “no protests 

against [them] have been raised so far” and the passages are viewed as a fait accompli.165 When 

considered within the context of the demarcation and atmospheric passage debates, aeroassisted 

maneuvers pose a series of challenges to air and space law alike. Since aeroassisted maneuvers 

are initiated from and terminate in space, are they governed by air and/or space law? Can such 

maneuvers be considered an “innocent passage” when implemented within foreign airspace? 

Spatialism and Aeroassisted Maneuver Altitude Delimitation 

Whether an aeroassisted maneuver is implemented to modify an existing orbit or conduct 

an orbital transfer from high Earth orbit to LEO, the trajectory must transit the upper atmosphere 

at an altitude with sufficient density to impart the requisite aerodynamic force on a TAV. 

Depending on the desired final orbit geometry and the imposition of deceleration and heat flux 

constraints by the TAV structure and/or payload, trajectory simulations have indicated that 

                                                 
163 Harris, 4. 
164 Hobe, 363. 
165 Andrei D. Terekhov, “Passage of Space Objects through Foreign Airspace: International Custom?” Journal of 

Space Law 25, no. 1 (1997): 6, 8. 
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aeroassisted maneuvers have the potential of occurring within the 50 − 100 km altitude 

regime.166 

When viewed within the context of spatialism, the potential altitude regime for 

aeroassisted maneuvers occurs lower than many international attempts to delimit airspace and 

outer space. Corresponding to an altitude of 100 km, the von Kármán Line represents an 

approximate boundary above which an aircraft cannot derive any aerodynamic lift from the 

atmosphere and must travel at a speed approaching orbital velocity.167 As an alternative, Italy in 

1975 proposed a boundary at 90 km since it represented the median altitude between the upper 

limit of aircraft flight at 60 km, and the lowest possible satellite orbit at 120 km. In 1976, 

Belgium echoed the reasoning of von Kármán by advocating a boundary at 100 km, while the 

Soviet Union in 1979 proposed an arbitrary boundary “at an altitude not exceeding 110 km.”168  

Although the Italian delimitation proposal places the upper altitude limit of aircraft flight 

at 60 km, this corresponds to the approximate operating altitude of the X-15, an experimental 

rocket-propelled aircraft of the early 1960s.169 In terms of conventional aircraft, the upper 

altitude limit is considerably lower with the U.S. Air Force’s U-2 reaching a maximum ceiling of 

approximately 21 km. As for spacecraft, the lowest operational orbit corresponds to an altitude 

of 96 km, which is lower than all aforementioned delimitation proposals.170 By considering both 

the nominal ceiling of the X-15 and the lowest achieved satellite orbit, an altitude “gap” at 

                                                 
166 Darby and Rao, “Minimum-Fuel,” 618-628; Patrick R. Jolley and Stephen A. Whitmore, “Aerodynamic and 

Propulsion Assisted Maneuvering for Orbital Transfer Vehicles” (paper presented at the 5th Responsive Space 
Conference, Los Angeles, CA, 23-26 April 2007): 1-39. 

167 Francis Lyall and Paul B. Larsen, Space Law: A Treatise (Surrey, United Kingdom: Ashgate Publishing Limited, 
2009), 167-169. 

168  Ibid., 169. 
169 W. D. Kay, “The X-15 Hypersonic Flight Research Program: Politics and Permutations at NASA,” in From 

Engineering Science to Big Science: The NACA and NASA Collier Trophy Research Project Winners, ed. Pamela 
E. Mack (Washington D.C.: U.S. Government Printing Office, 1998), 155.  

170 Katherine M. Gorove, “Delimitation of Outer Space and the Aerospace Object – Where is the Law?” Journal of 
Space Law 28, no. 1 (2000): 12. 
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60 − 96 km is created which aligns with the potential operating environment for aeroassisted 

maneuvers.  

Even though conventional aircraft and lighter-than-air vehicles such as blimps do not 

operate at 60 − 96 km, this altitude regime is still considered to be sovereign airspace as 

evidenced in several reports issued since the 1960s. As one example, the Canadian government 

identified that the Space Shuttle Challenger flew within its airspace at an altitude of 

approximately 68 km while on glide path to land in the United States following re-entry in 

1984.171 A second example arises from the proceedings of the United Nations’ Committee on the 

Peaceful Uses of Outer Space in 1996.172 In response to a questionnaire disseminated to member 

states regarding legal issues associated with “aerospace objects,” Germany noted that the Soviet 

Space Shuttle Buran passed through the airspace of Turkey following re-entry in 1988.173 Based 

on a similar structural design and mission profile, the Buran is assumed to have flown through 

Turkish airspace at an altitude commensurate with that of the Challenger.  

Despite the ambiguity surrounding the actual spatial delimitation of airspace and outer 

space, precedence dictates that airspace sovereignty extends up to and beyond an altitude of 

90 km. Consequently, aeroassisted maneuvers occurring at an altitude 50 − 90 km would be 

considered a passage through foreign airspace if not implemented over international waters.174 

By implementing an aeroassisted maneuver within airspace, a TAV is then subject to the 

jurisdiction of air law. Since an aeroassisted maneuver places a TAV within foreign airspace for 

a time of finite duration, however, can the passage and resulting airspace infringement be 

                                                 
171 Terekhov, 3. 
172 For the complete questionnaire, see Gorove, 17-18; for the complete member states responses to the 

questionnaire, see . A/AC.105/635, 15 February 1996. 
173 UN doc. A/AC.105/635, 15 February 1996, at 7. 
174 Since aeroassisted maneuvers implemented over international waters represent benign occurrences, only those 

maneuvers that infringe on foreign airspace will be considered henceforth.   
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deemed “innocent” and thus overlooked by the overflown state as with cases of vehicles 

ascending to or descending from space? The presumptive answer would be in the affirmative, but 

a functional analysis of the TAV mission is required in order properly classify an aeroassisted 

maneuver as an “innocent passage” or not. 

Functionalism and TAV Classification 

According to the functionalist approach, the question of legal jurisdiction is dependent on 

the function of the vehicle in question. Outlined in the 1975 Convention on Registration of 

Objects Launched into Outer Space, a launch vehicle and satellite payload are considered “space 

objects” and, therefore, governed by space law since they are intended to reach and operate 

within the space environment.175 A broad term, “launch vehicle” within the context of the 

aforementioned Convention applies to rocket boosters and not carrier aircraft. For the latter case, 

such as the Lockheed L-1011 transport aircraft utilized as an upper atmospheric launching 

platform for the Pegasus booster rocket, both the carrier aircraft and attached spacecraft are 

governed by air law until vehicle separation. Following separation, the Pegasus booster and 

similar spacecraft cannot “derive support in the atmosphere from the reactions of the air” and are 

thus considered “space objects” subject to space law.176 

Based on the Convention on Registration, a TAV conducting normal mission operations 

in orbit is considered a “space object” and is subject to space law. When conducting an 

aeroassisted maneuver, however, the TAV utilizes aerodynamic forces within the upper 

atmosphere to produce lift. Does this ability to leverage aerodynamic forces during the 

                                                 
175 Convention on Registration of Objects Launched into Outer Space, 14 January 1975, 28 U.S.T. 695, 1023 

U.N.T.S. 15.  
176 Jane Van Nimmen, Leonard C. Bruno, and Linda N. Ezell, NASA Historical Data Book, Volume VII: NASA 

Launch Systems, Space Transportation, Human Spaceflight, and Space Science, 1989-1998 (Washington D.C.: 
U.S. Government Printing Office, 1999), 55; Hobe, 364. 
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aeroassisted maneuver necessitate a change in vehicle status from space object to aircraft, and a 

likewise change in legal jurisdiction from space law to air law? Since the TAV produces lift 

while transiting the upper atmosphere, then it could be assumed that air law supersedes any space 

law consideration as with the preceding example of the Pegasus booster attached to the L-1011 

carrier aircraft. The validity of this assumption is tenuous, especially when the functions of both 

the TAV and aeroassisted maneuver are considered. With the former, a TAV is intended to reach 

and operate within outer space and thus constitutes the baseline definition of a “space object.” 

For the latter, an aeroassisted maneuver is implemented in order to alter the geometry of an orbit, 

whether originally in LEO or high Earth orbit. As a result, the TAV always remains within the 

space environment except for the duration of the aeroassisted maneuver itself (and the eventual 

re-entry at mission end-of-life).  

If a TAV is subject to air law during an aeroassisted maneuver, then the right of foreign 

airspace sovereignty must be observed. Consequently, a state whose airspace will be infringed by 

an aeroassisted maneuver maintains the right to regulate passage within its airspace. Apart from 

civilian missions such as those related to science or transportation, as with the case of space 

tourism, TAVs also have the potential of hosting a variety of military functions. From being a 

platform for augmented command, control, communications, intelligence, surveillance, and 

reconnaissance (C3ISR), to a vehicle for prompt global strike, TAVs proffer an undeniable 

enhancement of military capabilities.177 Based on the their inherent military mission 

implications, aeroassisted maneuvers could be implemented to either deliver a TAV over a target 

of interest, or place a TAV inside the atmosphere to conduct a specific mission within the 

airspace of a state being overflown.  

                                                 
177 Jinyuan Su, “Near Space as a Sui Generis Zone: A Tri-Layer Approach of Delimitation,” Space Policy 29, no. 2 

(2013): 91. 
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In light of these potential missions, a state could follow precedence and impose a no-fly 

zone for aeroassisted maneuvers deemed to fall outside the bounds of an “innocent passage.” For 

example, the French and Spanish governments imposed no-fly zones which prevented the 

passage of U.S. Air Force aircraft through their respective airspaces when executing Operation 

El Dorado Canyon against Libya in 1986.178 Similarly, a state could impose a no-fly zone 

precluding an aeroassisted maneuver intended to insert a TAV in orbital position to complete a 

specific military mission, e.g. C3ISR or prompt global strike. When considered under the 

jurisdiction of air law, aeroassisted maneuvers implemented in violation of a state-imposed no-

fly zone would constitute a breach of international treaty. 

Environmental Considerations 

Occurring within the 50 − 90 km altitude regime, aeroassisted maneuvers place a TAV 

not only within potential foreign airspace, but also in the physical environment of the upper 

atmosphere. Of the various human space activities, space launch produces a high level of exhaust 

pollutants in the form of dust, the emission of toxic compounds such as aluminum oxide (from 

solid propellant), and the spraying of unburned liquid propellant like hydrazine. Although argued 

by many to have a negligible cumulative effect on atmospheric degradation, the burning of 

rocket propellant – whether solid or liquid in composition – in the upper atmosphere has been 

demonstrated to deteriorate the ozone layer and chemically contaminate the water cycle.179 Not 

chemically destructive, the release of water as an exhaust by-product can interfere with 

ionospheric conditions, thus disrupting the transmission of wireless communications.180    

                                                 
178 Joseph T. Stanik, El Dorado Canyon: Reagan’s Undeclared War with Qaddafi (Annapolis, MD: Naval Institute 

Press, 2003), 145-146. 
179 Lotta Viikari, The Environmental Element in Space Law: Assessing the Present and Charting the Future (Leiden, 

The Netherlands: Koninkliijke Brill NV, 2008), 29-31. 
180 Ibid., 31. 
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While the aeroglide type of aeroassisted maneuver only performs thruster burns in space, 

the aerobang and aerocruise alternatives produce a steady thrust throughout the trans-

atmospheric trajectory. Even though a TAV’s propulsion system burns liquid rather than solid 

propellants and, therefore, produces fewer pollutants, exhaust by-products are continuously 

injected into the airspace when an aerobang or aerocruise maneuver is implemented. As a result, 

can a state deny the infringement of its airspace by an aeroassisted maneuver due to 

environmental considerations? If an aerobang or aerocruise maneuver is considered within the 

jurisdiction of air law, does the operator of the TAV assume sole liability for any environmental 

impact of the maneuver? 

Summary and Conclusion 

The continued engineering development of TAVs will undoubtedly require the air and 

space law challenges of aeroassisted maneuvers to be formally addressed due to ongoing debate 

associated with the prospect of airspace and outer space delimitation. Occurring within the 

50 − 90 km altitude regime, spatialism dictates that TAVs implementing an aeroassisted 

maneuver are subject to air law. From the functionalist perspective, however, the legal 

delimitation of air and space law becomes ambiguous with arguments that can identify a TAV as 

either an aircraft or space object. For many states, to include the Lebanon, the Syrian Arab 

Republic, and Turkey, the stance is clear: A TAV traversing foreign airspace during an 

aeroassisted maneuver is subject to air law. For states like the Czech Republic though, ambiguity 

resurfaces with the view that air law only applies to “objects resembling [spaceplanes], but not to 

objects resembling Space Shuttles.”181   

                                                 
181 Gorove, 21-22. 
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Due to the unique hybrid characteristics of not only aeroassisted maneuvers, but also 

TAVs, one viable solution option is to spatially establish an exclusive zone of operation for 

TAVs between the maximum operating ceiling of conventional aircraft and the lowest achievable 

orbit for satellites. Defined as a sui generis zone, the approximate altitude regime of 21 − 96 km 

would permit the freedom of operation of TAVs (within peaceful bounds) and officially delimit 

the boundaries of both airspace sovereignty and outer space.182 A propitious compromise, such 

an exclusive zone for TAVs could forestall the onset of legal challenges for nascent commercial 

and national ventures seeking to implement aeroassisted maneuvers.   

  

                                                 
182 Su, 92.  



www.manaraa.com

173 

VIII. Conclusions and Recommendations 
 

Conclusions of Research 

Once verified by duplicating the re-entry trajectory of the Apollo 10 command module 

capsule, the trajectory dynamics model was used to determine the terrestrial and LEO 

reachability potential of aeroassisted maneuvers, specifically skip entry and descent-boost. 

During the terrestrial reachability study, a series of skip entry and exo-atmospheric planar 

phasing and simple plane change maneuvers were first simulated to establish the time-of-arrival 

and ∆𝑉 required for each respective maneuver to overfly specific ground targets located at high-, 

medium-, and low-latitudes. For the sample target of Moscow, it was demonstrated that skip 

entry maneuvers provide the fastest time-of-arrival at a low ∆𝑉 when compared with the planar 

phasing and simple plane change maneuver alternatives. While the ∆𝑉 for the simple plane 

change is lower than most phasing maneuvers for targets such as Moscow and Gibraltar, the 

equatorial target of Pontianak, Indonesia illustrated that the choice of ground target can have a 

detrimental impact on ∆𝑉 with values approaching 8.0 km/s for a single simple plane change 

maneuver. For a limited yet diverse set of sample ground targets, skip entry maneuvers are 

shown to require a total ∆𝑉 less than 0.5 km/s and consistently provide responsive mission 

execution in terms of target time-of-arrival.  

While the ground target over-flight simulations assumed a notional TAV design with a 

hypersonic lift-to-drag ratio of 𝐿/𝐷 = 6, the second phase of the terrestrial reachability study 

sought to determine aeroassisted maneuver performance by optimizing both TAV and maneuver 

trajectory design. Of the various optimization algorithms available, to include pseudospectral and 

meta-heuristic methods, the Design of Experiments method of orthogonal arrays was employed 

since it provides for an augmented exploration of the objective space with the ability to perform 
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main effects as well as Pareto front analysis. Initially, three multiple-objective optimization 

problems (MOPs) were devised from in order to obtain optimal designs for both a TAV and skip 

entry trajectory: (1) {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}; (2) {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}; and (3) 

{min(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}. The first, or primary MOP sought maximize terrestrial reachability in 

the form of inclination change, ∆𝑖, while minimizing ∆𝑉; the secondary and tertiary MOPs 

focused on maximizing post-maneuver re-circularization altitude while maximizing reachability 

and minimizing ∆𝑉, respectively. Although the maximization of re-circularization altitude 

permits the execution of subsequent maneuvers and, therefore, a greater terrestrial reachability 

potential due to higher orbital potential energy, Pareto analysis revealed that all three MOPs 

could not be satisfied without sacrificing either ∆𝑖, ∆𝑉, or re-circularization altitude. 

Consequently, the optimization was restricted to the primary MOP and the combined main 

effects and Pareto front analysis yielded the following optimal TAV and skip entry trajectory 

design: 

Table 8.1. Optimal TAV Design and Trajectory from DOE Analysis 

Mass, kg 2000 
Planform Area, m2 18.5 
Drag Coefficient 0.5 
Lift Coefficient 3.0 

Initial Altitude, km 1000 
Perigee Altitude, km 86.75 

Bank Angle −90 deg 

 

Starting from a circular reference orbit with an inclination of 37.84 deg, the optimal 

TAV design can achieve a maximum inclination change of ∆𝑖 = 19.91 deg for ∆𝑉 =

0.345 km/s if re-circularization occurs at the skip apogee altitude of 131.2 km. By performing a 

Hohmann transfer following the aeroassisted maneuver in order to re-circularize at a sample 
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higher altitude of 500 km, the total ∆𝑉 required to perform both maneuvers is 0.806 km/s. 

Without an orbit-raising transfer, the orthogonal array optimization demonstrated that a skip 

entry maneuver requires approximately 50-85% less ∆𝑉 than a simple plane change to achieve a 

maximum inclination change of ∆𝑖 = 19.91 deg. 

As an alternative to skip entry, the descent-boost type of aeroassisted maneuvers was 

used to perform the LEO reachability study. For a single TAV design with 𝐿/𝐷 = 6, an initial 

maneuver performance sensitivity study indicated the total descent-boost maneuver ∆𝑉 is a 

strong function of both initial flight-path angle and inclination, with ∆𝑉 increasing as the 

magnitude of these respective parameters increases. Utilizing MP number analysis, the combined 

Hohmann transfer was deemed a more effective maneuver option for injection into orbits such as 

Molniya, with the descent-boost maneuver generally requiring a greater ∆𝑉 expenditure due to 

the initial ∆𝑉 impulse performed to alter TAV trajectory flight-path angle and orbital velocity. 

Although requiring a longer time-of-flight for orbit injection than bi-elliptic transfers, descent-

boost maneuvers commencing from the initial altitudes of 1000, 1100, and 1200 km are shown 

here to require 6-12% less ∆𝑉 for injection into circular orbits with altitudes less than 650 km. 

Through the pursuance of both trajectory- and optimization-centric performance analysis, 

aeroassisted maneuvers in the form of skip entry and descent-boost have been demonstrated in 

several cases to require a lower ∆𝑉 expenditure than exo-atmospheric maneuvers in order to 

achieve terrestrial and LEO reachability. Despite potential air and space law challenges arising 

due to current ambiguities surrounding atmospheric delimitation and the question of airspace 

sovereignty, aeroassisted maneuvers provide several implicit capabilities not readily available for 

conventional exo-atmospheric maneuvers. For skip entry, maneuver unpredictability is 

conceivable by penetrating the upper atmosphere to utilize aerodynamic forces to change orbital 
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states such as inclination and semi-major axis. With descent-boost maneuvers, the TAV cannot 

only perform an orbital inspection upon transiting skip apogee during orbit injection, but also 

provide a level of unpredictability since the descent-boost trans-atmospheric trajectories feature a 

decaying elliptical flight-path which produces multiple orbit injection possibilities. 

Significance of Research 

Aeroassisted maneuvers – specifically skip entry and descent-boost – provide a viable 

alternative to exo-atmospheric maneuvers for the alteration of orbital states and the completion 

of user-defined mission objectives linked to ground target over-flight as well as LEO injection. 

Besides trajectory-centric design analysis, the Design of Experiments method of orthogonal 

arrays has been demonstrated as an advantageous means of optimizing both TAV and skip entry 

maneuver trajectory for a multi-objective optimization problem (MOP) through the ability to 

perform main effects and Pareto front analysis. Utilized in the LEO reachability study, the 

concept of the Maneuver Performance (MP) number was introduced as a dimensionless means of 

comparative effectiveness analysis for exo- and trans-atmospheric maneuvers. Based on inherent 

analysis limitations of a single formulation, two versions of the effectiveness ratio are provided; 

the first is applicable to maneuvers between non-equal initial and final orbital altitudes, while the 

second accounts for phasing maneuvers in which the initial and final orbital altitudes are equal. 

Finally, all aeroassisted maneuver simulations comprising the present research used a piecewise-

continuous atmospheric density function that was developed to model the MSIS-E-90 density 

profile by incorporating three separate altitude-delimited models: (1) Exponential density for 

ℎ ∈ [0, 84] km; (2) scale height-varying density for ℎ ∈ [84, 120] km; and (3) power regression 

density for ℎ ∈ [120, 1000] km.  
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Recommendations for Future Research 

Although providing an assessment of aeroassisted maneuver performance in terms of 

terrestrial and LEO reachability, the present research features limitations based on the simulation 

simplifying assumptions and the circumscribed investigation of only the skip entry and descent-

boost types of aeroassisted maneuvers. As a result, recommendations for future research are 

enumerated below: 

1. Investigate the effect of induced drag on aeroassisted maneuver performance by utilizing 

a vehicle-specific drag polar rather than constant aerodynamic coefficients. 

2. Conduct a comparative analysis of aeroassisted skip entry and exo-atmospheric 

maneuvers for ground target over-flight with variable initial RAAN.  

3. For the Design of Experiments optimization segment of research, expand the variable 

bank angle analysis to account for greater inverted-TAV motion with 𝜎 ∈ [−160, 0] deg 

so as to increase duration of trans-atmospheric flight and maximize inclination change. 

4. Explore the optimal implementation of aerobang and aerocruise as alternatives to skip 

entry and descent-boost. Specifically, investigate if an optimal location exists along the 

trans-atmospheric trajectory at which to commence continuous thrusting in order to 

maximize inclination change while minimizing ∆𝑉. 

5. Investigate the performance effects of conducting periodic impulsive thrusting along the 

trans-atmospheric trajectory instead of continuous thrusting for aerobang and aerocruise 

aeroassisted maneuvers. 

6. Conduct a comparative analysis of aeroassisted maneuvers and Lambert transfers in 

terms of ∆𝑉 and time-of-flight performance. See Appendix D for a Lambert transfer 

solution algorithm.   
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Appendix A: Exo-Atmospheric Maneuver Algorithms 
 
 

 
 Initially described in Chapter I, the algorithms underpinning the Hohmann, combined 

Hohmann, bi-elliptic, and planar phasing exo-atmospheric maneuvers are given by the following: 

Hohmann Transfer183 

Based on the assumption that both the parking (A) and mission (B) orbits are circular, the 

semi-major axis of the Hohmann transfer ellipse (T) is expressed by Eq. (A.1) in terms of the 

geocentric orbital radii 𝑟𝐴 and 𝑟𝐵: 

                                                                𝑎𝑇 = 1
2

(𝑟𝐴 + 𝑟𝐵) (A.1) 
 
The tangential impulse ∆𝑉𝐴 required to inject the spacecraft into the perigee of the transfer ellipse 

from parking orbit (A) is defined by the circular orbit velocity of (A) and the velocity of the 

elliptical trajectory corresponding with the impulse location: 

                                                  𝑉𝐴 = �
𝜇
𝑟𝐴
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                                                               ∆𝑉𝐴 = �𝑉𝐴 − 𝑉𝑇,𝐴� (A.3) 
 
Similarly, the tangential impulse ∆𝑉𝐵 required to re-circularize the spacecraft at the intersection 

of the transfer ellipse apoapsis and the mission orbit (B) is given by: 

                                                  𝑉𝐵 = �
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                                                               ∆𝑉𝐵 = �𝑉𝐵 − 𝑉𝑇,𝐵� 
 

(A.5) 

The summation of the two impulse burns yields the total ∆𝑉 for the Hohmann transfer: 
 
                                      ∆𝑉𝑇𝑜𝑡𝑎𝑙 = ∆𝑉𝐴 + ∆𝑉𝐵 = �𝑉𝐴 − 𝑉𝑇,𝐴� + �𝑉𝐵 − 𝑉𝑇,𝐵� 
 

(A.6) 

                                                 
183 Vallado, 327. 
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Finally, the time-of-flight of the Hohmann transfer is defined as one half of the period of the 

transfer ellipse: 

                                                                     𝑡𝑇 = 𝜋�𝑎𝑇
3

𝜇
 (A.7) 

 
As an alternative, Vladimir A. Chobotov in Orbital Mechanics defines the time-of-flight as a 

function of the parking and mission orbital radii:184 

                                                  𝑡𝑇 = 𝜋�𝑟𝐴
3

𝜇
∙ � 1
25 2⁄ �1 + 𝑟𝐵

𝑟𝐴
�
3 2⁄
� (A.8) 

Combined Hohmann Transfer185 
 
For cases in which the parking (A) and mission (B) orbits are circular and non-coplanar, 

the combined Hohmann transfer is utilized to change both inclination and semi-major axis. 

Initially, the transfer ellipse semi-major axis is given by Eq. (A.1) and the velocities associated 

with the parking and mission orbits as well as the transfer ellipse perigee and apogee locations 

are given by Eqs. (A.2) and (A.4), respectively. In order to minimize the total ∆𝑉 for the 

maneuver, the inclination change is incorporated into the impulse burns at the transfer ellipse 

periapsis and apoapsis. At the transfer ellipse injection point in parking orbit (A), the amount of 

inclination change is expressed by:    

                                                                     ∆𝑖𝐴 = 𝑠∆𝑖 (A.9) 
 
Likewise, the amount of inclination change to perform during re-circularization at mission orbit 

(B) is: 

                                                                ∆𝑖𝐵 = (1 − 𝑠)∆𝑖 (A.10) 
 

                                                 
184 Chobotov, 95. 
185 Vallado, 354-355. 
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One option of determining the “best” amount of inclination change to perform at each transfer 

burn consists of iterating the transcendental equation of sin(𝑠∆𝑖) given by Eq. (A.11): 

 sin(∆𝑖𝐴) = ∆𝑉𝐴𝑉𝐵𝑉𝑇,𝐵 sin(∆𝑖𝐵)
∆𝑉𝐵𝑉𝐴𝑉𝑇,𝐴

 (A.11) 
 
A second option, which is used for descent-boost maneuver comparative analysis in Chapter VII, 

involves the following non-iterative analytic approximation: 

 𝑠 ≈ 1
∆𝑖

tan−1 � sin(∆𝑖)
𝑅3 2⁄ +cos(∆𝑖)

� (A.12) 
 
where 𝑅 = 𝑟𝐵 𝑟𝐴⁄ . Utilizing the Law of Cosines, the transfer burn impulses ∆𝑉𝐴 and ∆𝑉𝐵 are 

given by Eqs. (A.13) and (A.14):  

 

                                              ∆𝑉𝐴 = �𝑉𝐴2 + 𝑉𝑇,𝐴
2 − 2𝑉𝐴𝑉𝑇,𝐴 cos(∆𝑖𝐴) (A.13) 
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(A.14) 

The summation of the two transfer burns yields the total ∆𝑉 for the combined Hohmann transfer: 
 
                                                              ∆𝑉𝑇𝑜𝑡𝑎𝑙 = ∆𝑉𝐴 + ∆𝑉𝐵 
 (A.15) 

Similar to the Hohmann transfer, the time-of-flight of the combined Hohmann transfer is 

expressed by Eq. (A.7). 

Bi-Elliptic Transfer186 
 
Unlike the preceding maneuvers, the design of the bi-elliptic transfer features two 

transfer ellipses. The first ellipse extends from the parking orbit (A) to an intermediate orbit (B), 

which is greater in altitude than the mission orbit (C). The semi-major axis of the first ellipse is 

given by: 

                                                 
186 Ibid., 328. 



www.manaraa.com

181 

                                                                𝑎1 = 1
2

(𝑟𝐴 + 𝑟𝐵) (A.16) 
 
With a semi-major axis defined by Eq. (A.17), the second ellipse extends from the intermediate 

orbit (B) to the mission orbit (C): 

                                                                𝑎2 = 1
2

(𝑟𝐵 + 𝑟𝐶) (A.17) 
 
The velocities associated with the bi-elliptic transfer are expressed as: 
 

                                                  𝑉𝐴 = �
𝜇
𝑟𝐴

     𝑉1,𝐴 = �𝜇 � 2
𝑟𝐴
− 1

𝑎1
� 

 
(A.18) 

 

                                       𝑉1,𝐵 = �𝜇 � 2
𝑟𝐵
− 1

𝑎1
�        𝑉2,𝐵 = �𝜇 � 2

𝑟𝐵
− 1

𝑎2
� 

 
(A.19) 

 

                                                  𝑉𝐶 = �
𝜇
𝑟𝐶

     𝑉2,𝐶 = �𝜇 � 2
𝑟𝐶
− 1

𝑎2
� 

 
(A.20) 

where 𝑉𝐴 is the velocity of parking orbit (A), 𝑉1,𝐴 is the perigee velocity of the first transfer 

ellipse at (A), 𝑉1,𝐵 is the apogee velocity of the first transfer ellipse at the intermediate orbit (B), 

𝑉2,𝐵 is the apogee velocity of the second transfer ellipse at (B), 𝑉2,𝐶 is the perigee velocity of the 

second transfer ellipse at the mission orbit (C), and 𝑉𝐶 is the velocity of (C). 

The total ∆𝑉 and the time-of-flight are given by Eqs. (A.21) and (A.22), respectively:  
 
                      ∆𝑉𝑇𝑜𝑡𝑎𝑙 = ∆𝑉𝐴 + ∆𝑉𝐵 + ∆𝑉𝐶 = �𝑉1 − 𝑉1,𝐴� + �𝑉1,𝐵 − 𝑉2,𝐵� + �𝑉𝐶 − 𝑉2,𝐶� (A.21) 
 

                                                            𝑡𝑇𝑜𝑡𝑎𝑙 = 𝜋�𝑎1
3

𝜇
+ 𝜋�𝑎2

3

𝜇
 (A.22) 
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Phasing Maneuvers 
 

 
 

Figure A.1. Phasing Maneuver Flowchart  
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Appendix B: Geodesic Equation Formulation 
 
 

 
In his paper “Direct and Inverse Solutions of Geodesics on the Ellipsoid with 

Applications of Nested Equations,” Thaddeus Vincenty presented what he termed as “compact 

formulae” for both the direct and inverse solutions of geodesies. For the purposes of the present 

research, only the direct solution algorithm are presented.187 Defined in terms of an ellipsoidal 

planetary model, the direct solution is a function of longitude and geodetic latitude of each 

location point, as well as the major (𝑎) and minor (𝑏) semi-axes of the ellipsoid. With these 

inputs, the reduced latitude, 𝑈, is calculated in terms of geodetic latitude and the flattening 

parameter: 𝑓 = (𝑎 − 𝑏) 𝑎⁄ . 

                                                   𝑈1 = tan−1�(1 − 𝑓) tan𝜙1� 
 

                                                   𝑈2 = tan−1�(1 − 𝑓) tan𝜙2� 
(B.1) 

 
The term “reduced” indicates that the latitude 𝑈 is measured on an auxiliary sphere centered and 

located coincident with an ellipsoidal model. From the longitudinal components of each location 

coordinate set, the quantity 𝜆 is determined from measurements on the auxiliary sphere:  

                                                                𝜆 = 𝜃2 − 𝜃1 (B.2) 

By initially setting 𝜆 = 𝐿, where 𝐿 is the difference in longitude on the ellipsoid, Eqs. (B.3) – 

(B.10) are solved iteratively until 𝜆 converges to a specified error tolerance, e.g. 1.0 x 10−12:   

                   sin𝜎 = �(cos𝑈2 sin 𝜆)2 + (cos𝑈1 sin𝑈2 − sin𝑈1 cos𝑈2 cos 𝜆)2 
(B.3) 

                                      cos𝜎 = sin𝑈1 sin𝑈2 + cos𝑈1 cos𝑈2 cos 𝜆 (B.4) 

                                                          𝜎 = tan−1 �sin𝜎
cos𝜎

� (B.5) 

                                                 
187 Thaddeus Vincenty, “Direct and Inverse Solutions of Geodesics on the Ellipsoid with Applications of Nested 

Equations,” Survey Review XXII 176 (1975): 88-90. 
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                                                    sin𝛼 = cos𝑈1 cos𝑈2 sin 𝜆
sin𝜎

 (B.6) 

                                                        cos2 𝛼 = 1 − sin2 𝛼 (B.7) 

                                             cos 2𝜎𝑚 = cos𝜎 − 2sin𝑈1 sin𝑈2
cos2 𝛼

 (B.8) 

               𝐶 =
𝑓

16
cos2 𝛼 ∙ [4 + 𝑓(4 − 3 cos2 𝛼)] 

(B.9) 

𝜆 = 𝐿 + (1 − 𝐶)𝑓 sin𝜎 ∙ {𝜎 + 𝐶 sin𝜎 [cos 2𝜎𝑚 + 𝐶 cos𝜎 (−1 + 2 cos2 2𝜎𝑚)]} (B.10) 

 
From the equations above, 𝛼 is the azimuth of the geodesic, 𝜎 is the angular distance between the 

coordinate locations on the auxiliary sphere, and 𝜎𝑚 is the angular distance from the equator to 

the midpoint of the geodesic on the auxiliary sphere.  

 With convergence attained, the following equations are solved in succession until the 

geodesic distance 𝑠 is calculated in Eq. (B.15): 

                𝑢2 = cos2 𝛼 ∙ �
𝑎2 − 𝑏2

𝑏2
� (B.11) 

                          𝐴 = 1 + 𝑢2

16384
{4096 + 𝑢2[−768 + 𝑢2(320 − 175𝑢2)]} (B.12) 

                                  𝐵 = 𝑢2

1024
{256 + 𝑢2[−128 + 𝑢2(74 − 47𝑢2)]} (B.13) 

∆𝜎 = 𝐵 sin𝜎 ∙ �cos 2𝜎𝑚 +
𝐵
4

∙ �cos𝜎 (−1 + 2 cos2 2𝜎𝑚) −
𝐵
6

∙ cos 2𝜎𝑚 (−3 + 4 sin2 𝛼)(−3 + 4 cos2 2𝜎𝑚)�� 

(B.14) 

                                                                 𝑠 = 𝑏𝐴(𝜎 − ∆𝜎) (B.15) 

 
For all equations, 𝐴, 𝐵, and 𝐶 represent intermediate variables. 
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Appendix C: TLE Guide 
 
 

 
Updated twice daily, the North American Aerospace Defense Command (NORAD) 

provides an inventory of orbiting objects in the form of Two-Line Element (TLE) sets for each 

space object. The TLEs contain information pertaining to the position of the object within its 

orbit as well as the orbit position relative to the Earth-Centered Inertial (ECI) reference frame.188 

In his book Satellites: Orbits and Missions, Michel Capderou presents a general TLE format and 

element description as adapted in Table C.1. Note that the letter A in the general TLE refers to 

“alphabetical character,” while N is a “numerical character.” 

 
Table C.1 General TLE and Element Description189 

 

 
Line Column Description 

1 01 Line number 
1 03-08 Satellite number with classification 
1 10-17 International designator 
1 19-32 Epoch year; day of year; fraction of day  
1 34-43 First time derivative of mean motion, 𝑛 
1 45-52 Second time derivative of 𝑛 (decimal point assumed) 
1 54-61 Drag term (decimal point assumed) 
1 63-69 Ephemeris type; element number; checksum (modulo 10) 
2 01-07 Line number; satellite number without classification 
2 09-16 Inclination, 𝑖 (degrees) 
2 18-25 Right ascension of the ascending node, 𝛺 (degrees) 
2 27-33 Eccentricity, 𝑒 (decimal point assumed) 
2 35-42 Argument of perigee, 𝜔 (degrees) 
2 44-51 Mean anomaly, 𝑀 (degrees) 
2 53-63 Mean motion, 𝑛 (revolutions per day) 
2 64-69 Revolution number at epoch; checksum (modulo 10) 

                                                 
188 Michel Capderou, Satellites: Orbits and Missions (Paris, France: Springer-Verlag France, 2005), 254. 
189 Ibid., 254-255. 
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 An example TLE for the Molniya 3-42 communications satellite is given in Figure C.1. 

While four of the six standard Keplerian elements are provided in the TLE (𝑒, 𝑖, 𝛺, 𝜔), the 

remaining elements of semi-major axis, 𝑎, and true anomaly, 𝜈, must be calculated utilizing the 

mean motion and mean anomaly data.   

 
 

 

 

 

 

 

 
Figure C.1. Element Mapping for Molniya 3-42 Example TLE 

 
As a function of mean motion, the semi-major axis is given by the following:190  

                  𝑎 = �
𝜇
𝑛2
�
1 3⁄

 (C.1) 

 
The true anomaly as shown in Eq. (C.3) is calculated by first solving Kepler’s equation in Eq. 

(C.2) via a Newton-Rhapson iteration for the eccentric anomaly, 𝐸:191 

              𝑀 = 𝐸 − 𝑒 sin𝐸 (C.2) 
 

            𝜈 = cos−1 �
cos𝐸 − 𝑒

1 − 𝑒 cos𝐸
� (C.3) 

 

                                                 
190 Vallado, 31. 
191 Ibid., 54-55, 73. 
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Appendix D: Lambert Algorithm 
 
 

 
Originally formulated in 1761, Swiss mathematician Johann H. Lambert’s eponymous 

problem seeks to determine the orbit between two known position vectors and represents a two-

point boundary value problem.192 Overall, Lambert’s problem permits several different situations 

in astrodynamics to be examined, from initial orbit determination based on a preliminary set of 

observation vectors (e.g. Gauss’s efforts to determine the orbit of the planetoid Ceres), to 

intercept and rendezvous between position vectors either within the same orbit, or in two 

separate orbits.193 Regardless of the application, numerous solution algorithms exist for 

Lambert’s problem. In his book Fundamentals of Astrodynamics and Applications, Vallado not 

only presents Gauss’s solution,194 but also the power series solution developed by Thorne,195 a 

method utilizing universal variables,196 and an overview of Battin’s method.197 The complete 

derivation of the last method can be found in Richard H. Battin and Robin M. Vaughn’s original 

paper “An Elegant Lambert Algorithm.”198 Besides Battin and the other methods discussed by 

Vallado, other examples of Lambert algorithms include Gim J. Der’s formulation of a multi-

revolution analytic solution and R. H. Gooding’s approach based on Halley’s cubic iteration 

method.199  

                                                 
192 Vallado, 420; Michael O’Leary, Revolutions of Geometry (Hoboken, NJ: John Wiley & Sons, Inc., 2010), 353; 

Gim J. Der, “The Superior Lambert Algorithm” (paper presented at the Advanced Maui Optical and Space 
Surveillance Technologies Conference, Wailea, Maui, HI, 13-16 September 2011): 4. 

193 Vallado, 472, 495. 
194 Ibid., 472-476. 
195 Ibid., 476-485. 
196 Ibid., 485-490. 
197 Ibid., 490-494. 
198 Richard H. Battin and Robin M. Vaughn, “An Elegant Lambert Algorithm,” Journal of Spacecraft and Rockets 7, 

no. 6 (1984): 662-670. 
199 Der, 1-28; R. H. Gooding, “A Procedure for the Solution of Lambert’s Orbital Boundary-Value Problem,” 

Celestial Mechanics and Dynamical Astronomy 48, no. 2 (1990): 145-165. 
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For the present research, a variation of the universal variable algorithm utilizing 

Newton’s method is outlined as described in Tewari’s text Atmospheric and Spaceflight 

Dynamics.200 In Tewari’s algorithm, the initial and final velocities vectors describing the transfer 

orbit are determined by first calculating the transfer angle, 𝜙, between the two position vectors: 

              𝜙 =

⎩
⎪
⎨

⎪
⎧ cos−1 �

𝑟1 ∙ 𝑟2
𝑟1𝑟2

� ,𝛼 > 0

2𝜋 − cos−1 �
𝑟1 ∙ 𝑟2
𝑟1𝑟2

� ,𝛼 < 0

� (D.1) 

 
where 𝛼 = 𝑘� ∙ (𝑟1 × 𝑟2) and 𝑘� = [0 0 1]T. With the transfer angle defined in the appropriate 

quadrant, the variable 𝐴 is calculated by: 

          𝐴 = sin𝜙�
𝑟1𝑟2

1 − cos𝜙
 (D.2) 

 
Initial values for the auxiliary variables 𝑥,𝑦, 𝑧 are determined by first assuming a value for 𝑧, 

which Tewari defines as “usually a small, positive number,” such as 𝑧 = 0.01. Equations for 𝑥 

and 𝑦 are: 

          𝑦 = 𝑟1 + 𝑟2 −
𝐴

�𝐶(𝑧)
�1 − 𝑧𝑆(𝑧)� (D.3) 

 

        𝑥 = �
𝑦

𝐶(𝑧)
 (D.4) 

 
The variables 𝐶(𝑧) and 𝑆(𝑧) represent Stumpff functions, which are expressed by the two infinite 

series in Eq. (D.5); for a discussion of the mathematical properties associated with Stumpff 

functions, see Bate, Mueller, and White’s Fundamentals of Astrodynamics:201 

                                                 
200 Tewari, 144-147. 
201 Roger R. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics (New York, NY: Dover 

Publications, Inc., 1971), 196. 
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         𝐶(𝑧) =
1
2!
−
𝑧
4!

+
𝑧2

6!
−⋯ = �

(−𝑧)𝑖

(2𝑖 + 2)!

∞

𝑖=0

 

         𝑆(𝑧) =
1
3!
−
𝑧
5!

+
𝑧2

7!
−⋯ = �

(−𝑧)𝑖

(2𝑖 + 3)!

∞

𝑖=0

 

(D.5) 

 
The derivation of the Eq. (D.3) is given as a coda to this Appendix.  

 Based on the preceding values for 𝑥 and 𝑧, an initial value for the transfer time, 𝑡, is then 

calculated with the following equation: 

           𝑡 =
1
√𝜇

�𝑆(𝑧) ∙ 𝑥3 + 𝐴�𝐶(𝑧) ∙ 𝑥� (D.6) 

 
Once determined, the initial values for 𝑥,𝑦, 𝑧, 𝑡 serve to initiate a Newton’s method algorithm 

based on the following cubic equation, to which Eq. (D.4) is a solution: 

           �𝜇�𝑡𝑓 − 𝑡𝑖� = 𝐴�𝐶(𝑧)𝑥 + 𝑆(𝑧)𝑥3 (D.7) 

 
Substituting Eq. (D.7) into the Newton sequence yields:202 
 

𝑥𝑛+1 = 𝑥𝑛 −
𝐹(𝑥𝑛)
𝐹′(𝑥𝑛) = 𝑥𝑛 −

𝑆(𝑧𝑛) ∙ (𝑥𝑛)3 + 𝐴�𝐶(𝑧𝑛) ∙ (𝑥𝑛) − √𝜇(𝑡𝑛 − 𝑡𝑖)

3 ∙ 𝑆(𝑧𝑛) ∙ (𝑥𝑛)2 + 𝐴�𝐶(𝑧𝑛)
 (D.8) 

 
Iterative values for 𝑦, 𝑧, 𝑡 are given by: 
 

             𝑦𝑛+1 = 𝐶(𝑧𝑛) ∙ (𝑥𝑛+1)2 
 

          𝑧𝑛+1 =
1

𝑆(𝑧𝑛) �1 −
𝐶(𝑧𝑛)
𝐴

� (𝑟1 + 𝑟2 − 𝑦𝑛+1) 

 

             𝑡𝑛+1 =
1
√𝜇

�𝑆(𝑧𝑛) ∙ (𝑥𝑛+1)3 + 𝐴�𝐶(𝑧𝑛) ∙ (𝑥𝑛+1)� 

 

(D.9) 

Updated values for the Stumpff functions 𝐶(𝑧𝑛+1),𝑆(𝑧𝑛+1) are calculated utilizing Eq. (D.5). 
 
                                                 
202 C. T. Kelley, Solving Nonlinear Equations with Newton’s Method (Philadelphia, PA: Society for Industrial and 

Applied Mathematics (SIAM), 2003), 2; Tewari, 147. 
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 Once the solution for z has converged within a specified tolerance, then the final value 

for 𝑦 is used to solve for the Lagrange coefficients: 

          𝑓 = 1 −
𝑦
𝑟1

 

𝑔 = 𝐴�
𝑦
𝜇

 

�̇� = 1 −
𝑦
𝑟2

 

           𝑓̇ =
1
𝑔

(𝑓�̇� − 1) 

 

(D.10) 

Finally, the Lagrange coefficients enable the determination of the initial and final velocity 

vectors of the transfer orbit, �⃑�1, �⃑�2: 

         �⃑�1 =
1
𝑔

(𝑟2 − 𝑓𝑟1) (D.11) 

      �⃑�2 = 𝑓̇𝑟1 + �̇��⃑�1 (D.12) 
 
Alternatively, Eq. (D.12) can be written as: 
 

       �⃑�2 =
1
𝑔

(�̇�𝑟2 − 𝑟1) (D.13) 

 
 
Derivation of Equation for Auxiliary Variable y 
 

The equation for 𝑦, or Eq. (D.3), is derived by first substituting the expressions for the 

𝑓,𝑔, �̇� Lagrange coefficients in Eq. (D.10) into the relationship �𝑓�̇� − 𝑔𝑓̇ = 1� to yield: 

�1 −
𝑦
𝑟1
� �1 −

𝑦
𝑟2
� − �𝐴�

𝑦
𝜇
�𝑓̇ = 1 

 
Solving for the fourth Lagrange coefficient, �̇�, gives: 
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            �̇� =
�1 − 𝑦

𝑟1
� �1 − 𝑦

𝑟2
� − 1

𝐴�𝑦𝜇

=
� 𝑦

2

𝑟1𝑟2
− 𝑦
𝑟1
− 𝑦
𝑟2
�

𝐴�𝑦𝜇

=
𝑦

𝐴�𝑦𝜇

�
𝑦 − 𝑟2 − 𝑟1

𝑟1𝑟2
� (D.14) 

 
In terms of the variable 𝑥 and the Stumpff function 𝑆(𝑧), an alternate formulation of Eq. (D.14) 

is given by:203 

         �̇� = √𝜇
𝑟1𝑟2

(𝑥𝑧𝑆(𝑧) − 𝑥) (D.15) 

 
where 𝑧 = 𝑥2 𝑎⁄ , and 𝑎 is the semi-major axis of the transfer orbit. By setting Eq. (D.14) equal 

to Eq. (D.15), an equation for 𝑦 can be determined via the following algebra: 

 
𝑦

𝐴�𝑦𝜇

�
𝑦 − 𝑟2 − 𝑟1

𝑟1𝑟2
� = √𝜇

𝑟1𝑟2
(𝑥𝑧𝑆(𝑧) − 𝑥) 

𝑦√𝜇
𝐴�𝑦

�
1
𝑟1𝑟2

� (𝑦 − 𝑟2 − 𝑟1) =
𝑥√𝜇
𝑟1𝑟2

(𝑧𝑆(𝑧) − 1) 

�𝑦
𝐴

(𝑦 − 𝑟2 − 𝑟1) = 𝑥(𝑧𝑆(𝑧) − 1) 
 
If 𝑥 = �𝑦 𝐶(𝑧)⁄ , then �𝑦 = 𝑥�𝐶(𝑧): 
 

𝑥�𝐶(𝑧)
𝐴

(𝑦 − 𝑟2 − 𝑟1) = 𝑥(𝑧𝑆(𝑧) − 1) 

𝑦 − 𝑟2 − 𝑟1 =
𝐴

�𝐶(𝑧)
(𝑧𝑆(𝑧) − 1) 

            𝑦 = 𝑟1 + 𝑟2 −
𝐴

�𝐶(𝑧)
�1 − 𝑧𝑆(𝑧)� (D.16) 

  

                                                 
203 Tewari, 144. 
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Appendix E: MATLAB® Code for Trajectory Dynamics Model 
 
 
 

Table E.1. m-File Classification for Trajectory Dynamics Model  
 

Filename File Type Description 

Maneuver_MainFunction Function Core module  
EventFunction Function Solver stopping condition 

Maneuver_SubFile Function Supports operation of solver 
AtmosModel Function Atmospheric model 

AtmosModel_PostAnalysis Function Atmos. model for post-processing 
EntryEOM_Complete Function Equations of motion with 𝑇,𝜔⊕ 

EntryEOM_Simple Function Equations of motion without 𝑇,𝜔⊕ 
EntryEOM_Euler Function Equations of motion without 𝑇,𝜔⊕ 

GravityModel Function Gravity model 
VehicleSpecs Function Spacecraft model 

WGS84Constants Function Planetary constants 
 

  

The core module of the Trajectory Dynamics Model contains the following options: 

• Spacecraft: (1) TAV, (2) Apollo 10 capsule, or (3) various notional satellite designs.  

• Equations of Motion: (1) “Complete” six-state set which includes thruster modeling and 

planetary rotation, or (2) “simple” six-state set which assumes a non-thrusting vehicle 

and non-rotating planetary model. 

• Planetary Rotation: (1) Activated, or (2) de-activated. 

• Bank Angle Control Input: (1) Constant bank angle throughout trajectory, or (2) time-

dependent bank angle profile.  

• Differential Equation Solver: (1) MATLAB® “ODE45” solver, or (2) Euler integration. 

The former option supports both the spherical and 𝐽2-gravity models, while the latter 

supports only the spherical gravity model. 
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Maneuver_MainFunction.m 
 
function [t,traj_param] = Maneuver_MainFunction(Choice_1,Choice_2,... 
                          Choice_3,Choice_4,Choice_5,Choice_6,Time_Max,... 
                          r,V,lon,lat,fpa,heading,bank_angle) 
  
global Vehicle_Choice EOM_Choice Gravity_Choice Omega_Choice    
global BankAngle_Choice Solver_Choice bank 
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% User-Defined Input Definitions 
Vehicle_Choice   = Choice_1;  
%1 = Notional Trans-Atmospheric Vehicle (m = 5000    kg, Cd = 0.5) 
%2 = ESPA SPL Notional Satellite        (m =  200    kg, Cd = 2.2) 
%3 = Primary Payload Notional Satellite (m = 1000    kg, Cd = 2.2) 
%4 = Apollo 10 Command Module Capsule   (m = 5498.22 kg, Cd = 1.2569) 
%5 = Apollo 10 CM Capsule w/ Alt. Cl/Cd (m = 5498.22 kg, Cd = 1.255) 
%6 = Notional Satellite                 (m = 2000    kg, Cd = 3.0) 
                              
EOM_Choice       = Choice_2;     
%1 = "Complete" entry EOM (6 states, includes thrusting & rotation) 
%2 = "Simple"   entry EOM (6 states, assumes non-thrusting & non-rotation) 
                      
Gravity_Choice   = Choice_3;  
%1 = Force Equations with spherical (Newtonian) gravity model 
%2 = Force Equations with J2 gravity model 
                      
Omega_Choice     = Choice_4;  
%1 = Planetary rotation "activated" 
%2 = Planetary rotation "de-activated" 
                              
BankAngle_Choice = Choice_5;  
%1 = Constant bank angle throughout trajectory 
%2 = Specified bank angle profile 
                             
Solver_Choice    = Choice_6;  
%1 = MATLAB ODE 45 with 6-state EOM  
%2 = Euler Integration (only spherical gravity, 6-state EOM) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Bank Angle Conversion  
bank = deg2rad(bank_angle); 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Equation of Motion (EOM) Solver 
if     Solver_Choice == 1 
    %% MATLAB ODE Solver with 6-State EOM 
%     options        = odeset('Events',@EventFunction,'RelTol',1e-7); 
    options        = odeset('RelTol',1e-3); %,'MaxStep',1.0); 
    traj_int       = [r V lon lat fpa heading]; 
    [t,traj_param] = ode45(@Maneuver_SubFile,[0,Time_Max],traj_int,options); 
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elseif Solver_Choice == 2 
    %% Euler Integration with 6-State EOM 
    deltaT         = 1; %Simulation propagation time-step (s) 
    [t,traj_param] = EntryEOM_Euler(r,V,lon,lat,fpa,heading,bank,... 
                                    deltaT,Time_Max); 
end 
 
 
 
 

EventFunction.m 
 
function [value,isterminal,direction] = EventFunction(t,traj_param) 
  
global RE 
  
value = traj_param(1) - RE; 
isterminal = 1; 
direction  = -1; 
 
 

Maneuver_SubFile.m 
 
function Y = Maneuver_SubFile(t,traj_param) 
  
global OmegaE Vehicle_Choice EOM_Choice Omega_Choice bank 
global mass S_m2 Cd Cl 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Trajectory States 
r = traj_param(1); %Radial position (km) 
V = traj_param(2); %Velocity (km/s) 
  
%Initial latitude (lat) and longitude (lon) 
lon = traj_param(3); lat     = traj_param(4); 
%Initial flight-path (fpa) and heading (psi) angles 
fpa = traj_param(5); heading = traj_param(6);  
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planetary Rotation Rate 
if     Omega_Choice == 1 
    OmegaRot = OmegaE; %Planetary rotation "activated" 
elseif Omega_Choice == 2 
    OmegaRot = 0;      %Planetary rotation "de-activated" 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
[Vehicle] = VehicleSpecs(Vehicle_Choice); 
  
mass   = Vehicle.mass;  %Mass (kg) 
S_m2   = Vehicle.S_m2;  %Planform area (m^2) 
S      = S_m2/(1000^2); %Planform area (km^2) 
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Cd     = Vehicle.Cd;    %Drag coefficient 
Cl     = Vehicle.Cl;    %Lift coefficient 
Thrust = 0;             %Thrust (kg.km/s^2) 
epsT   = 0;             %Thrust vector angle (rad) 
zetaT  = 0;             %Thrust vector angle (rad) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Equations of Motion (EOM) 
if     EOM_Choice == 1 
     Y = EntryEOM_Complete(r,V,lon,lat,fpa,heading,bank,... 
                           OmegaRot,mass,S,Cd,Cl,Thrust,epsT,zetaT); 
elseif EOM_Choice == 2 
     Y = EntryEOM_Simple(r,V,lon,lat,fpa,heading,bank,mass,S,Cd,Cl); 
end 
 
 
 

AtmosModel.m 
 
function [Rho] = AtmosModel(h_gd,AtmosModel_Choice) 
  
global RE BetaH Rho0 
  
WGS84Constants; %Loads global constants from external m-file 
  
%Note: AtmosModel_Choice 
%1 = Exponential density model 
%2 = Combined density model (approximation of MSIS model) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Exponential Density Model (kg/km^3) 
if     AtmosModel_Choice == 1 
    Rho = Rho0.*exp(-BetaH.*h_gd); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Combined Density Model    (kg/km^3)    
%Note: Exponential Model:                 h < 84 km 
%      Scale Height (v1) Variation Model: 84  <= h <= 120  km 
%      Power Model:                       121 <= h <= 1000 km 
  
elseif AtmosModel_Choice == 2 
%Reference altitude (km) 
h_i        = [67; 85; 99; 110]; 
  
%Reference density (kg/km^3) 
Rho_i      = [1.4975e-4; 7.726e-6; 4.504e-7; 5.930e-8] * (1000)^3; 
  
%Reference scale height (km)           
Hi         = [6.6597; 4.979; 5.905; 8.731]; 
  
%Reference molecular scale temperature (K) 
TMi        = [222.8; 165.7; 195.6; 288.2]; 
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%Atmospheric constant (K/km) 
Constant_A = [0.1296385; 0.1545455; 0.1189286; 0.5925240]; 
  
%Atmospheric constant (K/km) 
Constant_B = [4.044231; 0.0; 3.878571; 19.17964]; 
  
%Dimensionless parameters 
deltaH     = (Constant_A.*RE)./Hi;   
deltaTM    = (Constant_B.*RE)./TMi; 
  
%Altitude Sections 
if     h_gd <= 84                  %Section 1: Exponential model 
    Rho = Rho0.*exp(-BetaH.*h_gd); 
         
elseif h_gd >  84 && h_gd <= 90    %Section 2: Single Variation 
    Rho = Rho_i(2).*((1./(1 + deltaH(2).*((h_gd - h_i(2))./RE))).^ ... 
        ((1 + Constant_A(2))./Constant_A(2))); 
     
elseif h_gd >  90  && h_gd <= 106  %Section 3: Single Variation 
    Rho = Rho_i(3).*((1./(1 + deltaH(3).*((h_gd - h_i(3))./RE))).^ ... 
        ((1 + Constant_A(3))./Constant_A(3))); 
     
elseif h_gd >  106 && h_gd <= 120  %Section 4: Single Variation 
    Rho = Rho_i(4).*((1./(1 + deltaH(4).*((h_gd - h_i(4))./RE))).^ ... 
        ((1 + Constant_A(4))./Constant_A(4))); 
     
elseif h_gd >  120 && h_gd <= 1000 %Section 5: Power Model 
    Rho = ((4.50847623E7).*((h_gd).^(-7.44605852))).*((1000)^3);   
     
    %Note: 'Power Model' formulated with altitude in units of (km) and  
    %      the output density in (kg/m^3) 
     
else %if h_gd > 1000; 
    Rho = 0; 
end 
  
end 
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AtmosModel.m 
 
function [Rho_Vec] = AtmosModel_PostAnalysis(h_gd,AtmosModel_Choice) 
  
global RE BetaH Rho0 
  
WGS84Constants; %Loads global constants from external m-file 
  
%Note: AtmosModel_Choice 
%1 = Exponential density model 
%2 = Combined density model (approximation of MSIS model) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Exponential Density Model (kg/km^3) 
if     AtmosModel_Choice == 1 
    Rho = Rho0.*exp(-BetaH.*h_gd); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Combined Density Model    (kg/km^3)    
%Note: Exponential Model:                 h < 84 km 
%      Scale Height (v1) Variation Model: 84  <= h <= 120  km 
%      Power Model:                       121 <= h <= 1000 km 
  
elseif AtmosModel_Choice == 2 
%Reference altitude (km) 
h_i        = [67; 85; 99; 110]; 
  
%Reference density (kg/km^3) 
Rho_i      = [1.4975e-4; 7.726e-6; 4.504e-7; 5.930e-8] * (1000)^3; 
  
%Reference scale height (km)           
Hi         = [6.6597; 4.979; 5.905; 8.731]; 
  
%Reference molecular scale temperature (K) 
TMi        = [222.8; 165.7; 195.6; 288.2]; 
  
%Atmospheric constant (K/km) 
Constant_A = [0.1296385; 0.1545455; 0.1189286; 0.5925240]; 
  
%Atmospheric constant (K/km) 
Constant_B = [4.044231; 0.0; 3.878571; 19.17964]; 
  
%Dimensionless parameters 
deltaH     = (Constant_A.*RE)./Hi;   
deltaTM    = (Constant_B.*RE)./TMi; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Density Model Altitude Section Functions 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(h_gd); 
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%Altitude Sections 
if     h_gd(ii) <= 84                      %Section 1: Exponential model 
    Rho = Rho0.*exp(-BetaH.*h_gd(ii)); 
         
elseif h_gd(ii) >  84 && h_gd(ii) <= 90    %Section 2: Single Variation 
    Rho = Rho_i(2).*((1./(1 + deltaH(2).*((h_gd(ii) - h_i(2))./RE))).^ ... 
        ((1 + Constant_A(2))./Constant_A(2))); 
     
elseif h_gd(ii) >  90  && h_gd(ii) <= 106  %Section 3: Single Variation 
    Rho = Rho_i(3).*((1./(1 + deltaH(3).*((h_gd(ii) - h_i(3))./RE))).^ ... 
        ((1 + Constant_A(3))./Constant_A(3))); 
     
elseif h_gd(ii) >  106 && h_gd(ii) <= 120  %Section 4: Single Variation 
    Rho = Rho_i(4).*((1./(1 + deltaH(4).*((h_gd(ii) - h_i(4))./RE))).^ ... 
        ((1 + Constant_A(4))./Constant_A(4))); 
     
elseif h_gd(ii) >  120 && h_gd(ii) <= 1000 %Section 5: Power Model 
    Rho = ((4.50847623E7).*((h_gd(ii)).^(-7.44605852))).*((1000)^3);   
     
    %Note: 'Power Model' formulated with altitude in units of (km) and  
    %      the output density in (kg/m^3) 
     
else %if h_gd > 1000; 
    Rho = 0; 
end 
  
mm = mm + 1; 
Rho_Vec(mm,1) = Rho; 
 
end 
  
end 
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EntryEOM_Complete.m 
 
function Y = EntryEOM_Complete(r,V,lon,lat,fpa,heading,bank,... 
                               OmegaRot,mass,S,Cd,Cl,Thrust,epsT,zetaT) 
  
global RE FlatE Gravity_Choice  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Variable/Function Simplification 
%Latitude (lat) and longitude (lon) 
clon   = cos(lon);     slon   = sin(lon); 
clat   = cos(lat);     slat   = sin(lat);     tlat = tan(lat); 
  
%Flight-path (fpa), heading (psi), and bank (sigma) angles  
cfpa   = cos(fpa);     sfpa   = sin(fpa);     tfpa = tan(fpa); 
cpsi   = cos(heading); spsi   = sin(heading); 
cbank  = cos(bank);    sbank  = sin(bank); 
  
%Thrust vector angles  
cepsT  = cos(epsT);    sepsT  = sin(epsT); 
czetaT = cos(zetaT);   szetaT = sin(zetaT); 
  
%Thrust components of Force Equations 
Thrust_V   = (Thrust/mass)*(czetaT*cepsT); 
Thrust_fpa = (Thrust/mass)*(szetaT*sbank + czetaT*sepsT*cbank); 
Thrust_psi = Thrust*(czetaT*sepsT*sbank - szetaT*cbank); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planetary Model  
[GravModel] = GravityModel(r,lat); 
g         = GravModel.g;     %Spherical gravity model (km/s^2) 
g_r       = GravModel.J2g_r; %Radial component of gravity (km/s^2) 
g_p       = GravModel.J2g_p; %Transverse component of gravity (km/s^2) 
  
if     Gravity_Choice == 1   %Spherical gravity model 
    h_gd  = r - RE; 
elseif Gravity_Choice == 2   %J2 gravity model 
    [h_gd, lat_gd] = Geocentric2Geodetic(r,lat,RE,FlatE); 
end 
  
%Atmospheric density (kg/km^3) 
[Rho]     = AtmosModel(h_gd,2); 
  
%Planetary rotation parameter 
OmegaRot2 = OmegaRot^2;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Aerodynamics 
D = 0.5*Rho*Cd*S*(V^2); %Drag force (kg.km/s^2) 
L = 0.5*Rho*Cl*S*(V^2); %Lift force (kg.km/s^2) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Kinematic Equations (Hicks, 42) 
%Radial position (r) differential equation  
r_dot   = V*sfpa; 
  
%Longitude (lon) differential equation  
lon_dot = ((V*cfpa*cpsi)/(r*clat)); 
  
%Latitude (lat) differential equation  
lat_dot = (1/r)*(V*cfpa*spsi); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Force Equations 
if     Gravity_Choice == 1 %Spherical gravity model (Hicks, 52) 
    %Velocity (V) differential equation  
    V_dot   = Thrust_V - (D/mass) - (g*sfpa) + ... 
              (r*OmegaRot2*clat*(clat*sfpa - slat*spsi*cfpa)); 
     
    %Flight-path angle (fpa) differential equation    
    fpa_dot = (1/V)*(Thrust_fpa + ((L/mass)*cbank) - (g*cfpa) + ... 
                    ((V^2)/r)*cfpa + (2*V*OmegaRot*clat*cpsi) + ... 
                    (r*OmegaRot2*clat*(clat*cfpa + slat*spsi*sfpa)));        
           
    %Heading angle (psi) differential equation  
    psi_dot = (1/V)*(((Thrust_psi + L*sbank)/(mass*cfpa)) -    ... 
                    ((V^2)/r)*(cfpa*cpsi*tlat) +               ... 
                    ((2*V*OmegaRot)*(spsi*clat*tfpa - slat)) - ... 
                    ((r*OmegaRot2)/cfpa)*(slat*clat*cpsi)); 
     
elseif Gravity_Choice == 2 %J2 gravity model (Hicks, 413) 
    %Velocity (V) differential equation  
    V_dot   = Thrust_V - (D/mass) - (g_r*sfpa) - (g_p*sfpa*cfpa) + ... 
              (r*OmegaRot2*clat*(clat*sfpa - slat*spsi*cfpa)); 
     
    %Flight-path angle (fpa) differential equation 
    fpa_dot = (1/V)*(Thrust_fpa + ((L/mass)*cbank) -            ... 
                    (g_r*cfpa) + (g_p*(sfpa^2)) +               ... 
                    ((V^2)/r)*cfpa + (2*V*OmegaRot*clat*cpsi) + ... 
                    (r*OmegaRot2*clat*(clat*cfpa + slat*spsi*sfpa)));    
     
    %Heading angle (psi) differential equation 
    psi_dot = (1/V)*(((Thrust_psi + L*sbank)/(mass*cfpa)) -        ... 
                    (cpsi/cfpa)*g_p - ((V^2)/r)*(cfpa*cpsi*tlat) + ... 
                    (2*V*OmegaRot)*(spsi*clat*tfpa - slat) -       ... 
                    ((r*OmegaRot2)/(cfpa))*(slat*clat*cpsi));    
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Differential Equation Vector 
Y = [r_dot; V_dot; lon_dot; lat_dot; fpa_dot; psi_dot]; 
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EntryEOM_Simple.m 
 
function Y = EntryEOM_Simple(r,V,lon,lat,fpa,heading,bank,mass,S,Cd,Cl) 
 global RE BetaH Rho0 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Variable Simplification 
%Initial latitude (lat) and longitude (lon) 
clon  = cos(lon);     slon  = sin(lon); 
clat  = cos(lat);     slat  = sin(lat);  tlat  = tan(lat); 
  
%Initial flight-path (fpa), heading (psi), and bank (sigma) angles  
cfpa  = cos(fpa);     sfpa  = sin(fpa);  cpsi  = cos(heading); 
spsi  = sin(heading); cbank = cos(bank); sbank = sin(bank); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planetary Model  
[GravModel] = GravityModel(r,lat); 
g       = GravModel.g;     %Spherical gravity model (km/s^2) 
h       = r - RE;          %Altitude (km) 
[rho_r] = AtmosModel(h,2); %Atmospheric density (kg/km^3) 
 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Aerodynamics 
D = 0.5*rho_r*Cd*S*(V^2); %Drag force (kg.km/s^2) 
L = 0.5*rho_r*Cl*S*(V^2); %Lift force (kg.km/s^2) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Kinematic Equations (Hicks, 42) 
%Radial position (r) differential equation  
r_dot   = V*sfpa; 
  
%Longitude (lon) differential equation  
lon_dot = ((V*cfpa*cpsi)/(r*clat)); 
 
%Latitude (lat) differential equation  
lat_dot = (1/r)*(V*cfpa*spsi); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Force Equations (Hicks, 52) 
%Velocity (V) differential equation  
V_dot   = -(D/mass) - (g*sfpa); 
  
%Flight-path angle (fpa) differential equation  
fpa_dot = (1/V)*((L/mass)*cbank - (g*cfpa) + ((V^2)/r)*cfpa); 
           
%Heading angle (psi) differential equation  
psi_dot = (1/V)*(((L*sbank)/(mass*cfpa)) - ((V^2)/r)*(cfpa*cpsi*tlat)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Differential Equation Vector 
Y = [r_dot; V_dot; lon_dot; lat_dot; fpa_dot; psi_dot]; 
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EntryEOM_Euler.m 
 
function [T_total,traj_param] = EntryEOM_Euler(r,V,lon,lat,fpa,heading,... 
                                               bank,deltaT,Time_max) 
  
global g0 RE OmegaE BetaH Rho0 Vehicle_Choice Omega_Choice BankAngle_Choice   
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Maneuver Profile Angles (rad) 
lon(1)     = lon;     %Longitude 
lat(1)     = lat;     %Latitude 
fpa(1)     = fpa;     %Flight-path angle 
heading(1) = heading; %Heading angle 
bank(1)    = bank;    %Bank angle 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planetary Model  
[GravModel] = GravityModel(r,lat); 
g     = GravModel.g;               %Spherical gravity model (km/s^2) 
rho_r = Rho0*exp(-BetaH*(r - RE)); %Atmospheric density (kg/km^3) 
  
if     Omega_Choice == 1 
    OmegaRot = OmegaE; %Planetary rotation "activated" 
elseif Omega_Choice == 2 
    OmegaRot = 0;      %Planetary rotation "de-activated" 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Variable/Function Simplification 
OmegaRot2 = (OmegaRot)^2; %Planetary rotation parameter 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
[Vehicle] = VehicleSpecs(Vehicle_Choice); 
  
mass = Vehicle.mass;         %Mass (kg) 
S_m2 = Vehicle.S_m2;         %Planform area (m^2) 
S    = S_m2/(1000^2);        %Planform area (km^2) 
Cd   = Vehicle.Cd;           %Drag coefficient 
Cl   = Vehicle.Cl;           %Lift coefficient 
  
D    = 0.5*rho_r*Cd*S*(V^2); %Drag force (kg.km/s^2) 
L    = 0.5*rho_r*Cl*S*(V^2); %Lift force (kg.km/s^2) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Numerical Integration of Equations of Motion 
r(1)   = r;   V(1)     = V;     %Initial conditions for vehicle dynamics 
g(1)   = g;   rho_r(1) = rho_r; %Initial conditions for entry environment 
D(1)   = D;   L(1)     = L;     %Initial conditions for vehicle aerodynamics       
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%Initial vehicle deceleration 
a_decel_v(1)    = (D(1)/mass) + g(1)*sin(fpa(1));  
a_decel_L(1)    = (-L(1)/mass) - (((V(1)^2)/r(1)) - g(1))*cos(fpa(1));  
a_decel_mag(1)  = sqrt((a_decel_v(1))^2 + (a_decel_L(1))^2); 
ag_decel_mag(1) = a_decel_mag(1)/g(1); 
  
%Initial vehicle stagnation and wall heat flux 
qdot_s(1)   = sqrt((rho_r(1)*S*Cd)/(2*mass*BetaH))* ... 
                  ((V(1)^2)/(2*g(1)*r(1)))^(3/2); 
qdot_w(1)   = ((rho_r(1)*S*Cd)/(2*mass*BetaH))*     ... 
              ((V(1)^2)/(2*g(1)*r(1)))^(3/2); 
  
T_total(1)  = 0; %Initial condition for total mission time 
ctr         = 1; %Iteration counter initiation 
  
while (T_total <= Time_max)     
    %% Kinematic Equations   
    %Radial position (r) differential equation 
    r_dot   = V(ctr)*sin(fpa(ctr));  
     
    %Longitude (lon) differential equation 
    lon_dot = ((V(ctr)*cos(fpa(ctr))*cos(heading(ctr)))/   ... 
               (r(ctr)*cos(lat(ctr)))); 
     
    %Latitude (lat) differential equation 
    lat_dot = (V(ctr)*cos(fpa(ctr))*sin(heading(ctr)))/r(ctr); 
     
    %% Force Equations 
    %Velocity (V) differential equation 
    V_dot      = -(D(ctr)/mass) - (g(ctr)*sin(fpa(ctr))) + ... 
                  (r(ctr)*OmegaRot2*cos(lat(ctr))*         ... 
                  (cos(lat(ctr))*sin(fpa(ctr)) -           ... 
                   sin(lat(ctr))*sin(heading(ctr))*cos(fpa(ctr)))); 
              
    %Flight-path angle (gamma) differential equation 
    Vgamma_dot = ((L(ctr)*cos(bank(ctr)))/mass)-(g(ctr)*cos(fpa(ctr))) +  ... 
                 ((V(ctr)^2)/r(ctr))*cos(fpa(ctr)) +                      ... 
                 (2*V(ctr)*OmegaRot*cos(lat(ctr))*cos(heading(ctr))) +    ... 
                 (r(ctr)*OmegaRot2*cos(lat(ctr))*                         ... 
                 (cos(lat(ctr))*cos(fpa(ctr)) +                           ... 
                  sin(lat(ctr))*sin(heading(ctr))*sin(fpa(ctr)))); 
     
    %Heading angle (psi) differential equation 
    Vpsi_dot   = ((L(ctr)*sin(bank(ctr)))/(mass*cos(fpa(ctr)))) -         ... 
                 (((V(ctr)^2)/r(ctr))*cos(fpa(ctr))*                      ... 
                 cos(heading(ctr))*tan(lat(ctr))) + ((2*V(ctr)*OmegaRot)* ... 
                 (sin(heading(ctr))*cos(lat(ctr))*tan(fpa(ctr)) -         ... 
                 sin(lat(ctr)))) - (((r(ctr)*OmegaRot2)/(cos(fpa(ctr))))* ... 
                 (sin(lat(ctr))*cos(lat(ctr))*cos(heading(ctr))));                  
     
    %% Parameter Updates 
    %Updates to Vehicle Dynamics 
    r(ctr+1)   = r(ctr) + r_dot*deltaT;     %Radial position 
    V(ctr+1)   = V(ctr) + V_dot*deltaT;     %Velocity 
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    %Updates to Maneuver Profile Angles 
    lon(ctr+1)     = lon(ctr) + lon_dot*deltaT;             %Longitude 
    lat(ctr+1)     = lat(ctr) + lat_dot*deltaT;             %Latitude 
    fpa(ctr+1)     = fpa(ctr) + (Vgamma_dot/V(ctr))*deltaT; %Flight-path angle 
    heading(ctr+1) = heading(ctr)+(Vpsi_dot/V(ctr))*deltaT; %Heading angle 
     
    %Updates to Simulation Environment 
    g(ctr+1)       = g0*((RE/r(ctr+1))^2);               %Grav. acceleration 
    rho_r(ctr+1)   = Rho0*exp(-BetaH*(r(ctr+1) - RE));   %Density 
    D(ctr+1)       = 0.5*rho_r(ctr+1)*Cd*S*(V(ctr+1)^2); %Drag force  
    L(ctr+1)       = 0.5*rho_r(ctr+1)*Cl*S*(V(ctr+1)^2); %Lift force     
    T_total(ctr+1) = T_total(ctr) + deltaT;              %Trajectory time 
     
    if     BankAngle_Choice == 1 
        bank(ctr+1)    = bank(ctr); 
         
    elseif BankAngle_Choice == 2 
        load Apollo_10_BankAngle; %Loads bank angle profile  
        BankAngle_time = Apollo_10_BankAngle(:,1); 
        BankAngle_rad  = deg2rad(Apollo_10_BankAngle(:,2));  
        bank(ctr+1) = interp1(BankAngle_time,BankAngle_rad,T_total(ctr+1)); 
    end 
     
    ctr = ctr + 1; %Update to iteration counter 
end 
  
%Trajectory solution vectors 
T_total    = T_total'; 
traj_param = [r' V' lon' lat' fpa' heading' bank']; 
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GravityModel.m 
 
function [GravModel] = GravityModel(r,phi_gc) 
  
global MU g0 RE J2 J3 J4  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
lat  = phi_gc;                    %Geocentric latitude (rad) 
clat = cos(lat); slat = sin(lat); %Variable simplification 
RE_r = RE./r;                     %Ratio of planet radius/radius of interest 
  
%Legendre polynomials 
P0 = 1; 
P1 = slat; 
P2 = (1/2).*(3. *(slat.^2) - 1); 
P3 = (1/2).*(5. *(slat.^3) - 3.*slat); 
P4 = (1/8).*(35.*(slat.^4) - 30.*(slat.^2) + 3); 
P5 = (1/8).*(63.*(slat.^5) - 70.*(slat.^3) + 15.*slat); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Spherical (Newtonian) Gravity Model (km/s^2) 
GravModel.g     = g0.*((RE./r).^2); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% J2-Gravity Model (km/s^2) 
%Reverse radial direction along unit vector toward planetary center 
GravModel.J2g_r = (MU./r.^2).*(1 - 3.*J2.*(RE_r.^2).*P2);  
  
%Reverse transverse direction along unit vector toward planetary north 
GravModel.J2g_p = ((3.*MU)./r.^2).*(RE_r.^2).*clat.*slat.*J2;     
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% J4-Gravity Model (km/s^2) 
%Reverse radial direction along unit vector toward planetary center 
GravModel.J4g_r = (MU./r.^2).*(1 - 3.*J2.*(RE_r.^2).*P2 - ... 
                               4.*J3.*(RE_r.^3).*P3 -     ... 
                               5.*J4.*(RE_r.^4).*P4);                    
                 
%Reverse transverse direction along unit vector toward planetary north 
GravModel.J4g_p = ((3.*MU)./r.^2).*(RE_r.^2).*clat.*slat.*               ... 
                  (J2 + (1/2).*J3.*(RE_r).*(1./slat).*(5.*(slat.^2)-1) + ... 
                  (5/6).*J4.*(RE_r.^2).*(7.*(slat.^2)-1));  
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VehicleSpecs.m 
 
function [Vehicle] = VehicleSpecs(Vehicle_Choice) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 'Vehicle_Choice' Options 
%1 = Notional Transatmospheric Vehicle (TAV) 
%2 = ESPA Secondary Payload Notional Satellite 
%3 = Primary Payload Notional Satellite 
%4 = Apollo 10 Command Module Capsule 
%5 = Apollo 10 CM Capsule w/ Alternative Cl/Cd 
%6 = Notional Satellite 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Spacecraft Data 
L2D = linspace(0.8,2.0,25); %Lift-to-drag ratio vector 
 
%L2D = [0.80,0.85,0.90,0.95,1.00, 
%       1.05,1.10,1.15,1.20,1.25, 
%       1.30,1.35,1.40,1.45,1.50, 
%       1.55,1.60,1.65,1.70,1.75, 
%       1.80,1.85,1.90,1.95,2.00] 
  
if     Vehicle_Choice == 1 %Notional Trans-Atmospheric Vehicle (TAV) 
    Vehicle.mass = 5000;               %Wet mass (kg) 
    Vehicle.S_m2 = 18;                 %Planform area (m^2) 
    Vehicle.Cd   = 0.5;                %Drag coefficient 
    Vehicle.Cl   = 3.0;                %Lift coefficient 
    Vehicle.Rn   = 0.3048;             %Nose radius (m) 
     
    %Notional Trans-Atmospheric Vehicle (TAV) 
%     Vehicle.mass = 4000;               %Wet mass (kg) 
%     Vehicle.S_m2 = 10;                 %Planform area (m^2) 
%     Vehicle.Cd   = 1.0;                %Drag coefficient 
%     Vehicle.Cl   = 6.6;                %Lift coefficient     
     
    %X-37B Lifting Entry Vehicle 
%     Vehicle.mass = 4989.5;             %Wet mass (kg) 
%     Vehicle.S_m2 = 18.63;              %Planform area (m^2) 
%     Vehicle.Cd   = 0.5;                %Drag coefficient 
%     Vehicle.Cl   = L2D(5).*Vehicle.Cd; %Lift coefficient 
         
elseif Vehicle_Choice == 2 %ESPA SPL Notional Satellite 
    Vehicle.mass = 200;                %Wet mass (kg) 
    Vehicle.S_m2 = 18.63;              %Planform area (m^2) 
    Vehicle.Cd   = 2.2;                %Drag coefficient 
    Vehicle.Cl   = L2D(5).*Vehicle.Cd; %Lift coefficient 
     
elseif Vehicle_Choice == 3 %Primary Payload Notional Satellite 
    Vehicle.mass = 1000;               %Wet mass (kg) 
    Vehicle.S_m2 = 18.63;              %Planform area (m^2) 
    Vehicle.Cd   = 2.2;                %Drag coefficient 
    Vehicle.Cl   = L2D(5).*Vehicle.Cd; %Lift coefficient 
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elseif Vehicle_Choice == 4 %Apollo 10 Command Module (CM) Capsule 
    Vehicle.mass = 5498.22;            %Mass (kg) 
    Vehicle.S_m2 = 12.017;             %Planform area (m^2) 
    Vehicle.Cd   = 1.2569;             %Drag coefficient 
    Vehicle.Cl   = 0.4082;            %Lift coefficient 
     
elseif Vehicle_Choice == 5 %Apollo 10 CM Capsule w/ Alternative Cl/Cd 
    Vehicle.mass = 5498.22;            %Mass (kg) 
    Vehicle.S_m2 = 12.017;             %Planform area (m^2) 
    Vehicle.Cd   = 1.255;              %Drag coefficient 
    Vehicle.Cl   = 0.4225;             %Lift coefficient 
     
elseif Vehicle_Choice == 6 %Notional Satellite 
    Vehicle.mass = 2000;               %Mass (kg) 
    Vehicle.S_m2 = 10;                 %Planform area (m^2) 
    Vehicle.Cd   = 3.0;                %Drag coefficient 
    Vehicle.Cl   = 0;                  %Lift coefficient 
     
elseif Vehicle_Choice == 9 %TAV from DOE 
    Vehicle.mass = 2000;               %Mass (kg) 
    Vehicle.S_m2 = 18.5;               %Planform area (m^2) 
    Vehicle.Cd   = 0.5;                %Drag coefficient 
    Vehicle.Cl   = 3.0;                %Lift coefficient 
end 
  
%Engine Parameters 
%Max Thrust Options: 14679 N (Impulsive thrusting; H2O2/JP-8;  X-37B) 
%                    13345 N (Impulsive thrusting; H2O2/JP-10; X-37B) 
%                     9901 N (Impulsive thrusting; H2O2;       X-37B) 
%                   300E-3 N (Continuous thrusting; notional satellite) 
%                   500E-3 N (Continuous thrusting; notional satellite) 
  
Vehicle.T_Max    = 0 * (1/1000); %Maximum thrust, (N)->(kg.km/s^2) 
Vehicle.Throttle = 100;          %Throttle (percentage) 
  
%Magnitude of thrust (kg.km/s^2) 
Vehicle.Thrust   = Vehicle.T_Max * (Vehicle.Throttle/100);  
  
%Angle describing projection of thrust vector on L-V plane (rad) 
Vehicle.epsT     = deg2rad(0.0);  
  
%Angle describing projection of thrust vector on R-V plane (rad) 
Vehicle.zetaT    = deg2rad(0.0);  
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WGS84Constants.m 
 
function WGS84Constants 
  
global MU g0 RE OmegaE J2 J3 J4 J6 FlatE EccE BetaH Rho0 BR StefBoltz Boltz 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Earth Planetary Constants 
MU     = 398600.442;   %Gravitational parameter (km^3/s^2) 
RE     = 6378.137;     %Planetary radius (km) 
g0     = MU/(RE^2);    %Sea-level gravitational acceleration (km/s^2) 
OmegaE = 7.2921158e-5; %Planetary rotational velocity (rad/s) 
  
%Jeffery's Constants 
J2     =  0.0010826269; 
J3     = -0.0000025323; 
J4     = -0.0000016204; 
J6     = -0.0000021; 
  
%Planetary Eccentricity Calculation 
FlatE  = 1.0/298.257;         %Flattening parameter (f)      
EccE2  = (2.0 - FlatE)*FlatE; %Square of planetary eccentricity 
EccE   = sqrt(EccE2);         %Planetary eccentricity 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Earth Atmospheric Constants 
BetaH  = 0.14;             %Atmospheric scale height (km^-1) 
Rho0   = 1.225 * (1000)^3; %Atmospheric density @ planetary surface (kg/km^3) 
BR     = 900;              %Average parameter for universal formulation 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Physical Constants 
StefBoltz = 5.67E-8;       %Stefan-Boltzmann constant (W.m^-2.K^-4) 
Boltz     = 1.380658E-23;  %Boltzmann constant (J/K) 
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Appendix F. MATLAB® Code for Maneuver Simulations 
 
 
 

Table F.1. m-File Classification for Maneuver Simulations 
 

Filename File Type Description 

BankManeuvers Script Skip entry maneuvers 
BankManeuvers_Function Function Skip entry maneuver function 
BankManeuvers_fxnDOE Function Skip entry for DOE  

BankManeuvers_fxnDOE_Hohmann Function Skip entry for DOE with Hohmann 
BankManeuvers_MultiAOT Function Skip entry and descent-boost 

BiElliptic Function Bi-elliptic transfer 
BiElliptic_VelInput Function Bi-elliptic transfer, 𝑉 specified 

DescentBoost_Molniya Script Descent-boost Molniya injection 
DescentBoost_ReCirc Script Descent-boost orbit injection 

Hohmann_Analysis_Molniya Script Hohmann for Molniya injection 
Hohmann_Combined Function Combined Hohmann transfer 

Hohmann_Combined_dI Function Combined Hohmann, ∆𝑖 specified 
Hohmann_Combined_VelInput Function Combined Hohmann, 𝑉 specified 

Hohmann_Geocentric Function Hohmann, geocentric coordinates 
Hohmann_Geodetic Function Hohmann, geodetic coordinates 

Hohmann_SkipReCirc Function Hohmann at skip apogee 
Hohmann_VelInput Function Hohmann, 𝑉 specified 
PlanarManeuvers Function Planar phasing maneuvers 
RefOrb_Targeting Script Simple plane change maneuvers 

Trajectory_3DPlotting Script Three-dimensional plotting 

 
 
 

BankManeuvers.m 
 
clear all; clc; close all; 
 
global MU RE   
global Lat_Denver   Lon_Denver   Lat_Gibraltar Lon_Gibraltar 
global Lat_Glasgow  Lon_Glasgow  Lat_Grozny    Lon_Grozny 
global Lat_Moscow   Lon_Moscow   Lat_Ponti     Lon_Ponti    
global Lat_Pyong    Lon_Pyong    Lat_Reyk      Lon_Reyk    
global Lat_Tehran   Lon_Tehran   Lat_Tokyo     Lon_Tokyo 
global Lat_Brasil   Lon_Brasil   Lat_Buenos    Lon_Buenos 
global Lat_Canberra Lon_Canberra Lat_Cape      Lon_Cape 
  
WGS84Constants; %Loads global constants from external m-file 
GroundTargets;  %Loads ground target geographical coordinates (deg) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Target Selection and Targeting Loop Initialization 
LatJump_Change = 1; 
LonThreshold   = 35; 
LatThreshold   = 35; 
Target_Choice  = 2; 
Vehicle_Choice = 9; 
Map_Choice     = 1; 
  
if     Target_Choice == 1  %Denver, United States 
    Lat_Target = Lat_Denver;    Lon_Target = Lon_Denver;    dLat = 3; 
elseif Target_Choice == 2  %Gibraltar, United Kingdom 
    Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5; 
elseif Target_Choice == 3  %Glasgow, Scotland 
    Lat_Target = Lat_Glasgow;   Lon_Target = Lon_Glasgow;   dLat = 3; 
elseif Target_Choice == 4  %Grozny, Chechnya 
    Lat_Target = Lat_Grozny;    Lon_Target = Lon_Grozny;    dLat = 3; 
elseif Target_Choice == 5  %Moscow, Russia 
    Lat_Target = Lat_Moscow;    Lon_Target = Lon_Moscow;    dLat = 3; 
elseif Target_Choice == 6  %Pontianak, Indonesia 
    Lat_Target = Lat_Ponti;     Lon_Target = Lon_Ponti;     dLat = 7;  
elseif Target_Choice == 7  %Pyongyang, North Korea 
    Lat_Target = Lat_Pyong;     Lon_Target = Lon_Pyong;     dLat = 5; 
elseif Target_Choice == 8  %Reykjavik, Iceland 
    Lat_Target = Lat_Reyk;      Lon_Target = Lon_Reyk;      dLat = 3;  
elseif Target_Choice == 9  %Tehran, Iran 
    Lat_Target = Lat_Tehran;    Lon_Target = Lon_Tehran;    dLat = 5; 
elseif Target_Choice == 10 %Tokyo, Japan 
    Lat_Target = Lat_Tokyo;     Lon_Target = Lon_Tokyo;     dLat = 4; 
elseif Target_Choice == 11 %Brasilia, Brazil 
    Lat_Target = Lat_Brasil;    Lon_Target = Lon_Brasil;    dLat = 4; 
elseif Target_Choice == 12 %Buenos Aires, Argentina 
    Lat_Target = Lat_Buenos;    Lon_Target = Lon_Buenos;    dLat = 4; 
elseif Target_Choice == 13 %Canberra, Australia 
    Lat_Target = Lat_Canberra;  Lon_Target = Lon_Canberra;  dLat = 4; 
elseif Target_Choice == 14 %Cape Town, South Africa 
    Lat_Target = Lat_Cape;      Lon_Target = Lon_Cape;      dLat = 4; 
end 
  
h_Perig0 = 87; 
h_Perig  = h_Perig0; 
% MissDistance = 9999; 
% WhileCount   = 0; 
% while MissDistance > 1.0 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
if Vehicle_Choice == 9    %VEHICLE SELECTION OVERRIDE 
    mass = 2000;          %Mass (kg) 
    S_m2 = 18.5;          %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = 0.5;           %Drag coefficient 
    Cl   = 3.0;           %Lift coefficient 
else 
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    [Vehicle] = VehicleSpecs(Vehicle_Choice); 
    mass = Vehicle.mass;  %Mass (kg) 
    S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Vehicle.Cd;    %Drag coefficient 
    Cl   = Vehicle.Cl;    %Lift coefficient 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Reference Orbit Conditions 
Time_Max  = 1.00;   %Maximum simulation time (days) 
ecc_Ref   = 0;      %Orbit eccentricity 
h_Apog    = 1000;   %Apogee altitude (km) 
lon_Ref   = 0;      %Initial longitude (deg) 
lat_Ref   = 0;      %Initial geodetic latitude (deg) 
fpa_Ref   = 0;      %Flight-path angle (deg) 
PSI_Ref   = 37.835; %Heading angle (deg) 
bank_Ref  = 0;      %Reference orbit bank angle (deg) 
bank_Skip = -90;    %Skip maneuver bank angle (deg) 
  
%Converts and overwrites initial angle variables 
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref); 
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);  
  
%Reference orbit parameters 
r_Apog    = h_Apog + RE;            %Apogee radial position (km) 
r_Perig   = h_Perig + RE;           %Perigee radial position (km) 
SMA_Ref   = 0.5*(r_Apog + r_Apog);  %Reference orbit semi-major axis (km) 
SMA_Skip  = 0.5*(r_Apog + r_Perig); %Skip orbit semi-major axis (km) 
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Apog,lat_Ref, ... 
                                 fpa_Ref,PSI_Ref,bank_Ref); 
                               
%Apogee velocity for non-rotating frame (km/s) 
V_Apog = sqrt((2*MU*r_Perig)/(r_Apog*(r_Apog + r_Perig))); 
  
%Conversion of time units from days to seconds 
Time_Max = Time_Max*(24)*(60)*(60); 
                 
SMA_Target0     = SMA_Ref;    %Target semi-major axis (km) 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check0(1,1)   = V_Rel;      %Initial guess for velocity (km/s) 
PSI_Check0(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                          1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(1,1), ... 
                          lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref); 
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[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1)); 
                        
%Semi-major axis (km) 
SMA_Check0(1,1)  = 0.5*(r_Apog + r_Check0(1,1));   
  
%Iteration error (s) 
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ... 
                    ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1))); 
                
%Updated velocity (km/s) 
V_Check0(2,1)    = (V_Check0(1,1) - V_Decrement) - ... 
                   ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check0(2,1)  = PSI_Ref + ... 
               asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1)); 
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ... 
          abs(PSI_Check0(ii,1)  - PSI_Check0(ii-1,1)) > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ... 
                        1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(ii,1),  ... 
                        lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref); 
         
        [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check0(ii,1)   = 0.5*(r_Apog + r_Check0(ii,1));  
         
        %Iteration error (sec) 
        GuessError0(ii,1)  = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ... 
                              (V_Check0(ii,1) - V_Check0(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check0(ii+1,1)   = V_Check0(ii,1) - ... 
                      ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check0(ii+1,1) = PSI_Ref + ... 
            asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1))); 
                 
                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1)); 
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        IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ... 
                                                   PSI_Check0(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end                         
  
V_Rel0   = V_Check0(ii);   %Velocity (km/s) 
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad) 
  
%Trajectory simulation for reference orbit 
[RefOrb_t, RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ... 
                                1,1,1,1,1,Time_Max,r_Apog,V_Rel0, ... 
                                lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref); 
                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Descent Velocity  
IterMax        = 20;         %Maximum number of iterations  
SMA0           = SMA_Ref;    %Initial guess for semi-major axis (km) 
SMA_Target     = SMA_Skip;   %Target semi-major axis (km) 
V_Decrement    = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check(1,1)   = .96*V_Apog; %Initial guess for descent velocity (km/s) 
% Set 'V_Check' coeff. to 0.98 for over-flights; 0.96 for max. inclination  
PSI_Check(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[t_vec, traj_states] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ... 
                            0.5*RefPeriod,r_Apog,V_Check(1,1),lon_Ref, ... 
                            lat_Ref,fpa_Ref,PSI_Check(1,1),bank_Skip); 
%Perigee radial position (km)          
[r_Check(1,1),Perig_Index] = min(traj_states(:,1));  
%Semi-major axis (km) 
SMA_Check(1,1)  = 0.5*(r_Apog + r_Check(1,1));   
  
%Iteration error (s) 
GuessError(1,1) = -((SMA_Check(1,1) - SMA0)/ ... 
                   ((V_Check(1,1) - V_Decrement) - V_Check(1,1))); 
                
%Updated velocity (km/s) 
V_Check(2,1)    = (V_Check(1,1) - V_Decrement) - ... 
                  ((SMA_Target - SMA_Check(1,1))/GuessError(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check(2,1) = PSI_Ref + ... 
                   asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA(1,1) = abs(SMA_Target - SMA_Check(1,1)); 
IterativeDiff_PSI(1,1) = abs(PSI_Check(2,1) - PSI_Check(1,1)); 
IterCount = 1; %Initialization of iteration counter for Secant loop 
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%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target - SMA_Check(ii-1,1))      > 1E-6 && ... 
          abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)) > 1E-8 && ... 
          IterCount < IterMax 
       
 
        %Trajectory simulation [0:t:HalfPeriod] 
        [t_vec, traj_states] = Maneuver_MainFunction(Vehicle_Choice,  ... 
                               1,1,1,1,1,0.5*RefPeriod,r_Apog,        ... 
                               V_Check(ii,1),lon_Ref,lat_Ref,fpa_Ref, ... 
                               PSI_Check(ii,1),bank_Skip); 
         
        %Current iteration perigee radial position (km) 
        [r_Check(ii,1),Perig_Index] = min(traj_states(:,1));  
        %Current iteration semi-major axis (km) 
        SMA_Check(ii,1)  = 0.5*(r_Apog + r_Check(ii,1));  
        %Iteration error (sec) 
        GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ... 
                            (V_Check(ii,1) - V_Check(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check(ii+1,1)  = V_Check(ii,1) - ... 
                         ((SMA_Target - SMA_Check(ii,1))/GuessError(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check(ii+1,1) = PSI_Ref + ... 
                asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA(ii,1) = abs(SMA_Target - SMA_Check(ii,1)); 
        IterativeDiff_PSI(ii,1) = abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end 
  
V_Maneuver  = V_Check(ii,1);            %Descent velocity for target SMA 
dV_Maneuver = abs(V_Maneuver - V_Rel);  %Maneuver delta-V (km/s) 
PSI_Rel     = rad2deg(PSI_Check(ii,1)); %Relative heading angle (deg) 
  
  
 
%Trajectory simulation for skip maneuver 
[Skip_t, Skip_States] = SingleSkip_Maneuver(Vehicle_Choice,1,1,1,1,1, ... 
                        RefPeriod,r_Apog,V_Maneuver,lon_Ref,          ... 
                        lat_Ref,fpa_Ref,deg2rad(PSI_Rel),bank_Skip); 
  
Perigee_Altitude = min(Skip_States(:,1)) - RE                     
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Propagation of Re-Circularized Orbit 
Time_Max  = 8000;               %Maximum simulation time (s) 
ecc       = 0;                  %Orbit eccentricity 
r_Prop    = Skip_States(end,1); %Orbit radial position (km) 
h_Prop    = r_Prop - RE;        %Orbit altitude (km) 
lon_Prop  = Skip_States(end,3); %Initial longitude (rad) 
lat_Prop  = Skip_States(end,4); %Initial geodetic latitude (rad) 
fpa_Prop  = 0;                  %Flight-path angle (rad) 
PSI_Prop  = -(min(Skip_States(:,4))); %Heading angle (rad) 
bank_Prop = bank_Skip;          %Bank angle (deg) 
  
%Re-circularized orbit parameters 
SMA_Prop    = 0.5*(r_Prop + r_Prop);        %Semi-major axis (km) 
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ... 
                                         fpa_Prop,PSI_Prop,bank_Prop); 
  
SMA_TargetProp  = SMA_Prop; 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_CheckP(1,1)   = V_RelProp;  %Initial guess for velocity (km/s) 
PSI_CheckP(1,1) = PSI_RelProp;   %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                                      1,1,1,1,1,0.5*Period_Prop,r_Prop, ... 
                                      V_CheckP(1,1),lon_Prop,lat_Prop,  ... 
                                      fpa_Prop,PSI_CheckP(1,1),bank_Prop); 
  
[r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1)); 
                        
%Semi-major axis (km) 
SMA_CheckP(1,1)  = 0.5*(r_Prop + r_CheckP(1,1));   
  
%Iteration error (s) 
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ... 
                    ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1))); 
                
%Updated velocity (km/s) 
V_CheckP(2,1)    = (V_CheckP(1,1) - V_Decrement) - ... 
                  ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1)); 
  
%Updated heading angle (rad) 
PSI_CheckP(2,1)  = PSI_Prop + ... 
                 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp  - SMA_CheckP(1,1)); 
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1)); 
IterCount = 1; %Initializes iteration counter for Secant loop 
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%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_TargetProp   - SMA_CheckP(ii-1,1)) > 1E-10 && ... 
          abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ... 
          IterCount < IterMax 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ... 
                       1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1), ... 
                       lon_Prop,lat_Prop,fpa_Prop,                      ... 
                       PSI_CheckP(ii,1),bank_Prop); 
         
        [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_CheckP(ii,1)   = 0.5*(r_Prop + r_CheckP(ii,1));  
         
        %Iteration error (sec) 
        GuessErrorP(ii,1)  = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ... 
                               (V_CheckP(ii,1) - V_CheckP(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_CheckP(ii+1,1)   = V_CheckP(ii,1) - ... 
                   ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_CheckP(ii+1,1) = PSI_Prop + ... 
              asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp-SMA_CheckP(ii,1)); 
        IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ... 

  PSI_CheckP(ii-1,1)); 
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end  
  
%Trajectory simulation for re-circularized orbit 
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice,   ... 

1,1,1,1,1,Time_Max,r_Prop,V_CheckP(ii), ...                              
lon_Prop,lat_Prop,fpa_Prop,             ... 
PSI_CheckP(ii),bank_Prop); 

                       
%Re-defined propagated orbit states                                        
PropOrb_t       = [Skip_t ; Skip_t(end) + Orbit_t(2:end)]; 
PropOrb_States  = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)]; 
PropOrb_h       = PropOrb_States(:,1) - RE;     %Altitude (km) 
PropOrb_V       = PropOrb_States(:,2);          %Velocity (km/s) 
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ... 
                       + 180),360) - 180;       %Longitude (rad) 
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Propagated Trajectory Crossings of Target Coordinates 
% %Longitude crossings 
% mm   = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(PropOrb_Lon_deg) 
%     mm = mm + 1; 
%     if abs(PropOrb_Lon_deg(ii) - Lon_Target) < LonThreshold  
%         LonTGT_Crossing(mm,1) = PropOrb_t(ii); 
%         LonTGT_Crossing(mm,2) = PropOrb_h(ii); 
%         LonTGT_Crossing(mm,3) = PropOrb_Lat_deg(ii); 
%         LonTGT_Crossing(mm,4) = PropOrb_Lon_deg(ii); 
%     else 
%         LonTGT_Crossing(mm,1:4) = 0; 
%     end 
% end 
%  
% %Latitude crossings 
% mm   = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(PropOrb_Lat_deg) 
%     mm = mm + 1; 
%     if abs(PropOrb_Lat_deg(ii) - Lat_Target) < LatThreshold  
%         %&& abs(PropOrb_Lon_deg(ii) - Lon_Target) < 30 
%         LatTGT_Crossing(mm,1) = PropOrb_t(ii); 
%         LatTGT_Crossing(mm,2) = PropOrb_h(ii); 
%         LatTGT_Crossing(mm,3) = PropOrb_Lon_deg(ii); 
%         LatTGT_Crossing(mm,4) = PropOrb_Lat_deg(ii); 
%     else 
%         LatTGT_Crossing(mm,1:4) = 0; 
%     end 
% end 
%  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% Determination of Indices Corresponding to Crossings 
% %Longitude crossings 
% mm   = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(LonTGT_Crossing)      
%     if LonTGT_Crossing(ii) ~= 0 
%         mm = mm + 1; 
%         FlagVector_Lon(mm,1)  = ii; 
%         WithinIdent_Lon(mm,:) = LonTGT_Crossing(ii,:); 
%     end 
% end 
% FlagVector_Lon = [FlagVector_Lon;0]; 
%  
% %Latitude crossings 
% mm   = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(LatTGT_Crossing)      
%     if LatTGT_Crossing(ii) ~= 0 
%         mm = mm + 1; 
%         FlagVector_Lat(mm,1)  = ii; 
%         WithinIdent_Lat(mm,:) = LatTGT_Crossing(ii,:); 
%     end 
% end 
% FlagVector_Lat = [FlagVector_Lat;0]; 
%  
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% Determination of Indices Corresponding to Jumps in Crossings 
% %Longitude crossings 
% mm   = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(FlagVector_Lon)-1 
%     if abs((FlagVector_Lon(ii+1) - FlagVector_Lon(ii))) > 1 
%         mm = mm + 1; 
%         LonTGT_Jump(mm,1) = ii; 
%     end 
% end 
% LonTGT_Jump = [0;LonTGT_Jump]; 
%  
% %Latitude crossings 
% mm   = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(FlagVector_Lat)-1 
%     if abs((FlagVector_Lat(ii+1) - FlagVector_Lat(ii))) > 1 
%         mm = mm + 1; 
%         LatTGT_Jump(mm,1) = ii; 
%     end 
% end 
%  
% if     LatJump_Change == 1 %Appropriate for 'mid-' to 'high-' latitudes 
%     LatTGT_Jump = [0; LatTGT_Jump]; 
% elseif LatJump_Change == 2 %Appropriate for 'low-' latitudes 
%     LatTGT_Jump = [LatTGT_Jump]; 
% end 
%  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %% Interpolation of Crossing Trajectories 
% %Longitude crossings 
% mm = 0; %Initializes vector concatenation counter at zero 
% for ii = 2:length(LonTGT_Jump) 
%     mm = mm + 1; 
%     LonTGT_Interp(mm,:) = ... 
%         interp1(LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1):  ... 
%                                 FlagVector_Lon(LonTGT_Jump(ii)),4),   ... 
%                 LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1):  ... 
%                                 FlagVector_Lon(LonTGT_Jump(ii)),1:3), ... 
%                 Lon_Target,'spline'); %Cubic spline interpolation 
% end    
%  
% %Latitude crossings 
% mm = 0; %Initializes vector concatenation counter at zero 
% for ii = 2:length(LatTGT_Jump) 
%     mm = mm + 1; 
%     LatTGT_Interp(mm,:) = ... 
%         interp1(LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1):  ... 
%                                 FlagVector_Lat(LatTGT_Jump(ii)),4),   ... 
%                 LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1):  ... 
%                                 FlagVector_Lat(LatTGT_Jump(ii)),1:3), ... 
%                 Lat_Target,'spline'); %Cubic spline interpolation 
% end  
%  
% %Removal of negative perturbed periods  
% LatTGT_Interp(any(LatTGT_Interp(:,1)<0,2),:) = [];  
%  
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                     
% %% Determination of Minimum Target Miss Distance  
% %Target miss distance for both spherical and oblate planetary models 
% mm = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(PropOrb_Lon_deg) 
%     mm = mm + 1; 
%     SphereDist_Lon = CoordDist(Lon_Target,Lon_Target, ... 
%                                Lat_Target,LonTGT_Interp(:,3),1); 
% end 
%  
% %Longitudinal target miss distance (km) 
% [MinDistance_Lon,MinFlag_Lon] = min(SphereDist_Lon(:,1)); 
%  
% mm = 0; %Initializes vector concatenation counter at zero 
% for ii = 1:length(PropOrb_Lat_deg) 
%     mm = mm + 1; 
%     SphereDist_Lat = CoordDist(Lon_Target,LatTGT_Interp(:,3), ... 
%                                Lat_Target,Lat_Target,1); 
% end 
%  
% %Latitudinal target miss distance (km) 
% [MinDistance_Lat,MinFlag_Lat] = min(SphereDist_Lat(:,1)); 
%  
% MinDist_Vec = [MinDistance_Lon, MinDistance_Lat]; 
% MinFlag_Vec = [MinFlag_Lon,     MinFlag_Lat]; 
% [MinDistance, MinIndex] = min(MinDist_Vec); 
% MinFlag      = MinFlag_Vec(MinIndex); 
% MissDistance = MinDistance 
%  
% if     MinIndex == 1 
%     MinInterp = LonTGT_Interp; 
% elseif MinIndex == 2 
%     MinInterp = LatTGT_Interp; 
% end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Over-Flight Parameters 
%Time-of-arrival at target (hr) 
% TimeArrival = (MinInterp(MinFlag,1))*(1/60)*(1/60); 
%  
% %Altitude-of-arrival at target (km) 
% AltArrival  = MinInterp(MinFlag,2);  
%  
% %Payload imager field-of-view (FOV) and resolution during over-flight 
% %Visible spectrum imager 
% [FOV_m2_Vis, FOV_km2_Vis, Resolution_Vis] = ... 
%                         PayloadImager(AltArrival*(1.0E3),1.15,2.70,1.0E-6); 
%                     
% %Latitude-of-arrival at target (deg) 
% LatArrival  = LonTGT_Interp(MinFlag_Lon,3); 
%  
% %Longitude-of-arrival at target (deg) 
% LonArrival  = LatTGT_Interp(MinFlag_Lat,3); 
%  
% %Maximum inclination (deg) 
% MaxIncl     = max(PropOrb_Lat_deg); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Atmospheric-Transit Parameters 
%Identifies time/altitude segment of trajectory within atmosphere  
jj = 0; %Initializes vector concatenation counter at zero 
PropOrb_th = [PropOrb_t,PropOrb_h]; %Concatenation of t, h vectors 
  
for ii = 1:length(PropOrb_th(:,1)) 
    if PropOrb_th(ii,2) < 120 
        jj = jj + 1; 
        t_Atmos(jj,:) = PropOrb_th(ii,1); %Time (s) 
        h_Atmos(jj,:) = PropOrb_th(ii,2); %Altitude (km) 
    end 
end 
  
t_EnterAtmos = t_Atmos(1);   %Time of atmospheric entry (h < 120 km) 
t_ExitAtmos  = t_Atmos(end); %Time of atmospheric exit  (h > 120 km) 
t_Transit    = [t_EnterAtmos,t_ExitAtmos];     
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Deceleration 
[decel] = EntryDecel(1,mass,S,Cd,Cl,                          ... 
                     PropOrb_States(:,1),PropOrb_States(:,2), ... 
                     PropOrb_States(:,4),PropOrb_States(:,5)); 
  
%Tangential deceleration (g's) 
TangDecelG_Max = max(decel.TangG);   %Maximum value   
TangDecelG_Min = min(decel.TangG);   %Minimum value 
  
%Normal deceleration (g's) 
NormDecelG_Max = max(decel.NormalG); %Maximum value  
NormDecelG_Min = min(decel.NormalG); %Minimum value 
  
%Deceleration magnitude (g's) 
MagDecelG_Max = max(decel.Gs);       %Maximum value 
MagDecelG_Min = min(decel.Gs);       %Minimum value 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Heat Flux 
%Atmospheric density (kg/km^3) 
[PropOrb_Rho] = AtmosModel_PostAnalysis(PropOrb_h,2); 
  
%Maximum velocity (km/s) -- Occurs at Perigee 
VMax       = max(PropOrb_V); 
  
Emissivity = 0.8;  %Emissivity 
Tw_F       = 0;    %Wall temperature (deg F) 
TMaxF      = 1800; %Free-stream temperature (deg F) 
  
%Heat transfer models 
[HeatModel,Eta,T_KE] = HeatFluxModel(PropOrb_V,PropOrb_Rho,Emissivity, ... 
                                     Tw_F,TMaxF,mass,S,Cd,Cl); 
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%Average wall heat flux (non-dimensional) 
Qw          = HeatModel.Qw;   
Qw_Max      = max(Qw);   %Maximum value 
  
%Average stagnation heat flux (non-dimensional) 
Qs          = HeatModel.Qs;   
Qs_Max      = max(Qs);   %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Rao (2002) 
Qdot        = HeatModel.Qdot;  
Qdot_Max    = max(Qdot); %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Havey (1982) 
QHavey      = HeatModel.QHavey; 
QHavey_Max  = max(QHavey); 
  
%Stagnation heat flux (kW/m^2); Source: Galman (1961) 
QGalman     = HeatModel.QGalman; 
QGalman_Max = max(QGalman); 
  
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %Updated perigee altitude (km) 
% if      MinIndex == 1 
%     if      LatArrival > Lat_Target 
%         if     MissDistance >  100 
%             h_Perig = h_Perig + 2.0; 
%         elseif MissDistance >  20 && MissDistance <= 100 
%             h_Perig = h_Perig + 1.0; 
%         elseif MissDistance >  15 && MissDistance <= 20 
%             h_Perig = h_Perig + 0.1; 
%         elseif MissDistance >  5  && MissDistance <= 15 
%             h_Perig = h_Perig + 0.01; 
%         elseif MissDistance <= 5 
%             h_Perig = h_Perig + 0.001; 
%         end 
%          
%     elseif LatArrival < Lat_Target 
%         if     MissDistance >  100 
%             h_Perig = h_Perig - 2.0; 
%         elseif MissDistance >  20 && MissDistance <= 100 
%             h_Perig = h_Perig - 1.0; 
%         elseif MissDistance >  15 && MissDistance <= 20 
%             h_Perig = h_Perig - 0.1; 
%         elseif MissDistance >  5  && MissDistance <= 15 
%             h_Perig = h_Perig - 0.01; 
%         elseif MissDistance <= 5 
%             h_Perig = h_Perig - 0.001; 
%         end 
%     end 
%      
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% elseif MinIndex == 2 
%     if      LonArrival > Lon_Target 
%         if     MissDistance >  100 
%             h_Perig = h_Perig + 2.0; 
%         elseif MissDistance >  20 && MissDistance <= 100 
%             h_Perig = h_Perig + 1.0; 
%         elseif MissDistance >  15 && MissDistance <= 20 
%             h_Perig = h_Perig + 0.1; 
%         elseif MissDistance >  5  && MissDistance <= 15 
%             h_Perig = h_Perig + 0.01; 
%         elseif MissDistance <= 5 
%             h_Perig = h_Perig + 0.001; 
%         end 
%          
%     elseif LonArrival < Lon_Target 
%         if     MissDistance >  100 
%             h_Perig = h_Perig - 2.0; 
%         elseif MissDistance >  20 && MissDistance <= 100 
%             h_Perig = h_Perig - 1.0; 
%         elseif MissDistance >  15 && MissDistance <= 20 
%             h_Perig = h_Perig - 0.1; 
%         elseif MissDistance >  5  && MissDistance <= 15 
%             h_Perig = h_Perig - 0.01; 
%         elseif MissDistance <= 5 
%             h_Perig = h_Perig - 0.001; 
%         end 
%     end 
% end 
%  
% % h_Perig = h_Perig 
%  
% WhileCount = WhileCount + 1; %Update to 'while'-loop iteration counter 
%  
% %Clearing of variables for targeting loop 
% clear LonTGT_Crossing; clear LatTGT_Crossing; clear FlagVector_Lon;  
% clear FlagVector_Lat;  clear WithinIdent_Lon; clear WithinIdent_Lat; 
% clear LonTGT_Jump;     clear LatTGT_Jump;     clear LonTGT_Interp;   
% clear LatTGT_Interp;    
%  
% end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Total Skip Maneuver Delta-V 
V_EndSkip = Skip_States(end,2);         %Velocity where fpa = 0 (km/s) 
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)  
  
%Total delta-V for skip maneuver (km/s) 
dV_SkipTotal = dV_Maneuver + dV_ReCirc;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg  
%Reference orbit 
[Lon_RefOrb,  Lat_RefOrb,  LonSplit_RefOrb,  LatSplit_RefOrb] = ... 
                                             CoordinateJump(RefOrb_States); 
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%Maneuver orbit                                         
[Lon_Skip,    Lat_Skip,    LonSplit_Skip,    LatSplit_Skip] = ... 
                                             CoordinateJump(Skip_States);  
%Propagated re-circularized orbit                                         
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ... 
                                             CoordinateJump(PropOrb_States); 
                                          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Command Window Printing and Workspace Variable Definition 
% fprintf('Minimum Miss Distance:      %f km   \n', MinDistance); 
% fprintf('Time-of-Arrival:            %f hr   \n', TimeArrival); 
% fprintf('Maneuver Delta-V:           %f km/s \n', dV_Maneuver); 
% fprintf('Total Delta-V:              %f km/s \n', dV_SkipTotal); 
%  
% Trajectory_Analysis   = [bank_Skip,Perigee_Altitude,h_Prop,TimeArrival, ... 
%                          dV_Maneuver,dV_SkipTotal, ... 
%                         -(min(PropOrb_Lat_deg)),MinDistance]; 
%                     
% Inclination_Analysis  = [rad2deg(PSI_Ref),Perigee_Altitude,h_Prop, ... 
%                          dV_Maneuver,dV_SkipTotal,MaxIncl]; 
%                     
% Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ... 
%                          NormDecelG_Max,NormDecelG_Min, ... 
%                          MagDecelG_Max, MagDecelG_Min]; 
%                       
% HeatFlux_Analysis     = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max]; 
%  
% Combined_Analysis     = [Deceleration_Analysis,HeatFlux_Analysis]; 
  
% return 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plotting Commands 
%Conversion of time units for plotting 
[Skip_Time,    time_string] = TimeUtility(Skip_t,2); 
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2); 
  
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection 
subplot(2,2,1); box on; grid off;            
hold on;  
h_Ref  = cellfun(@plot,LonSplit_RefOrb,LatSplit_RefOrb);        
  
set(h_Ref, 'LineStyle','-','Color','b'); 
  
xlim([-180 180]); ylim([-90 90]); 
xlim([0 90]); ylim([30 70]); 
% xlim([floor(Lon_Target)-30, ceil(Lon_Target)+30]);  
% ylim([floor(Lat_Target)-20, ceil(Lat_Target)+20]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
%Coordinates (x,y) for target latitude, longitude end points 
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target]; 
p1_Lon = [Lon_Target, -90];  p2_Lon = [Lon_Target, 90]; 
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 %Target latitude, longitude lines 
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:'); 
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:'); 
  
if     Map_Choice == 1 
%     hold on; %Plate Carree world map projection 
%     landareas = shaperead('landareas.shp','UseGeoCoords',true); 
%     geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
  
elseif Map_Choice == 2 
    hold on; %Plate Carree world map projection 
    landareas = shaperead('landareas.shp','UseGeoCoords',true); 
    geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
end 
  
%Target location 
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ... 
                                    'MarkerFaceColor','r','MarkerSize',5); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection 
subplot(2,2,2); box on; grid off; 
hold on;  
h_Skip = cellfun(@plot,LonSplit_PropOrb, LatSplit_PropOrb);             
hold on;  
h_Ref  = cellfun(@plot,LonSplit_RefOrb,  LatSplit_RefOrb);          
  
set(h_Skip,'LineStyle','--','Color','r'); 
set(h_Ref, 'LineStyle','-','Color','b'); 
  
xlim([-180 180]); ylim([-90 90]); 
xlim([0 90]); ylim([30 70]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
%Coordinates (x,y) for target latitude, longitude end points 
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target]; 
p1_Lon = [Lon_Target, -90];  p2_Lon = [Lon_Target, 90]; 
  
 
% %Target latitude, longitude lines 
% hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:'); 
% hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:'); 
  
if     Map_Choice == 1 
%     hold on; %Plate Carree world map projection 
%     landareas = shaperead('landareas.shp','UseGeoCoords',true); 
%     geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
  
elseif Map_Choice == 2 
    hold on; %Plate Carree world map projection 
    landareas = shaperead('landareas.shp','UseGeoCoords',true); 
    geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
end 
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%Target location 
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ... 
                                    'MarkerFaceColor','r','MarkerSize',5); 
                                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                 
%% Geodetic Altitude (km) vs. Time  
[PropOrb_t, time_string] = TimeUtility(PropOrb_t,2); %Time unit conversion 
  
subplot(2,2,3); box on; grid off; 
plot(PropOrb_t,PropOrb_h,'b');                                    
xlim([0 200]); ylim([0 1000]);  
xlabel(['Time, ', time_string]);  
ylabel('Altitude, km'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection 
subplot(2,2,4); box on; grid off; 
hold on;  
h_Skip = cellfun(@plot,LonSplit_PropOrb, LatSplit_PropOrb);             
hold on;  
h_Ref  = cellfun(@plot,LonSplit_RefOrb,  LatSplit_RefOrb);          
  
set(h_Skip,'LineStyle','--','Color','r'); 
set(h_Ref, 'LineStyle','-','Color','b'); 
  
xlim([-180 180]); ylim([-90 90]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
%Coordinates (x,y) for target latitude, longitude end points 
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target]; 
p1_Lon = [Lon_Target, -90];  p2_Lon = [Lon_Target, 90]; 
  
% %Target latitude, longitude lines 
% hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:'); 
% hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:'); 
  
if     Map_Choice == 1 
%     hold on; %Plate Carree world map projection 
%     landareas = shaperead('landareas.shp','UseGeoCoords',true); 
%     geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
  
elseif Map_Choice == 2 
    hold on; %Plate Carree world map projection 
    landareas = shaperead('landareas.shp','UseGeoCoords',true); 
    geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
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BankManeuvers_Function.m 
 
function  
[Trajectory_Analysis,MaxIncl,Deceleration_Analysis,HeatFlux_Analysis] = ...               
     BankManeuvers_Function(Target_Choice,h_Perig0,PSI_Ref,bank_Skip,lon_Ref) 
  
global MU RE   
global Lat_Denver   Lon_Denver   Lat_Gibraltar Lon_Gibraltar 
global Lat_Glasgow  Lon_Glasgow  Lat_Grozny    Lon_Grozny 
global Lat_Moscow   Lon_Moscow   Lat_Ponti     Lon_Ponti    
global Lat_Pyong    Lon_Pyong    Lat_Reyk      Lon_Reyk    
global Lat_Tehran   Lon_Tehran   Lat_Tokyo     Lon_Tokyo 
global Lat_Brasil   Lon_Brasil   Lat_Buenos    Lon_Buenos 
global Lat_Canberra Lon_Canberra Lat_Cape      Lon_Cape 
  
WGS84Constants; %Loads global constants from external m-file 
GroundTargets;  %Loads ground target geographical coordinates (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Target Selection and Targeting Loop Initialization 
LatJump_Change = 1; 
LonThreshold   = 35; 
LatThreshold   = 35; 
Map_Choice     = 1; 
  
if     Target_Choice == 1  %Denver, United States 
    Lat_Target = Lat_Denver;    Lon_Target = Lon_Denver;    dLat = 3; 
elseif Target_Choice == 2  %Gibraltar, United Kingdom 
    Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5; 
elseif Target_Choice == 3  %Glasgow, Scotland 
    Lat_Target = Lat_Glasgow;   Lon_Target = Lon_Glasgow;   dLat = 3; 
elseif Target_Choice == 4  %Grozny, Chechnya 
    Lat_Target = Lat_Grozny;    Lon_Target = Lon_Grozny;    dLat = 3; 
elseif Target_Choice == 5  %Moscow, Russia 
    Lat_Target = Lat_Moscow;    Lon_Target = Lon_Moscow;    dLat = 3; 
elseif Target_Choice == 6  %Pontianak, Indonesia 
    Lat_Target = Lat_Ponti;     Lon_Target = Lon_Ponti;     dLat = 7;  
elseif Target_Choice == 7  %Pyongyang, North Korea 
    Lat_Target = Lat_Pyong;     Lon_Target = Lon_Pyong;     dLat = 5; 
elseif Target_Choice == 8  %Reykjavik, Iceland 
    Lat_Target = Lat_Reyk;      Lon_Target = Lon_Reyk;      dLat = 3;  
elseif Target_Choice == 9  %Tehran, Iran 
    Lat_Target = Lat_Tehran;    Lon_Target = Lon_Tehran;    dLat = 5; 
elseif Target_Choice == 10 %Tokyo, Japan 
    Lat_Target = Lat_Tokyo;     Lon_Target = Lon_Tokyo;     dLat = 4; 
elseif Target_Choice == 11 %Brasilia, Brazil 
    Lat_Target = Lat_Brasil;    Lon_Target = Lon_Brasil;    dLat = 4; 
elseif Target_Choice == 12 %Buenos Aires, Argentina 
    Lat_Target = Lat_Buenos;    Lon_Target = Lon_Buenos;    dLat = 4; 
elseif Target_Choice == 13 %Canberra, Australia 
    Lat_Target = Lat_Canberra;  Lon_Target = Lon_Canberra;  dLat = 4; 
elseif Target_Choice == 14 %Cape Town, South Africa 
    Lat_Target = Lat_Cape;      Lon_Target = Lon_Cape;      dLat = 4; 
end 
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 h_Perig  = h_Perig0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Reference Orbit Conditions 
Vehicle_Choice = 1; %TAV selection 
Time_Max  = 1.0;    %Maximum simulation time (days) 
ecc_Ref   = 0;      %Orbit eccentricity 
h_Apog    = 1000;   %Apogee altitude (km) 
lat_Ref   = 0;      %Initial geodetic latitude (deg) 
fpa_Ref   = 0;      %Flight-path angle (deg) 
bank_Ref  = 0;      %Reference orbit bank angle (deg) 
 
%Converts and overwrites initial angle variables 
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref); 
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);  
  
%Reference orbit parameters 
r_Apog    = h_Apog + RE;            %Apogee radial position (km) 
r_Perig   = h_Perig + RE;           %Perigee radial position (km) 
SMA_Ref   = 0.5*(r_Apog + r_Apog);  %Reference orbit semi-major axis (km) 
SMA_Skip  = 0.5*(r_Apog + r_Perig); %Skip orbit semi-major axis (km) 
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_Rel,PSI_Rel] = RelativeStates(Vehicle_Choice,h_Apog,lat_Ref, ... 
                                 fpa_Ref,PSI_Ref,bank_Ref); 
                               
%Apogee velocity for non-rotating frame (km/s) 
V_Apog = sqrt((2*MU*r_Perig)/(r_Apog*(r_Apog + r_Perig))); 
  
%Conversion of time units from days to seconds 
Time_Max = Time_Max*(24)*(60)*(60); 
                 
SMA_Target0     = SMA_Ref;    %Target semi-major axis (km) 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check0(1,1)   = V_Rel;      %Initial guess for velocity (km/s) 
PSI_Check0(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                         1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(1,1), ... 
                         lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref); 
  
[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1)); 
                        
%Semi-major axis (km) 
SMA_Check0(1,1)  = 0.5*(r_Apog + r_Check0(1,1));   
  
%Iteration error (s) 
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ... 
                    ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1))); 
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%Updated velocity (km/s) 
V_Check0(2,1)    = (V_Check0(1,1) - V_Decrement) - ... 
                   ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check0(2,1)  = PSI_Ref + ... 
                   asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1)); 
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target0 - SMA_Check0(ii-1,1))       > 1E-10 && ... 
          abs(PSI_Check0(ii,1)  - PSI_Check0(ii-1,1)) > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ... 
                       1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(ii,1),  ... 
                       lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref); 
         
        [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check0(ii,1)   = 0.5*(r_Apog + r_Check0(ii,1));  
         
        %Iteration error (sec) 
        GuessError0(ii,1)  = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ... 
                              (V_Check0(ii,1) - V_Check0(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check0(ii+1,1)   = V_Check0(ii,1) - ... 
                      ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check0(ii+1,1) = PSI_Ref + ... 
               asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1)); 
        IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ... 
                                                       PSI_Check0(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end                         
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V_Rel0   = V_Check0(ii);   %Velocity (km/s) 
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad) 
  
%Trajectory simulation for reference orbit 
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ... 
                           1,1,1,1,1,Time_Max,r_Apog,V_Rel0,     ... 
                           lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref); 
                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Manipulation for Reference Orbit 
r_Data   = RefOrb_States(:,1); %Radial position (km) 
h_Data   = r_Data - RE;        %Altitude (km) 
Lon_Data = RefOrb_States(:,3); %Longitude (rad) 
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad) 
  
%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180) 
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180; 
  
%Converts geodetic latitude from radians to degrees  
Lat_Data = rad2deg(Lat_Data);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Descent Velocity  
IterMax        = 50;         %Maximum number of iterations  
SMA0           = SMA_Ref;    %Initial guess for semi-major axis (km) 
SMA_Target     = SMA_Skip;   %Target semi-major axis (km) 
V_Decrement    = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check(1,1)   = .98*V_Apog; %Initial guess for descent velocity (km/s) 
% Set 'V_Check' coeff. to 0.98 for over-flights; 0.96 for max. inclination  
PSI_Check(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[t_vec,traj_states] = Maneuver_MainFunction(Vehicle_Choice,1,2,1,1,1, ... 
                           0.5*RefPeriod,r_Apog,V_Check(1,1),lon_Ref, ... 
                           lat_Ref,fpa_Ref,PSI_Check(1,1),bank_Skip); 
  
%Perigee radial position (km)          
[r_Check(1,1),Perig_Index] = min(traj_states(:,1));  
  
%Semi-major axis (km) 
SMA_Check(1,1)  = 0.5*(r_Apog + r_Check(1,1));   
  
%Iteration error (s) 
GuessError(1,1) = -((SMA_Check(1,1) - SMA0)/ ... 
                   ((V_Check(1,1) - V_Decrement) - V_Check(1,1))); 
                
%Updated velocity (km/s) 
V_Check(2,1)    = (V_Check(1,1) - V_Decrement) - ... 
                  ((SMA_Target - SMA_Check(1,1))/GuessError(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check(2,1) = PSI_Ref + ... 
                   asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(2,1))); 
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%Difference between calculated and target trajectory states 
IterativeDiff_SMA(1,1) = abs(SMA_Target - SMA_Check(1,1)); 
IterativeDiff_PSI(1,1) = abs(PSI_Check(2,1) - PSI_Check(1,1)); 
  
IterCount = 1; %Initialization of iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target - SMA_Check(ii-1,1))      > 1E-6 && ... 
          abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)) > 1E-8 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [t_vec,traj_states] = Maneuver_MainFunction(Vehicle_Choice,  ... 
                              1,2,1,1,1,0.5*RefPeriod,r_Apog,        ... 
                              V_Check(ii,1),lon_Ref,lat_Ref,fpa_Ref, ... 
                              PSI_Check(ii,1),bank_Skip); 
         
        %Current iteration perigee radial position (km) 
        [r_Check(ii,1),Perig_Index] = min(traj_states(:,1));  
         
        %Current iteration semi-major axis (km) 
        SMA_Check(ii,1)  = 0.5*(r_Apog + r_Check(ii,1));  
      
 
    
        %Iteration error (sec) 
        GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ... 
                            (V_Check(ii,1) - V_Check(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check(ii+1,1)  = V_Check(ii,1) - ... 
                         ((SMA_Target - SMA_Check(ii,1))/GuessError(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check(ii+1,1) = PSI_Ref + ... 
                asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA(ii,1) = abs(SMA_Target - SMA_Check(ii,1)); 
        IterativeDiff_PSI(ii,1) = abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end 
  
V_Maneuver  = V_Check(ii,1);            %Descent velocity for target SMA  
dV_Maneuver = abs(V_Maneuver - V_Rel);  %Maneuver delta-V (km/s) 
PSI_Rel     = rad2deg(PSI_Check(ii,1)); %Relative heading angle (deg) 
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%Trajectory simulation for skip maneuver 
[Skip_t,Skip_States] = SingleSkip_Maneuver(Vehicle_Choice,1,2,1,1,1, ... 
                       RefPeriod,r_Apog,V_Maneuver,lon_Ref,          ... 
                       lat_Ref,fpa_Ref,deg2rad(PSI_Rel),bank_Skip); 
  
Perigee_Altitude = min(Skip_States(:,1)) - RE;                     
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Propagation of Re-Circularized Orbit 
Time_Max  = 80000;              %Maximum simulation time (s) 
ecc       = 0;                  %Orbit eccentricity 
r_Prop    = Skip_States(end,1); %Orbit radial position (km) 
h_Prop    = r_Prop - RE;        %Orbit altitude (km) 
lon_Prop  = Skip_States(end,3); %Initial longitude (rad) 
lat_Prop  = Skip_States(end,4); %Initial geodetic latitude (rad) 
fpa_Prop  = 0;                  %Flight-path angle (rad) 
PSI_Prop  = -(min(Skip_States(:,4))); %Heading angle (rad) 
bank_Prop = bank_Skip;          %Bank angle (deg) 
  
%Re-circularized orbit parameters 
SMA_Prop    = 0.5*(r_Prop + r_Prop);        %Semi-major axis (km) 
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec) 
  
 
%Velocity relative to rotating frame (rotating planet) 
[V_RelProp,PSI_RelProp] = RelativeStates(Vehicle_Choice,h_Prop,lat_Prop, ... 
                                         fpa_Prop,PSI_Prop,bank_Prop); 
  
SMA_TargetProp  = SMA_Prop; 
V_Decrement     = 1 - 0.9999;  %Decrement value for velocity (km/s) 
V_CheckP(1,1)   = V_RelProp;   %Initial guess for velocity (km/s) 
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad) 
IterMax         = 50;          %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_tP,Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                                     1,1,1,1,1,0.5*Period_Prop,r_Prop, ... 
                                     V_CheckP(1,1),lon_Prop,lat_Prop,  ... 
                                     fpa_Prop,PSI_CheckP(1,1),bank_Prop); 
  
[r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1)); 
                        
%Semi-major axis (km) 
SMA_CheckP(1,1)  = 0.5*(r_Prop + r_CheckP(1,1));   
  
%Iteration error (s) 
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ... 
                    ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1))); 
                
%Updated velocity (km/s) 
V_CheckP(2,1)    = (V_CheckP(1,1) - V_Decrement) - ... 
                  ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1)); 
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%Updated heading angle (rad) 
PSI_CheckP(2,1)  = PSI_Prop + ... 
                   asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp  - SMA_CheckP(1,1)); 
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1));  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_TargetProp   - SMA_CheckP(ii-1,1)) > 1E-10 && ... 
          abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_tP,Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ... 
                      1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1), ... 
                      lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii,1),bank_Prop); 
         
        [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_CheckP(ii,1)   = 0.5*(r_Prop + r_CheckP(ii,1));  
         
        %Iteration error (sec) 
        GuessErrorP(ii,1)  = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ... 
                               (V_CheckP(ii,1) - V_CheckP(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_CheckP(ii+1,1)   = V_CheckP(ii,1) - ... 
                   ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_CheckP(ii+1,1) = PSI_Prop + ... 
              asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp –   ... 
                                                         SMA_CheckP(ii,1)); 
        IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ... 
                                                       PSI_CheckP(ii-1,1)); 
          
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end  
  
%Trajectory simulation for re-circularized orbit 
[Orbit_t,Orbit_States] = Maneuver_MainFunction(Vehicle_Choice,   ... 
                         1,1,1,1,1,Time_Max,r_Prop,V_CheckP(ii), ... 
                        lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii),bank_Prop); 
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%Re-defined propagated orbit states                                        
PropOrb_t       = [Skip_t ; Skip_t(end) + Orbit_t(2:end)]; 
PropOrb_States  = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)]; 
PropOrb_h       = PropOrb_States(:,1) - RE;     %Altitude (km) 
PropOrb_V       = PropOrb_States(:,2);          %Velocity (km/s) 
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ... 
                       + 180),360) - 180;       %Longitude (rad) 
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Propagated Trajectory Crossings of Target Coordinates 
%Longitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lon_deg) 
    mm = mm + 1; 
    if abs(PropOrb_Lon_deg(ii) - Lon_Target) < LonThreshold  
        LonTGT_Crossing(mm,1) = PropOrb_t(ii); 
        LonTGT_Crossing(mm,2) = PropOrb_h(ii); 
        LonTGT_Crossing(mm,3) = PropOrb_Lat_deg(ii); 
        LonTGT_Crossing(mm,4) = PropOrb_Lon_deg(ii); 
    else 
        LonTGT_Crossing(mm,1:4) = 0; 
    end 
end 
  
%Latitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lat_deg) 
    mm = mm + 1; 
    if abs(PropOrb_Lat_deg(ii) - Lat_Target) < LatThreshold  
        LatTGT_Crossing(mm,1) = PropOrb_t(ii); 
        LatTGT_Crossing(mm,2) = PropOrb_h(ii); 
        LatTGT_Crossing(mm,3) = PropOrb_Lon_deg(ii); 
        LatTGT_Crossing(mm,4) = PropOrb_Lat_deg(ii); 
    else 
        LatTGT_Crossing(mm,1:4) = 0; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Crossings 
%Longitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(LonTGT_Crossing)      
    if LonTGT_Crossing(ii) ~= 0 
        mm = mm + 1; 
        FlagVector_Lon(mm,1)  = ii; 
        WithinIdent_Lon(mm,:) = LonTGT_Crossing(ii,:); 
    end 
end 
FlagVector_Lon = [FlagVector_Lon;0]; 
  
%Latitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
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for ii = 1:length(LatTGT_Crossing)      
    if LatTGT_Crossing(ii) ~= 0 
        mm = mm + 1; 
        FlagVector_Lat(mm,1)  = ii; 
        WithinIdent_Lat(mm,:) = LatTGT_Crossing(ii,:); 
    end 
end 
FlagVector_Lat = [FlagVector_Lat;0]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Jumps in Crossings 
%Longitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector_Lon)-1 
    if abs((FlagVector_Lon(ii+1) - FlagVector_Lon(ii))) > 1 
        mm = mm + 1; 
        LonTGT_Jump(mm,1) = ii; 
    end 
end 
LonTGT_Jump = [0;LonTGT_Jump]; 
  
%Latitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector_Lat)-1 
    if abs((FlagVector_Lat(ii+1) - FlagVector_Lat(ii))) > 1 
        mm = mm + 1; 
        LatTGT_Jump(mm,1) = ii; 
    end 
end 
  
if     LatJump_Change == 1 %Appropriate for 'mid-' to 'high-' latitudes 
    LatTGT_Jump = [0; LatTGT_Jump]; 
elseif LatJump_Change == 2 %Appropriate for 'low-' latitudes 
    LatTGT_Jump = [LatTGT_Jump]; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Interpolation of Crossing Trajectories 
%Longitude crossings 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(LonTGT_Jump) 
    mm = mm + 1; 
    LonTGT_Interp(mm,:) = ... 
        interp1(LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1):  ... 
                                FlagVector_Lon(LonTGT_Jump(ii)),4),   ... 
                LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1):  ... 
                                FlagVector_Lon(LonTGT_Jump(ii)),1:3), ... 
                Lon_Target,'spline'); %Cubic spline interpolation 
end    
  
%Latitude crossings 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(LatTGT_Jump) 
    mm = mm + 1; 
    LatTGT_Interp(mm,:) = ... 
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  interp1(LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1):  ... 

                                FlagVector_Lat(LatTGT_Jump(ii)),4),   ... 
                LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1):  ... 
                                FlagVector_Lat(LatTGT_Jump(ii)),1:3), ... 
                Lat_Target,'spline'); %Cubic spline interpolation 
end  
  
%Removal of negative perturbed periods  
LatTGT_Interp(any(LatTGT_Interp(:,1)<0,2),:) = [];  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                     
%% Determination of Minimum Target Miss Distance  
%Target miss distance for both spherical and oblate planetary models 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lon_deg) 
    mm = mm + 1; 
    SphereDist_Lon = CoordDist(Lon_Target,Lon_Target, ... 
                               Lat_Target,LonTGT_Interp(:,3),1); 
end 
 
 
  
%Longitudinal target miss distance (km) 
[MinDistance_Lon,MinFlag_Lon] = min(SphereDist_Lon(:,1)); 
  
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lat_deg) 
    mm = mm + 1; 
    SphereDist_Lat = CoordDist(Lon_Target,LatTGT_Interp(:,3), ... 
                               Lat_Target,Lat_Target,1); 
end 
  
%Latitudinal target miss distance (km) 
[MinDistance_Lat,MinFlag_Lat] = min(SphereDist_Lat(:,1)); 
  
MinDist_Vec = [MinDistance_Lon, MinDistance_Lat]; 
MinFlag_Vec = [MinFlag_Lon,     MinFlag_Lat]; 
  
[MinDistance, MinIndex] = min(MinDist_Vec); 
MinFlag      = MinFlag_Vec(MinIndex); 
MissDistance = MinDistance; 
  
if     MinIndex == 1 
    MinInterp = LonTGT_Interp; 
elseif MinIndex == 2 
    MinInterp = LatTGT_Interp; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Over-Flight Parameters 
%Time-of-arrival at target (hr) 
TimeArrival = (MinInterp(MinFlag,1))*(1/60)*(1/60); 
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%Altitude-of-arrival at target (km) 
AltArrival  = MinInterp(MinFlag,2);  
  
%Payload imager field-of-view (FOV) and resolution during over-flight 
%Visible spectrum imager 
[FOV_m2_Vis,FOV_km2_Vis,Resolution_Vis] = ... 
                        PayloadImager(AltArrival*(1.0E3),1.15,2.70,1.0E-6); 
                    
%Latitude-of-arrival at target (deg) 
LatArrival   = LonTGT_Interp(MinFlag_Lon,3); 
  
%Longitude-of-arrival at target (deg) 
LonArrival   = LatTGT_Interp(MinFlag_Lat,3); 
  
%Maximum inclination (deg) 
MaxIncl = max(PropOrb_Lat_deg); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Deceleration 
[Vehicle] = VehicleSpecs(Vehicle_Choice); 
  
mass   = Vehicle.mass;  %Mass (kg) 
S_m2   = Vehicle.S_m2;  %Planform area (m^2) 
S      = S_m2/(1000^2); %Planform area (km^2) 
Cd     = Vehicle.Cd;    %Drag coefficient 
Cl     = Vehicle.Cl;    %Lift coefficient 
  
[decel] = EntryDecel(1,mass,S,Cd,Cl,                          ... 
                     PropOrb_States(:,1),PropOrb_States(:,2), ... 
                     PropOrb_States(:,4),PropOrb_States(:,5)); 
  
%Tangential deceleration (g's) 
TangDecelG_Max = max(decel.TangG);   %Maximum value   
TangDecelG_Min = min(decel.TangG);   %Minimum value 
  
%Normal deceleration (g's) 
NormDecelG_Max = max(decel.NormalG); %Maximum value  
NormDecelG_Min = min(decel.NormalG); %Minimum value 
  
%Deceleration magnitude (g's) 
MagDecelG_Max = max(decel.Gs);       %Maximum value 
MagDecelG_Min = min(decel.Gs);       %Minimum value 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Heat Flux 
%Atmospheric density (kg/km^3) 
[PropOrb_Rho] = AtmosModel_PostAnalysis(PropOrb_h,2); 
  
%Maximum velocity (km/s) -- Occurs at Perigee 
VMax       = max(PropOrb_V); 
Emissivity = 0.8;  %Emissivity 
Tw_F       = 0;    %Wall temperature (deg F) 
TMaxF      = 1800; %Free-stream temperature (deg F) 
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%Heat transfer models 
[HeatModel,Eta,T_KE] = HeatFluxModel(Vehicle_Choice,PropOrb_V, ... 
                                     PropOrb_Rho,Emissivity,Tw_F,TMaxF); 
                                  
%Average wall heat flux (non-dimensional) 
Qw          = HeatModel.Qw;   
Qw_Max      = max(Qw);   %Maximum value 
  
%Average stagnation heat flux (non-dimensional) 
Qs          = HeatModel.Qs;   
Qs_Max      = max(Qs);   %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Rao (2002) 
Qdot        = HeatModel.Qdot;  
Qdot_Max    = max(Qdot); %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Havey (1982) 
QHavey      = HeatModel.QHavey; 
QHavey_Max  = max(QHavey); 
  
%Stagnation heat flux (kW/m^2); Source: Galman (1961) 
QGalman     = HeatModel.QGalman; 
QGalman_Max = max(QGalman); 
                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Total Skip Maneuver Delta-V 
V_EndSkip = Skip_States(end,2);         %Velocity where fpa = 0 (km/s) 
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)  
  
%Total delta-V for skip maneuver (km/s) 
dV_SkipTotal = dV_Maneuver + dV_ReCirc;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Workspace Variable Definition 
Trajectory_Analysis   = [bank_Skip,Perigee_Altitude,h_Prop,TimeArrival, ... 
                         dV_Maneuver,dV_SkipTotal, ... 
                        -(min(PropOrb_Lat_deg)),MinDistance]; 
                    
Inclination_Analysis  = [rad2deg(PSI_Ref),Perigee_Altitude,h_Prop, ... 
                         dV_Maneuver,dV_SkipTotal,MaxIncl]; 
                    
Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ... 
                         NormDecelG_Max,NormDecelG_Min, ... 
                         MagDecelG_Max, MagDecelG_Min]; 
                      
HeatFlux_Analysis     = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max]; 
  
Combined_Analysis     = [HeatFlux_Analysis,Deceleration_Analysis]; 
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BankManeuvers_fxnDOE.m 
 
function 
[Trajectory_Analysis,MaxIncl,Deceleration_Analysis,HeatFlux_Analysis] = ... 
          BankManeuvers_fxnDOE(Vehicle_Choice,Target_Choice,lon_Ref,    ... 
          PSI_Ref,bank_Skip,Factor_mass,Factor_S,Factor_Cd,             ... 
          Factor_Cl,Factor_Perig,Factor_InitAlt) 
  
global MU RE   
global Lat_Denver   Lon_Denver   Lat_Gibraltar Lon_Gibraltar 
global Lat_Glasgow  Lon_Glasgow  Lat_Grozny    Lon_Grozny 
global Lat_Moscow   Lon_Moscow   Lat_Ponti     Lon_Ponti    
global Lat_Pyong    Lon_Pyong    Lat_Reyk      Lon_Reyk    
global Lat_Tehran   Lon_Tehran   Lat_Tokyo     Lon_Tokyo 
global Lat_Brasil   Lon_Brasil   Lat_Buenos    Lon_Buenos 
global Lat_Canberra Lon_Canberra Lat_Cape      Lon_Cape 
  
WGS84Constants; %Loads global constants from external m-file 
GroundTargets;  %Loads ground target geographical coordinates (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Target Selection and Targeting Loop Initialization 
LatJump_Change = 1; LonThreshold   = 35; LatThreshold   = 35; 
  
if     Target_Choice == 1  %Denver, United States 
    Lat_Target = Lat_Denver;    Lon_Target = Lon_Denver;    dLat = 3; 
elseif Target_Choice == 2  %Gibraltar, United Kingdom 
    Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5; 
elseif Target_Choice == 3  %Glasgow, Scotland 
    Lat_Target = Lat_Glasgow;   Lon_Target = Lon_Glasgow;   dLat = 3; 
elseif Target_Choice == 4  %Grozny, Chechnya 
    Lat_Target = Lat_Grozny;    Lon_Target = Lon_Grozny;    dLat = 3; 
elseif Target_Choice == 5  %Moscow, Russia 
    Lat_Target = Lat_Moscow;    Lon_Target = Lon_Moscow;    dLat = 3; 
elseif Target_Choice == 6  %Pontianak, Indonesia 
    Lat_Target = Lat_Ponti;     Lon_Target = Lon_Ponti;     dLat = 7;  
elseif Target_Choice == 7  %Pyongyang, North Korea 
    Lat_Target = Lat_Pyong;     Lon_Target = Lon_Pyong;     dLat = 5; 
elseif Target_Choice == 8  %Reykjavik, Iceland 
    Lat_Target = Lat_Reyk;      Lon_Target = Lon_Reyk;      dLat = 3;  
elseif Target_Choice == 9  %Tehran, Iran 
    Lat_Target = Lat_Tehran;    Lon_Target = Lon_Tehran;    dLat = 5; 
elseif Target_Choice == 10 %Tokyo, Japan 
    Lat_Target = Lat_Tokyo;     Lon_Target = Lon_Tokyo;     dLat = 4; 
elseif Target_Choice == 11 %Brasilia, Brazil 
    Lat_Target = Lat_Brasil;    Lon_Target = Lon_Brasil;    dLat = 4; 
elseif Target_Choice == 12 %Buenos Aires, Argentina 
    Lat_Target = Lat_Buenos;    Lon_Target = Lon_Buenos;    dLat = 4; 
elseif Target_Choice == 13 %Canberra, Australia 
    Lat_Target = Lat_Canberra;  Lon_Target = Lon_Canberra;  dLat = 4; 
elseif Target_Choice == 14 %Cape Town, South Africa 
    Lat_Target = Lat_Cape;      Lon_Target = Lon_Cape;      dLat = 4; 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
if Vehicle_Choice == 99   %VEHICLE SELECTION OVERRIDE 
    mass = Factor_mass;   %Mass (kg) 
    S_m2 = Factor_S;      %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Factor_Cd;     %Drag coefficient 
    Cl   = Factor_Cl;     %Lift coefficient 
else 
    [Vehicle] = VehicleSpecs(Vehicle_Choice); 
    mass = Vehicle.mass;  %Mass (kg) 
    S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Vehicle.Cd;    %Drag coefficient 
    Cl   = Vehicle.Cl;    %Lift coefficient 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Reference Orbit Conditions 
Time_Max  = 1.0;            %Maximum simulation time (days) 
ecc_Ref   = 0;              %Orbit eccentricity 
h_Perig   = Factor_Perig;   %Perigee altitude (km) 
h_Apog    = Factor_InitAlt; %Apogee altitude (km) 
lat_Ref   = 0;              %Initial geodetic latitude (deg) 
fpa_Ref   = 0;              %Flight-path angle (deg) 
bank_Ref  = 0;              %Reference orbit bank angle (deg) 
  
%Converts and overwrites initial angle variables 
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref); 
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);  
  
%Reference orbit parameters 
r_Apog    = h_Apog + RE;            %Apogee radial position (km) 
r_Perig   = h_Perig + RE;           %Perigee radial position (km) 
SMA_Ref   = 0.5*(r_Apog + r_Apog);  %Reference orbit semi-major axis (km) 
SMA_Skip  = 0.5*(r_Apog + r_Perig); %Skip orbit semi-major axis (km) 
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Apog,lat_Ref, ... 
                                 fpa_Ref,PSI_Ref,bank_Ref); 
                               
%Apogee velocity for non-rotating frame (km/s) 
V_Apog = sqrt((2*MU*r_Perig)/(r_Apog*(r_Apog + r_Perig))); 
  
%Conversion of time units from days to seconds 
Time_Max = Time_Max*(24)*(60)*(60); 
                 
SMA_Target0     = SMA_Ref;    %Target semi-major axis (km) 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check0(1,1)   = V_Rel;      %Initial guess for velocity (km/s) 
PSI_Check0(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
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%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_t0,Traj_States0] = Maneuver_MainFunctionDOE(Vehicle_Choice,      ... 
                         1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(1,1), ... 
                         lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),      ... 
                         bank_Ref,Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
  
[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1)); 
                        
%Semi-major axis (km) 
SMA_Check0(1,1)  = 0.5*(r_Apog + r_Check0(1,1));   
  
%Iteration error (s) 
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ... 
                    ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));              
%Updated velocity (km/s) 
V_Check0(2,1)    = (V_Check0(1,1) - V_Decrement) - ... 
                   ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check0(2,1)  = PSI_Ref + ... 
                   asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1)); 
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target0 - SMA_Check0(ii-1,1))       > 1E-10 && ... 
          abs(PSI_Check0(ii,1)  - PSI_Check0(ii-1,1)) > 1E-10  
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_t0,Traj_States0] = Maneuver_MainFunctionDOE(Vehicle_Choice, ... 
                       1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(ii,1),     ... 
                       lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),          ... 
                       bank_Ref,Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
         
        [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check0(ii,1)   = 0.5*(r_Apog + r_Check0(ii,1));  
         
        %Iteration error (sec) 
        GuessError0(ii,1)  = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ... 
                              (V_Check0(ii,1) - V_Check0(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check0(ii+1,1)   = V_Check0(ii,1) - ... 
                      ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1)); 
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        %Updated heading angle (rad) 
        PSI_Check0(ii+1,1) = PSI_Ref + ... 
               asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1)); 
        IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ... 
                                                       PSI_Check0(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end                         
 
V_Rel0   = V_Check0(ii);   %Velocity (km/s) 
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad) 
  
%Trajectory simulation for reference orbit 
[RefOrb_t,RefOrb_States] = Maneuver_MainFunctionDOE(Vehicle_Choice,  ... 
                           1,1,1,1,1,Time_Max,r_Apog,V_Rel0,lon_Ref, ... 
                           lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref,        ... 
                           Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Manipulation for Reference Orbit 
r_Data   = RefOrb_States(:,1); %Radial position (km) 
h_Data   = r_Data - RE;        %Altitude (km) 
Lon_Data = RefOrb_States(:,3); %Longitude (rad) 
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad) 
  
%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180) 
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180; 
  
%Converts geodetic latitude from radians to degrees  
Lat_Data = rad2deg(Lat_Data);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Descent Velocity  
IterMax        = 20;         %Maximum number of iterations  
SMA0           = SMA_Ref;    %Initial guess for semi-major axis (km) 
SMA_Target     = SMA_Skip;   %Target semi-major axis (km) 
V_Decrement    = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check(1,1)   = .95*V_Apog; %Initial guess for descent velocity (km/s) 
%Set 'V_Check' coeff. to 0.98 for over-flights; 0.96 for max. inclination  
PSI_Check(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[t_vec,traj_states] = Maneuver_MainFunctionDOE(Vehicle_Choice,1,2,1,1,1, ... 
                      0.5*RefPeriod,r_Apog,V_Check(1,1),lon_Ref,         ... 
                      lat_Ref,fpa_Ref,PSI_Check(1,1),bank_Skip,          ... 
                      Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
  



www.manaraa.com

242 

%Perigee radial position (km)          
[r_Check(1,1),Perig_Index] = min(traj_states(:,1));  
  
%Semi-major axis (km) 
SMA_Check(1,1)  = 0.5*(r_Apog + r_Check(1,1));   
  
%Iteration error (s) 
GuessError(1,1) = -((SMA_Check(1,1) - SMA0)/ ... 
                   ((V_Check(1,1) - V_Decrement) - V_Check(1,1))); 
                
%Updated velocity (km/s) 
V_Check(2,1)    = (V_Check(1,1) - V_Decrement) - ... 
                  ((SMA_Target - SMA_Check(1,1))/GuessError(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check(2,1) = PSI_Ref + ... 
                 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA(1,1) = abs(SMA_Target - SMA_Check(1,1)); 
IterativeDiff_PSI(1,1) = abs(PSI_Check(2,1) - PSI_Check(1,1)); 
  
IterCount = 1; %Initialization of iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target - SMA_Check(ii-1,1))      > 1E-6 && ... 
          abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)) > 1E-8 && ... 
          IterCount < IterMax 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [t_vec,traj_states] = Maneuver_MainFunctionDOE(Vehicle_Choice, ... 
                              1,2,1,1,1,0.5*RefPeriod,r_Apog,          ... 
                              V_Check(ii,1),lon_Ref,lat_Ref,fpa_Ref,   ... 
                              PSI_Check(ii,1),bank_Skip,Factor_mass,   ... 
                              Factor_S,Factor_Cd,Factor_Cl); 
         
        if traj_states(end,2) < 1 
            traj_states(:,:) = 0; 
            %Limits time vector length to length of traj. parameter matrix 
            t_vec = zeros(length(traj_states(:,1)),1); 
            break 
        end 
                            
        %Current iteration perigee radial position (km) 
        [r_Check(ii,1),Perig_Index] = min(traj_states(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check(ii,1)  = 0.5*(r_Apog + r_Check(ii,1));  
         
        %Iteration error (sec) 
        GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ... 
                            (V_Check(ii,1) - V_Check(ii-1,1)));               
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        %Updated velocity (km/s) 
        V_Check(ii+1,1)  = V_Check(ii,1) - ... 
                         ((SMA_Target - SMA_Check(ii,1))/GuessError(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check(ii+1,1) = PSI_Ref + ... 
                asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA(ii,1) = abs(SMA_Target - SMA_Check(ii,1)); 
        IterativeDiff_PSI(ii,1) = abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)); 
  
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end 
  
V_Maneuver  = V_Check(ii,1);            %Descent velocity for target SMA  
dV_Maneuver = abs(V_Maneuver - V_Rel);  %Maneuver delta-V (km/s) 
PSI_Rel     = rad2deg(PSI_Check(ii,1)); %Relative heading angle (deg) 
  
if traj_states(end,1) == 0 
    Skip_t           = 0; 
    Skip_States      = zeros(1,8); 
    Perigee_Altitude = 0; 
     
else 
%Trajectory simulation for skip maneuver 
[Skip_t,Skip_States] = SingleSkip_ManeuverDOE(Vehicle_Choice,1,2,1,1,1, ... 
                       RefPeriod,r_Apog,V_Maneuver,lon_Ref,             ... 
                       lat_Ref,fpa_Ref,deg2rad(PSI_Rel),bank_Skip,      ... 
                       Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
  
Perigee_Altitude = min(Skip_States(:,1)) - RE;    
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if Perigee_Altitude > 50                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Propagation of Re-Circularized Orbit 
Time_Max  = 7200;               %Maximum simulation time (s) 
ecc       = 0;                  %Orbit eccentricity 
r_Prop    = Skip_States(end,1); %Orbit radial position (km) 
h_Prop    = r_Prop - RE;        %Orbit altitude (km) 
lon_Prop  = Skip_States(end,3); %Initial longitude (rad) 
lat_Prop  = Skip_States(end,4); %Initial geodetic latitude (rad) 
fpa_Prop  = 0;                  %Flight-path angle (rad) 
PSI_Prop  = -(min(Skip_States(:,4))); %Heading angle (rad) 
bank_Prop = bank_Skip;          %Bank angle (deg) 
  
%Re-circularized orbit parameters 
SMA_Prop    = 0.5*(r_Prop + r_Prop);        %Semi-major axis (km) 
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec) 
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%Velocity relative to rotating frame (rotating planet) 
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ... 
                                         fpa_Prop,PSI_Prop,bank_Prop); 
  
SMA_TargetProp  = SMA_Prop; 
V_Decrement     = 1 - 0.9999;  %Decrement value for velocity (km/s) 
V_CheckP(1,1)   = V_RelProp;   %Initial guess for velocity (km/s) 
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad) 
IterMax         = 50;          %Maximum number of iterations  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_tP,Traj_StatesP] = Maneuver_MainFunctionDOE(Vehicle_Choice, ... 
                         1,1,1,1,1,0.5*Period_Prop,r_Prop,        ... 
                         V_CheckP(1,1),lon_Prop,lat_Prop,         ... 
                         fpa_Prop,PSI_CheckP(1,1),bank_Prop,      ... 
                         Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
  
[r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1)); 
                        
%Semi-major axis (km) 
SMA_CheckP(1,1)  = 0.5*(r_Prop + r_CheckP(1,1));   
  
%Iteration error (s) 
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ... 
                    ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1))); 
                
%Updated velocity (km/s) 
V_CheckP(2,1)    = (V_CheckP(1,1) - V_Decrement) - ... 
                  ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1)); 
  
%Updated heading angle (rad) 
PSI_CheckP(2,1)  = PSI_Prop + ... 
                   asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp  - SMA_CheckP(1,1)); 
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_TargetProp   - SMA_CheckP(ii-1,1)) > 1E-10 && ... 
          abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ... 
          IterCount < IterMax 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_tP,Traj_StatesP] = Maneuver_MainFunctionDOE(Vehicle_Choice, ... 
                                 1,1,1,1,1,0.5*Period_Prop,r_Prop,        ... 
                                 V_CheckP(ii,1),lon_Prop,lat_Prop,        ... 
                                 fpa_Prop,PSI_CheckP(ii,1),bank_Prop,     ... 
                                 Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
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        [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_CheckP(ii,1)   = 0.5*(r_Prop + r_CheckP(ii,1));  
         
        %Iteration error (sec) 
        GuessErrorP(ii,1)  = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ... 
                               (V_CheckP(ii,1) - V_CheckP(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_CheckP(ii+1,1)   = V_CheckP(ii,1) - ... 
                   ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_CheckP(ii+1,1) = PSI_Prop + ... 
              asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp -   ... 
                                                         SMA_CheckP(ii,1)); 
        IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ... 
                                                       PSI_CheckP(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end  
  
%Trajectory simulation for re-circularized orbit 
[Orbit_t,Orbit_States] = Maneuver_MainFunctionDOE(Vehicle_Choice,   ... 
                         1,1,1,1,1,Time_Max,r_Prop,V_CheckP(ii),    ... 
                         lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii), ... 
                         bank_Prop,Factor_mass,Factor_S,Factor_Cd,Factor_Cl); 
                       
%Re-defined propagated orbit states                                        
PropOrb_t       = [Skip_t ; Skip_t(end) + Orbit_t(2:end)]; 
PropOrb_States  = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)]; 
PropOrb_h       = PropOrb_States(:,1) - RE;     %Altitude (km) 
PropOrb_V       = PropOrb_States(:,2);          %Velocity (km/s) 
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ... 
                       + 180),360) - 180;       %Longitude (rad) 
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad) 
  
%Maximum inclination (deg) 
[MaxIncl,MaxIndex] = max(PropOrb_Lat_deg); 
  
%Time-of-flight to reach maximum inclination (hr) 
TimeMaxIncl = PropOrb_t(MaxIndex)*(1/60)*(1/60); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Deceleration 
%Vehicle model 
if Vehicle_Choice < 99 
    [Vehicle] = VehicleSpecs(Vehicle_Choice); 
     
    mass = Vehicle.mass;  %Mass (kg) 
    S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Vehicle.Cd;    %Drag coefficient 
    Cl   = Vehicle.Cl;    %Lift coefficient     
elseif Vehicle_Choice == 99 
    mass = Factor_mass;   %Mass (kg) 
    S_m2 = Factor_S;      %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Factor_Cd;     %Drag coefficient 
    Cl   = Factor_Cl;     %Lift coefficient 
end 
  
[decel] = EntryDecel(1,mass,S,Cd,Cl,                          ... 
                     PropOrb_States(:,1),PropOrb_States(:,2), ... 
                     PropOrb_States(:,4),PropOrb_States(:,5)); 
  
%Tangential deceleration (g's) 
TangDecelG_Max = max(decel.TangG);   %Maximum value   
TangDecelG_Min = min(decel.TangG);   %Minimum value  
%Normal deceleration (g's) 
NormDecelG_Max = max(decel.NormalG); %Maximum value  
NormDecelG_Min = min(decel.NormalG); %Minimum value 
%Deceleration magnitude (g's) 
MagDecelG_Max = max(decel.Gs);       %Maximum value 
MagDecelG_Min = min(decel.Gs);       %Minimum value 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Heat Flux 
%Atmospheric density (kg/km^3) 
[PropOrb_Rho] = AtmosModel_PostAnalysis(PropOrb_h,2); 
  
%Maximum velocity (km/s) -- Occurs at Perigee 
VMax       = max(PropOrb_V);  
Emissivity = 0.8;  %Emissivity 
Tw_F       = 0;    %Wall temperature (deg F) 
TMaxF      = 1800; %Free-stream temperature (deg F) 
  
%Heat transfer models 
[HeatModel,Eta,T_KE] = HeatFluxModel(PropOrb_V,PropOrb_Rho,Emissivity, ... 
                                     Tw_F,TMaxF,mass,S,Cd,Cl); 
                                  
%Average wall heat flux (non-dimensional) 
Qw          = HeatModel.Qw;   
Qw_Max      = max(Qw);   %Maximum value  
%Average stagnation heat flux (non-dimensional) 
Qs          = HeatModel.Qs;   
Qs_Max      = max(Qs);   %Maximum value 
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%Stagnation heat flux (kW/m^2); Source: Rao (2002) 
Qdot        = HeatModel.Qdot;  
Qdot_Max    = max(Qdot); %Maximum value 
 
%Stagnation heat flux (kW/m^2); Source: Havey (1982) 
QHavey      = HeatModel.QHavey; 
QHavey_Max  = max(QHavey); 
  
%Stagnation heat flux (kW/m^2); Source: Galman (1961) 
QGalman     = HeatModel.QGalman; 
QGalman_Max = max(QGalman); 
                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Total Skip Maneuver Delta-V 
V_EndSkip = Skip_States(end,2);         %Velocity where fpa = 0 (km/s) 
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)  
  
%Total delta-V for skip maneuver (km/s) 
dV_SkipTotal = dV_Maneuver + dV_ReCirc;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Workspace Variable Definition 
%Dimension (7x1) 
Trajectory_Analysis  = [bank_Skip,Perigee_Altitude,h_Prop,PropOrb_h(end), ... 
                         TimeMaxIncl,dV_Maneuver,dV_SkipTotal];                    
%Dimension (5x1) 
Inclinaton_Analysis   = [rad2deg(PSI_Ref),Perigee_Altitude,h_Prop, ... 
                         dV_Maneuver,dV_SkipTotal,MaxIncl]; 
%Dimension (6x1)                      
Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ... 
                         NormDecelG_Max,NormDecelG_Min, ... 
                         MagDecelG_Max, MagDecelG_Min];  
%Dimension (5x1)                      
HeatFlux_Analysis     = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max];  
 
%Dimension (11x1) 
Combined_Analysis     = [Deceleration_Analysis,HeatFlux_Analysis]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
elseif Perigee_Altitude <= 50   
%Dimension (7x1) 
Trajectory_Analysis   = zeros(7,1);                  
%Dimension (5x1) 
Inclinaton_Analysis   = zeros(5,1); 
%Dimension (1x1) 
MaxIncl               = zeros(1,1);  
%Dimension (6x1)                      
Deceleration_Analysis = zeros(6,1); 
%Dimension (5x1)                      
HeatFlux_Analysis     = zeros(5,1); 
%Dimension (11x1) 
Combined_Analysis     = zeros(11,1); 
end 
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BankManeuvers_fxnDOE_Hohmann.m 
 
function 
[Skip_t,Skip_States,Trajectory_States,RefOrb_States,Trajectory_Analysis] =... 
          BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max,h_init, ... 
                                      PSI_Ref,fpa_Descent,dV_Boost,bank_Skip) 
  
global MU RE   
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
if Vehicle_Choice == 9    %VEHICLE SELECTION OVERRIDE 
    mass = 2000;          %Mass (kg) 
    S_m2 = 18.5;          %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = 0.5;           %Drag coefficient 
    Cl   = 3.0;           %Lift coefficient 
else 
    [Vehicle] = VehicleSpecs(Vehicle_Choice); 
    mass = Vehicle.mass;  %Mass (kg) 
    S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Vehicle.Cd;    %Drag coefficient 
    Cl   = Vehicle.Cl;    %Lift coefficient 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Reference Orbit Conditions 
h_atm     = 120; %Altitude of upper limit of sensible atmosphere (km) 
lon_Ref   = 0;   %Initial longitude (deg) 
lat_Ref   = 0;   %Initial geodetic latitude (deg) 
fpa_Ref   = 0;   %Flight-path angle (deg) 
bank_Ref  = 0;   %Reference orbit bank angle (deg) 
  
%Converts and overwrites initial angle variables 
lon_Ref     = deg2rad(lon_Ref);     lat_Ref = deg2rad(lat_Ref); 
fpa_Ref     = deg2rad(fpa_Ref);     PSI_Ref = deg2rad(PSI_Ref);  
fpa_Descent = deg2rad(fpa_Descent); 
  
%Reference orbit parameters 
r_init    = h_init + RE;            %Initial radial position (km) 
SMA_Ref   = 0.5*(r_init + r_init);  %Reference orbit semi-major axis (km) 
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_init,lat_Ref, ... 
                                 fpa_Ref,PSI_Ref,bank_Ref); 
 
%Conversion of time units from minutes to seconds 
Time_Max = Time_Max*(60);                 
SMA_Target0     = SMA_Ref;    %Target semi-major axis (km) 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
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V_Check0(1,1)   = V_Rel;      %Initial guess for velocity (km/s) 
PSI_Check0(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                         1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(1,1), ... 
                         lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref); 
  
[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1)); 
                        
%Semi-major axis (km) 
SMA_Check0(1,1)  = 0.5*(r_init + r_Check0(1,1));   
  
%Iteration error (s) 
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ... 
                    ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1))); 
                
%Updated velocity (km/s) 
V_Check0(2,1)    = (V_Check0(1,1) - V_Decrement) - ... 
                   ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check0(2,1)  = PSI_Ref + ... 
                   asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1)); 
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target0 - SMA_Check0(ii-1,1))       > 1E-10 && ... 
          abs(PSI_Check0(ii,1)  - PSI_Check0(ii-1,1)) > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ... 
                       1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(ii,1),  ... 
                       lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref); 
         
        [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check0(ii,1)   = 0.5*(r_init + r_Check0(ii,1));  
         
        %Iteration error (sec) 
        GuessError0(ii,1)  = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ... 
                              (V_Check0(ii,1) - V_Check0(ii-1,1))); 
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        %Updated velocity (km/s) 
        V_Check0(ii+1,1)   = V_Check0(ii,1) - ... 
                      ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check0(ii+1,1) = PSI_Ref + ... 
               asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1)); 
        IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ... 
                                                       PSI_Check0(ii-1,1)); 
 
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end                         
  
V_Rel0   = V_Check0(ii);   %Velocity (km/s) 
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad) 
  
%Trajectory simulation for reference orbit 
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ... 
                           1,1,1,1,1,Time_Max,r_init,V_Rel0,     ... 
                           lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref); 
                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Skip Entry Manuever 
%Relative states descent-boost maneuver 
[V_RelBoost,fpa_RelBoost,PSI_RelBoost] = ... 
                         RelativeStates_Entry(h_init,dV_Boost,lon_Ref, ... 
                                              lat_Ref,fpa_Descent,PSI_Ref); 
  
%Trajectory simulation for skip maneuvers                                           
[Skip_t,Skip_States] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ... 
                       Time_Max,r_init,V_RelBoost,lon_Ref,             ... 
                       lat_Ref,fpa_RelBoost,PSI_RelBoost,bank_Skip);                                           
                                           
%Skip entry trajectory states 
SkipTraj_h = (Skip_States(:,1)) - RE; %Altitude (km) 
SkipTraj_V = Skip_States(:,2);        %Velocity (km/s) 
  
%Re-Circularized velocity relative to rotating frame (rotating planet) 
[V_RelProp,PSI_RelProp] = ... 
       RelativeStates(mass,S,Cd,Cl,SkipTraj_h(end),Skip_States(end,3), ... 
                            Skip_States(end,5),Skip_States(end,6),bank_Skip); 
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Deceleration 
[decel] = EntryDecel(1,mass,S,Cd,Cl,Skip_States(:,1),Skip_States(:,2),... 
                                          Skip_States(:,4),Skip_States(:,5)); 
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%Tangential deceleration (g's) 
TangDecelG_Max = max(decel.TangG);   %Maximum value   
TangDecelG_Min = min(decel.TangG);   %Minimum value 
  
%Normal deceleration (g's) 
NormDecelG_Max = max(decel.NormalG); %Maximum value  
NormDecelG_Min = min(decel.NormalG); %Minimum value 
  
%Deceleration magnitude (g's) 
MagDecelG_Max = max(decel.Gs);       %Maximum value 
MagDecelG_Min = min(decel.Gs);       %Minimum value 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Heat Flux 
%Atmospheric density (kg/km^3) 
[SkipTraj_Rho] = AtmosModel_PostAnalysis(SkipTraj_h,2); 
  
%Maximum velocity (km/s) -- Occurs at Perigee 
VMax       = max(SkipTraj_V);  
Emissivity = 0.8;  %Emissivity 
Tw_F       = 0;    %Wall temperature (deg F) 
TMaxF      = 1800; %Free-stream temperature (deg F) 
  
%Heat transfer models 
[HeatModel,Eta,T_KE] = HeatFluxModel(SkipTraj_V,SkipTraj_Rho,Emissivity, ... 
                                     Tw_F,TMaxF,mass,S,Cd,Cl); 
                                  
%Average wall heat flux (non-dimensional) 
Qw          = HeatModel.Qw;   
Qw_Max      = max(Qw);   %Maximum value 
  
%Average stagnation heat flux (non-dimensional) 
Qs          = HeatModel.Qs;   
Qs_Max      = max(Qs);   %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Rao (2002) 
Qdot        = HeatModel.Qdot;  
Qdot_Max    = max(Qdot); %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Havey (1982) 
QHavey      = HeatModel.QHavey; 
QHavey_Max  = max(QHavey); 
  
%Stagnation heat flux (kW/m^2); Source: Galman (1961) 
QGalman     = HeatModel.QGalman; 
QGalman_Max = max(QGalman); 
                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Descent-Boost Delta-V 
%Descent delta-V to alter flight-path angle (km/s) 
[dV_Descent] = DescentDeltaV(h_init,h_atm,rad2deg(fpa_Descent));   
dV_ReCirc = abs(Skip_States(end,2) - V_RelProp); 
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%Descent-boost delta-V (km/s) 
dV_DB = dV_Descent + dV_Boost + dV_ReCirc;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Workspace Variable Definition 
Trajectory_Analysis   = [rad2deg(fpa_Descent),dV_Descent,dV_DB]; 
                                       
Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ... 
                         NormDecelG_Max,NormDecelG_Min, ... 
                         MagDecelG_Max, MagDecelG_Min]; 
                      
HeatFlux_Analysis     = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max]; 
  
Trajectory_States     = [Skip_t,Skip_States]; 
 
 
 

BankManeuvers_MultiAOT.m 
 
function 
[Skip_t,Skip_States,Trajectory_States,RefOrb_States,Trajectory_Analysis] = ... 
                    BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max,h_init, ... 
                                       PSI_Ref,fpa_Descent,dV_Boost,bank_Skip) 
  
global MU RE    
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
if Vehicle_Choice == 9    %VEHICLE SELECTION OVERRIDE 
    mass = 2000;          %Mass (kg) 
    S_m2 = 18.5;          %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = 0.5;           %Drag coefficient 
    Cl   = 3.0;           %Lift coefficient 
else 
    [Vehicle] = VehicleSpecs(Vehicle_Choice); 
    mass = Vehicle.mass;  %Mass (kg) 
 
    S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Vehicle.Cd;    %Drag coefficient 
    Cl   = Vehicle.Cl;    %Lift coefficient 
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Reference Orbit Conditions 
h_atm     = 120;    %Altitude of upper limit of sensible atmosphere (km) 
lon_Ref   = 0;      %Initial longitude (deg) 
lat_Ref   = 0;      %Initial geodetic latitude (deg) 
fpa_Ref   = 0;      %Flight-path angle (deg) 
bank_Ref  = 0;      %Reference orbit bank angle (deg) 
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%Converts and overwrites initial angle variables 
lon_Ref     = deg2rad(lon_Ref);     lat_Ref = deg2rad(lat_Ref); 
fpa_Ref     = deg2rad(fpa_Ref);     PSI_Ref = deg2rad(PSI_Ref);  
fpa_Descent = deg2rad(fpa_Descent); 
  
%Reference orbit parameters 
r_init    = h_init + RE;            %Initial radial position (km) 
SMA_Ref   = 0.5*(r_init + r_init);  %Reference orbit semi-major axis (km) 
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_init,lat_Ref, ... 
                                 fpa_Ref,PSI_Ref,bank_Ref); 
                               
%Conversion of time units from minutes to seconds 
Time_Max = Time_Max*(60); 
                 
SMA_Target0     = SMA_Ref;    %Target semi-major axis (km) 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check0(1,1)   = V_Rel;      %Initial guess for velocity (km/s) 
PSI_Check0(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                         1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(1,1), ... 
                         lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref); 
  
[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1)); 
                        
%Semi-major axis (km) 
SMA_Check0(1,1)  = 0.5*(r_init + r_Check0(1,1));   
  
%Iteration error (s) 
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ... 
                    ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1))); 
                
%Updated velocity (km/s) 
V_Check0(2,1)    = (V_Check0(1,1) - V_Decrement) - ... 
                   ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check0(2,1)  = PSI_Ref + ... 
                   asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(2,1)));                   
 
%Difference between calculated and target trajectory states 
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1)); 
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));  
IterCount = 1; %Initializes iteration counter for Secant loop 
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%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target0 - SMA_Check0(ii-1,1))       > 1E-10 && ... 
          abs(PSI_Check0(ii,1)  - PSI_Check0(ii-1,1)) > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ... 
                       1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(ii,1),  ... 
                       lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref); 
         
        [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check0(ii,1)   = 0.5*(r_init + r_Check0(ii,1));  
         
        %Iteration error (sec) 
        GuessError0(ii,1)  = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ... 
                              (V_Check0(ii,1) - V_Check0(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check0(ii+1,1)   = V_Check0(ii,1) - ... 
                      ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check0(ii+1,1) = PSI_Ref + ... 
               asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1)); 
        IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ... 
                                                       PSI_Check0(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end                         
  
V_Rel0   = V_Check0(ii);   %Velocity (km/s) 
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad) 
  
%Trajectory simulation for reference orbit 
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ... 
                           1,1,1,1,1,Time_Max,r_init,V_Rel0,     ... 
                           lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref); 
   
 
                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Skip Entry Manuever 
%Relative states descent-boost maneuver 
[V_RelBoost,fpa_RelBoost,PSI_RelBoost] = ... 
                         RelativeStates_Entry(h_init,dV_Boost,lon_Ref, ... 
                                              lat_Ref,fpa_Descent,PSI_Ref); 
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%Trajectory simulation for skip maneuvers                                           
[Skip_t,Skip_States] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ... 
                       Time_Max,r_init,V_RelBoost,lon_Ref,             ... 
                       lat_Ref,fpa_RelBoost,PSI_RelBoost,bank_Skip);                                             
                                           
%Skip entry trajectory states 
SkipTraj_h = (Skip_States(:,1)) - RE; %Altitude (km) 
SkipTraj_V = Skip_States(:,2);        %Velocity (km/s) 
  
%Re-Circularized velocity relative to rotating frame (rotating planet) 
[V_RelProp,PSI_RelProp] = 
RelativeStates(mass,S,Cd,Cl,SkipTraj_h(end),Skip_States(end,3), ... 
                            Skip_States(end,5),Skip_States(end,6),bank_Skip); 
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Deceleration 
[decel] = EntryDecel(1,mass,S,Cd,Cl,                    ... 
                     Skip_States(:,1),Skip_States(:,2), ... 
                     Skip_States(:,4),Skip_States(:,5)); 
  
%Tangential deceleration (g's) 
TangDecelG_Max = max(decel.TangG);    %Maximum value   
TangDecelG_Min = min(decel.TangG);    %Minimum value 
  
%Normal deceleration (g's) 
NormDecelG_Max = max(decel.NormalG);  %Maximum value  
NormDecelG_Min = min(decel.NormalG);  %Minimum value 
  
%Deceleration magnitude (g's)  
MagDecelG_Max = max(decel.Gs);        %Maximum value 
MagDecelG_Min = min(decel.Gs);        %Minimum value 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Heat Flux 
%Atmospheric density (kg/km^3) 
[SkipTraj_Rho] = AtmosModel_PostAnalysis(SkipTraj_h,2); 
  
%Maximum velocity (km/s) -- Occurs at Perigee 
VMax       = max(SkipTraj_V); 
  
Emissivity = 0.8;  %Emissivity 
Tw_F       = 0;    %Wall temperature (deg F) 
TMaxF      = 1800; %Free-stream temperature (deg F) 
  
%Heat transfer models 
[HeatModel,Eta,T_KE] = HeatFluxModel(SkipTraj_V,SkipTraj_Rho,Emissivity, ... 
                                     Tw_F,TMaxF,mass,S,Cd,Cl); 
                                  
%Average wall heat flux (non-dimensional) 
Qw          = HeatModel.Qw;   
Qw_Max      = max(Qw);   %Maximum value 
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%Average stagnation heat flux (non-dimensional) 
Qs          = HeatModel.Qs;   
Qs_Max      = max(Qs);   %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Rao (2002) 
Qdot        = HeatModel.Qdot;  
Qdot_Max    = max(Qdot); %Maximum value 
  
%Stagnation heat flux (kW/m^2); Source: Havey (1982) 
QHavey      = HeatModel.QHavey; 
QHavey_Max  = max(QHavey); 
  
%Stagnation heat flux (kW/m^2); Source: Galman (1961) 
QGalman     = HeatModel.QGalman; 
QGalman_Max = max(QGalman); 
                  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Descent-Boost Delta-V 
%Descent delta-V to alter flight-path angle (km/s) 
[dV_Descent] = DescentDeltaV(h_init,h_atm,rad2deg(fpa_Descent));   
  
dV_ReCirc = abs(Skip_States(end,2) - V_RelProp); 
  
%Descent-boost delta-V (km/s) 
dV_DB = dV_Descent + dV_Boost + dV_ReCirc;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Workspace Variable Definition 
Trajectory_Analysis   = [rad2deg(fpa_Descent),dV_Descent,dV_DB]; 
                                       
Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ... 
                         NormDecelG_Max,NormDecelG_Min, ... 
                         MagDecelG_Max, MagDecelG_Min]; 
                      
HeatFlux_Analysis     = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max]; 
  
Trajectory_States     = [Skip_t,Skip_States]; 
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BiElliptic.m 
 
function [dV_BiElliptic,TOF,TOF1] = BiElliptic(h_Init,h_b,h_Final) 
  
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Transfer Orbit Parameters 
r_Init  = h_Init + RE;  %Initial orbit radius (km) 
r_b     = h_b + RE;     %Intermediate orbit radius (km) 
r_Final = h_Final + RE; %Final orbit radius (km) 
  
%Transfer orbit semi-major axes (km) 
sma_trans1 = 0.5.*(r_Init + r_b);   
sma_trans2 = 0.5.*(r_b + r_Final); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Initial Orbit/Transfer Orbit #1 
V_Init  = sqrt(MU./r_Init); 
Vt1a    = sqrt(((2*MU)./r_Init)-(MU/sma_trans1)); 
dV_a    = Vt1a - V_Init; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Transfer Orbits #1,2 Transition 
Vt1b    = sqrt(((2*MU)./r_b)-(MU/sma_trans1)); 
Vt2b    = sqrt(((2*MU)./r_b)-(MU/sma_trans2)); 
dV_b    = Vt2b - Vt1b; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Transfer Orbit #2/Final Orbit 
Vt2c    = sqrt(((2*MU)./r_Final)-(MU/sma_trans2)); 
V_Final = sqrt(MU./r_Final); 
dV_c    = V_Final - Vt2c; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Time-of-Flight and Total Delta-V Required for Bi-Elliptic Transfer 
TOF1 = (pi*sqrt((sma_trans1.^3)./MU)); 
TOF  = (pi*sqrt((sma_trans1.^3)./MU)) + (pi*sqrt((sma_trans2.^3)./MU)); 
dV_BiElliptic = abs(dV_a) + abs(dV_b) + abs(dV_c); %(km/s) 
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BiElliptic_VelInput.m 
 
function [dV_BiElliptic,TOF,TOF1] = ... 
                              BiElliptic_VelInput(h_Init,h_b,h_Final,V_Final) 
  
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Transfer Orbit Parameters 
r_Init  = h_Init + RE;  %Initial orbit radius (km) 
r_b     = h_b + RE;     %Intermediate orbit radius (km) 
r_Final = h_Final + RE; %Final orbit radius (km) 
  
%Transfer orbit semi-major axes (km) 
sma_trans1 = 0.5.*(r_Init + r_b);   
sma_trans2 = 0.5.*(r_b + r_Final); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Initial Orbit/Transfer Orbit #1 
V_Init  = sqrt(MU./r_Init); 
Vt1a    = sqrt(((2*MU)./r_Init)-(MU/sma_trans1)); 
dV_a    = Vt1a - V_Init; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Transfer Orbits #1,2 Transition 
Vt1b    = sqrt(((2*MU)./r_b)-(MU/sma_trans1)); 
Vt2b    = sqrt(((2*MU)./r_b)-(MU/sma_trans2)); 
dV_b    = Vt2b - Vt1b; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Transfer Orbit #2/Final Orbit 
Vt2c    = sqrt(((2*MU)./r_Final)-(MU/sma_trans2)); 
dV_c    = V_Final - Vt2c; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Time-of-Flight and Total Delta-V Required for Bi-Elliptic Transfer 
TOF1 = (pi*sqrt((sma_trans1.^3)./MU)); 
TOF  = (pi*sqrt((sma_trans1.^3)./MU)) + (pi*sqrt((sma_trans2.^3)./MU)); 
dV_BiElliptic = abs(dV_a) + abs(dV_b) + abs(dV_c); %(km/s) 
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DescentBoost_Molniya.m 
 
clear all; clc; close all; 
  
global MU RE   
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Maneuver Simulation 
Vehicle_Choice = 1;     %Vehicle selection 
Map_Choice     = 1;     %Map plotting selection 
h_Target       = 502;  %Target altitude (km) 
h_Init         = 1000;  %Initial altitude (km) 
AltThreshold   = 150;   %Altitude threshold for interpolation (km) 
PSI_Init       = 70;    %Heading angle (deg) 
fpa_Descent    = -12.5; %Flight-path angle (deg) 
dV_Boost       = 0.5;   %Boost delta-V (km/s) 
bank_Skip      = 0;     %Bank angle (deg) 
Time_Max       = 720;   %Maximum simulation time (min) 
  
[Skip_t1,Skip_States,Traj_States,RefOrb_States,Traj_Analysis]      ... 
                 = BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max, ... 
                   h_Init,PSI_Init,fpa_Descent,dV_Boost,bank_Skip); 
  
Skip_t   = Traj_States(:,1)./60;  %Time (min) 
Skip_h   = Traj_States(:,2) - RE; %Altitude (km) 
Skip_V   = Traj_States(:,3);      %Velocity (km/s) 
Skip_lon = Traj_States(:,4);      %Longitude (rad) 
Skip_lat = Traj_States(:,5);      %Latitude (rad) 
Skip_fpa = Traj_States(:,6);      %Flight-path angle (rad) 
Skip_psi = Traj_States(:,7);      %Heading angle (rad) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
[Vehicle] = VehicleSpecs(Vehicle_Choice); 
mass = Vehicle.mass;  %Mass (kg) 
S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
S    = S_m2/(1000^2); %Planform area (km^2) 
Cd   = Vehicle.Cd;    %Drag coefficient 
Cl   = Vehicle.Cl;    %Lift coefficient 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Molniya Orbit Parameters 
SMA_Molniya = 26562; %Molniya orbit semi-major axis (km) 
  
%Perigee 
h_perig = h_Target;                  %Altitude (km) 
r_perig = h_perig + RE;              %Radius (km) 
  
%Apogee 
r_apog  = (2*SMA_Molniya) - r_perig; %Radius (km) 
h_apog  = r_apog - RE;               %Altitude (km) 
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%Molniya orbit eccentricity 
ecc     = Eccentricity(r_apog,r_perig); 
  
%Orbit velocity 
V_perig = OrbitVelocity(h_perig + RE,ecc,0);   %Perigee  
V_apog  = OrbitVelocity(h_apog  + RE,ecc,180); %Apogee  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Trajectory Crossings of Target Altitude 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(Skip_h) 
    mm = mm + 1; 
    if abs(Skip_h(ii) - h_Target) < AltThreshold  
        AltTGT_Crossing(mm,1) = Skip_h(ii); 
        AltTGT_Crossing(mm,2) = Skip_t(ii); 
        AltTGT_Crossing(mm,3) = Skip_V(ii); 
        AltTGT_Crossing(mm,4) = Skip_lon(ii); 
        AltTGT_Crossing(mm,5) = Skip_lat(ii); 
        AltTGT_Crossing(mm,6) = Skip_fpa(ii); 
        AltTGT_Crossing(mm,7) = Skip_psi(ii); 
    else 
        AltTGT_Crossing(mm,1:7) = 0; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(AltTGT_Crossing)      
    if AltTGT_Crossing(ii) ~= 0 
        mm = mm + 1; 
        FlagVector_Alt(mm,1)  = ii; 
        WithinIdent_Alt(mm,:) = AltTGT_Crossing(ii,:); 
    end 
end 
FlagVector_Alt = [FlagVector_Alt;0]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Jumps in Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector_Alt)-1 
    if abs((FlagVector_Alt(ii+1) - FlagVector_Alt(ii))) > 1 
        mm = mm + 1; 
        AltTGT_Jump(mm,1) = ii; 
    end 
end 
AltTGT_Jump = [0;AltTGT_Jump]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Interpolation of Crossing Trajectories 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(AltTGT_Jump) 
    mm = mm + 1; 
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  AltTGT_Interp(mm,:) = ... 
        interp1(AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ... 
                                FlagVector_Alt(AltTGT_Jump(ii)),1),  ... 
                AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ... 
                                FlagVector_Alt(AltTGT_Jump(ii)),2:7), ... 
                h_Target,'spline'); %Cubic spline interpolation 
end    
  
%Removal of negative interpolated points  
AltTGT_Interp(any(AltTGT_Interp(:,1)<0,2),:) = [];  
  
AltTGT_Vector = h_Target.*ones(length(AltTGT_Interp(:,1)),1); 
AltCrossings  = [AltTGT_Interp(:,1),AltTGT_Vector,AltTGT_Interp(:,2:6)]; 
  
%Removal of extremely large interpolated points  
AltCrossings(any(AltCrossings(:,1)>(5*Time_Max),2),:) = [];  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Minimum Re-Circularization Delta-V  
mm = 0; %Initializes loop index at zero 
nn = 1; %Initializes vector concatenation counter at one  
  
for mm = 1:length(AltCrossings(:,1)) 
  
%Re-Circularized velocity relative to rotating frame (rotating planet) 
[V_Rel_ReCirc(nn,1),PSI_Rel_ReCirc(nn,2)] = RelativeStates(mass,S,Cd,Cl, ... 
                       h_Target,AltCrossings(mm,5),AltCrossings(mm,6),   ... 
                       AltCrossings(mm,7),bank_Skip); 
  
    mm = mm + 1; %Update to index counter 
    nn = nn + 1; %Update to solution matrix concatenation counter 
end  
  
%Re-circularization delta-V (km/s) 
dV_ReCirc_Vec = abs(AltCrossings(:,3) - V_perig); 
  
%Concatenation of re-circ. delta-V vector with crossings solutions 
AltCrossings_withdV = [AltCrossings,dV_ReCirc_Vec]; 
  
%Minimum re-circularization delta-V and related states 
[Min_dV,Min_Flag] = min(AltCrossings_withdV(2:end,end)); 
Min_States = AltCrossings_withdV(Min_Flag+1,:); 
%NOTE: 'Min' search starts with Row 2 so as to prevent orbit insertion 
%occurring at the first crossing of the target altitude and thus ensuring 
%at least one skip in atmosphere.  
  
%Maneuver simulation constrained by elapsed time of minimum delta-V 
[Skip_t_MOD,Skip_States_MOD,Traj_States_MOD,RefOrb_States_MOD, ... 
 Traj_Analysis_MOD] = BankManeuvers_MultiAOT(Vehicle_Choice,   ... 
                      Min_States(1,1),h_Init,PSI_Init,         ... 
                      fpa_Descent,dV_Boost,bank_Skip); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Propagation of Re-Circularized Orbit 
Time_Prop = (Time_Max - Min_States(1,1))*60;  %Maximum simulation time (s) 
ecc       = 0;                                %Orbit eccentricity 
r_Prop    = Skip_States_MOD(end,1);           %Orbit radial position (km) 
h_Prop    = r_Prop - RE;                      %Orbit altitude (km) 
lon_Prop  = Skip_States_MOD(end,3);           %Initial longitude (rad) 
lat_Prop  = Skip_States_MOD(end,4);           %Initial latitude (rad) 
fpa_Prop  = 0;                                %Flight-path angle (rad) 
bank_Prop = bank_Skip;                        %Bank angle (deg) 
  
if bank_Skip ~= 0 
    PSI_Prop  = -(min(Skip_States_MOD(:,4))); %Heading angle (rad) 
else 
    PSI_Prop  = ((Skip_States_MOD(end,6)));   %Heading angle (rad) 
end 
  
%Re-circularized orbit parameters 
SMA_Prop    = 0.5*(r_Prop + r_Prop);         %Semi-major axis (km) 
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU);  %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ... 
                                         fpa_Prop,PSI_Prop,bank_Prop); 
  
SMA_TargetProp  = SMA_Prop; 
V_Decrement     = 1 - 0.9999;  %Decrement value for velocity (km/s) 
V_CheckP(1,1)   = V_RelProp;   %Initial guess for velocity (km/s) 
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad) 
IterMax         = 50;          %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                                      1,1,1,1,1,0.5*Period_Prop,r_Prop, ... 
                                      V_CheckP(1,1),lon_Prop,lat_Prop,  ... 
                                      fpa_Prop,PSI_CheckP(1,1),bank_Prop); 
 [r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1)); 
                        
%Semi-major axis (km) 
SMA_CheckP(1,1)  = 0.5*(r_Prop + r_CheckP(1,1));   
  
%Iteration error (s) 
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ... 
                    ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1))); 
                
%Updated velocity (km/s) 
V_CheckP(2,1)    = (V_CheckP(1,1) - V_Decrement) - ... 
                  ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1)); 
  
%Updated heading angle (rad) 
PSI_CheckP(2,1)  = PSI_Prop + ... 
                 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1))); 
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%Difference between calculated and target trajectory states 
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp  - SMA_CheckP(1,1)); 
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_TargetProp   - SMA_CheckP(ii-1,1)) > 1E-10 && ... 
          abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ... 
          IterCount < IterMax 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ... 
                      1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1),  ... 
                      lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii,1),bank_Prop); 
         
        [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_CheckP(ii,1)   = 0.5*(r_Prop + r_CheckP(ii,1));  
         
        %Iteration error (sec) 
        GuessErrorP(ii,1)  = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ... 
                               (V_CheckP(ii,1) - V_CheckP(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_CheckP(ii+1,1)   = V_CheckP(ii,1) - ... 
                   ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_CheckP(ii+1,1) = PSI_Prop + ... 
              asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp -   ... 
                                                         SMA_CheckP(ii,1)); 
        IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ... 
                                                       PSI_CheckP(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end  
  
%Trajectory simulation for re-circularized orbit 
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice,    ... 
                          1,1,1,1,1,Time_Prop,r_Prop,V_CheckP(ii), ... 
                          
lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii),bank_Prop); 
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%Re-defined propagated orbit states                                        
PropOrb_t       = [Skip_t_MOD ; Skip_t_MOD(end) + Orbit_t(2:end)]; 
PropOrb_States  = [Skip_States_MOD(:,1:6) ; Orbit_States(2:end,1:6)]; 
PropOrb_h       = PropOrb_States(:,1) - RE;     %Altitude (km) 
PropOrb_V       = PropOrb_States(:,2);          %Velocity (km/s) 
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ... 
                       + 180),360) - 180;       %Longitude (rad) 
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad) 
  
%Maximum inclination (deg) 
MaxIncl = max(PropOrb_Lat_deg);  
  
%Inclination change (deg) 
dIncl   = MaxIncl - PSI_Init; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Total Delta-V 
dV_Descent = Traj_Analysis_MOD(2); %Descent delta-V (km/s) 
dV_ReCirc  = Min_dV;               %Re-circularization delta-V (km/s)  
  
%Total delta-V for descent-boost skip maneuver (km/s) 
dV_Total   = dV_Descent + dV_Boost + dV_ReCirc; 
  
%Hohmann transfer delta-V (km/s) 
[dV_Hohmann_perig,TOF_Hohmann_perig] = 
Hohmann_VelInput(h_Init,h_perig,V_perig); 
[dV_Hohmann_apog,TOF_Hohmann_apog] = Hohmann_VelInput(h_Init,h_apog, V_apog); 
  
%Combined Hohmann transfer delta-V (km/s) 
[dV_Combined_perig,TOF_Combined_perig] = ... 
                     Hohmann_Combined_VelInput(h_Init,h_perig,dIncl,V_perig); 
[dV_Combined_apog, TOF_Combined_apog]  = ... 
                     Hohmann_Combined_VelInput(h_Init,h_apog,dIncl,V_apog); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Maneuver Time-of-Flight 
%Descent-boost maneuver 
TOF_Skip           = (Skip_t_MOD(end))/60; 
  
%Hohmann transfer  
TOF_Hohmann_perig  = TOF_Hohmann_perig/60; 
TOF_Hohmann_apog   = TOF_Hohmann_apog/60; 
  
%Combined Hohmann transfer  
TOF_Combined_perig = TOF_Combined_perig/60; 
TOF_Combined_apog  = TOF_Combined_apog/60; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg  
%Reference orbit 
[Lon_RefOrb,  Lat_RefOrb,  LonSplit_RefOrb,  LatSplit_RefOrb] = ... 
                                             CoordinateJump(RefOrb_States); 
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%Propagated re-circularized orbit                                         
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ... 
                                             CoordinateJump(PropOrb_States); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plotting Commands 
%Conversion of time units for plotting 
Skip_Time = Skip_t; 
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Geodetic Altitude (km) v. Time  
subplot(2,2,1); box on; grid off; 
hold on; plot(Skip_Time,Skip_States(:,1)-RE,'b');  
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_Target,h_Target],'k-.'); 
hold on; plot(AltCrossings(:,1),AltCrossings(:,2),'go','LineWidth',2); 
xlabel('Time, min'); 
ylabel('Geodetic Altitude, km'); 
  
h_atm = 120; %Altitude of upper limit of sensible atmosphere (km) 
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');  
  
legend('Descent-Boost Trajectory','Target Altitude','Altitude Crossings', ... 
       'Upper Limit of Sensible Atmosphere','Location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Geodetic Altitude (km) v. Time  
subplot(2,2,2); box on; grid on; 
hold on; plot(PropOrb_Time,PropOrb_h,'b');   
xlabel('Time, min'); 
ylabel('Geodetic Altitude, km'); 
  
h_atm = 120; %Altitude of upper limit of sensible atmosphere (km) 
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V (km/s) v. Maneuver Type  
subplot(2,2,3); box on; grid off; 
dV_Bar = [dV_Descent,dV_Boost,dV_ReCirc,dV_Total, ... 
          dV_Hohmann_perig,dV_Hohmann_apog]; 
bar(dV_Bar); 
set(gca,'XTickLabel',{'Descent +','Boost +','Re-Circ.=','Total Skip', ... 
                      'Hohmann (Perig.)','Hohmann (Apog.)'},'FontSize',8); 
hold on; bar(5,dV_Hohmann_perig,'r'); 
hold on; bar(6,dV_Hohmann_apog,'g'); 
set(gca,'YTick',0:0.25:3.5); 
n = get(gca,'Ytick'); set(gca,'Yticklabel',sprintf('%.2f |',n')); 
xlabel('Maneuver and/or Maneuver Segment','FontSize',10); 
ylabel('\it\DeltaV\rm, km/s','FontSize',10); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Time-of-Flight v. Maneuver Type  
subplot(2,2,4); box on; grid off; 
TOF_Bar = [TOF_Skip,TOF_Hohmann_perig,TOF_Hohmann_apog]; 
bar(TOF_Bar); 
set(gca,'XTickLabel',{'Descent-Boost','Hohmann (Perig.)',... 
                      'Hohmann (Apog.)'},'FontSize',8); 
hold on; bar(2,TOF_Hohmann_perig,'r'); 
hold on; bar(3,TOF_Hohmann_apog,'g'); 
xlabel('Maneuver','FontSize',10); 
ylabel('Time-of-Flight, min','FontSize',10); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
 
 
 

DescentBoost_ReCirc.m 
 
clear all; clc; close all; 
  
global MU RE   
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Maneuver Simulation 
Vehicle_Choice = 1;     %Vehicle selection 
Map_Choice     = 1;     %Map plotting selection 
h_Target       = 500;   %Target altitude (km) 
h_Init         = 500;   %Initial altitude (km) 
AltThreshold   = 100;   %Altitude threshold for interpolation (km) 
PSI_Init       = 70;    %Heading angle (deg) 
fpa_Descent    = -7.9;  %Flight-path angle (deg) 
dV_Boost       = 0.5;   %Boost delta-V (km/s) 
bank_Skip      = 0;     %Bank angle (deg) 
Time_Max       = 720;   %Maximum simulation time (min) 
  
[Skip_t1,Skip_States,Traj_States,RefOrb_States,Traj_Analysis]      ... 
                 = BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max, ... 
                   h_Init,PSI_Init,fpa_Descent,dV_Boost,bank_Skip); 
  
Skip_t   = Traj_States(:,1)./60;  %Time (min) 
Skip_h   = Traj_States(:,2) - RE; %Altitude (km) 
Skip_V   = Traj_States(:,3);      %Velocity (km/s) 
Skip_lon = Traj_States(:,4);      %Longitude (rad) 
Skip_lat = Traj_States(:,5);      %Latitude (rad) 
Skip_fpa = Traj_States(:,6);      %Flight-path angle (rad) 
Skip_psi = Traj_States(:,7);      %Heading angle (rad) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
[Vehicle] = VehicleSpecs(Vehicle_Choice); 
mass = Vehicle.mass;  %Mass (kg) 
S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
S    = S_m2/(1000^2); %Planform area (km^2) 
Cd   = Vehicle.Cd;    %Drag coefficient 
Cl   = Vehicle.Cl;    %Lift coefficient 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Trajectory Crossings of Target Altitude 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(Skip_h) 
    mm = mm + 1; 
    if abs(Skip_h(ii) - h_Target) < AltThreshold  
        AltTGT_Crossing(mm,1) = Skip_h(ii); 
        AltTGT_Crossing(mm,2) = Skip_t(ii); 
        AltTGT_Crossing(mm,3) = Skip_V(ii); 
        AltTGT_Crossing(mm,4) = Skip_lon(ii); 
        AltTGT_Crossing(mm,5) = Skip_lat(ii); 
        AltTGT_Crossing(mm,6) = Skip_fpa(ii); 
        AltTGT_Crossing(mm,7) = Skip_psi(ii); 
    else 
        AltTGT_Crossing(mm,1:7) = 0; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(AltTGT_Crossing)      
    if AltTGT_Crossing(ii) ~= 0 
        mm = mm + 1; 
        FlagVector_Alt(mm,1)  = ii; 
        WithinIdent_Alt(mm,:) = AltTGT_Crossing(ii,:); 
    end 
end 
FlagVector_Alt = [FlagVector_Alt;0]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Jumps in Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector_Alt)-1 
    if abs((FlagVector_Alt(ii+1) - FlagVector_Alt(ii))) > 1 
        mm = mm + 1; 
        AltTGT_Jump(mm,1) = ii; 
    end 
end 
AltTGT_Jump = [0;AltTGT_Jump]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Interpolation of Crossing Trajectories 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(AltTGT_Jump) 
    mm = mm + 1; 
    AltTGT_Interp(mm,:) = ... 
        interp1(AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ... 
                                FlagVector_Alt(AltTGT_Jump(ii)),1),  ... 
                AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ... 
                                FlagVector_Alt(AltTGT_Jump(ii)),2:7), ... 
                h_Target,'spline'); %Cubic spline interpolation 
end    
  
%Removal of negative interpolated points  
AltTGT_Interp(any(AltTGT_Interp(:,1)<0,2),:) = [];  
  
AltTGT_Vector = h_Target.*ones(length(AltTGT_Interp(:,1)),1); 
AltCrossings  = [AltTGT_Interp(:,1),AltTGT_Vector,AltTGT_Interp(:,2:6)]; 
  
%Removal of extremely large interpolated points  
AltCrossings(any(AltCrossings(:,1)>(5*Time_Max),2),:) = [];  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Minimum Re-Circularization Delta-V  
mm = 0; %Initializes loop index at zero 
nn = 1; %Initializes vector concatenation counter at one  
  
for mm = 1:length(AltCrossings(:,1)) 
  
%Re-Circularized velocity relative to rotating frame (rotating planet) 
[V_Rel_ReCirc(nn,1),PSI_Rel_ReCirc(nn,2)] = RelativeStates(mass,S,Cd,Cl, ... 
                       h_Target,AltCrossings(mm,5),AltCrossings(mm,6),   ... 
                       AltCrossings(mm,7),bank_Skip); 
  
    mm = mm + 1; %Update to index counter 
    nn = nn + 1; %Update to solution matrix concatenation counter 
end  
  
%Re-circularization delta-V (km/s) 
dV_ReCirc_Vec = abs(AltCrossings(:,3) - V_Rel_ReCirc); 
  
%Concatenation of re-circ. delta-V vector with crossings solutions 
AltCrossings_withdV = [AltCrossings,dV_ReCirc_Vec]; 
  
%Minimum re-circularization delta-V and related states 
[Min_dV,Min_Flag] = min(AltCrossings_withdV(:,end)); 
Min_States = AltCrossings_withdV(Min_Flag,:); 
  
%Maneuver simulation constrained by elapsed time of minimum delta-V 
[Skip_t_MOD,Skip_States_MOD,Traj_States_MOD,RefOrb_States_MOD, ... 
 Traj_Analysis_MOD] = BankManeuvers_MultiAOT(Vehicle_Choice,   ... 
                      Min_States(1,1),h_Init,PSI_Init,         ... 
                      fpa_Descent,dV_Boost,bank_Skip); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Propagation of Re-Circularized Orbit 
Time_Prop = (Time_Max - Min_States(1,1))*60; %Maximum simulation time (s) 
ecc       = 0;                               %Orbit eccentricity 
r_Prop    = Skip_States_MOD(end,1);          %Orbit radial position (km) 
h_Prop    = r_Prop - RE;                     %Orbit altitude (km) 
lon_Prop  = Skip_States_MOD(end,3);          %Initial longitude (rad) 
lat_Prop  = Skip_States_MOD(end,4);          %Initial latitude (rad) 
fpa_Prop  = 0;                               %Flight-path angle (rad) 
bank_Prop = bank_Skip;                       %Bank angle (deg) 
  
if bank_Skip ~= 0 
    PSI_Prop  = -(min(Skip_States_MOD(:,4))); %Heading angle (rad) 
else 
    PSI_Prop  = ((Skip_States_MOD(end,6)));   %Heading angle (rad) 
end 
  
%Re-circularized orbit parameters 
SMA_Prop    = 0.5*(r_Prop + r_Prop);         %Semi-major axis (km) 
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU);  %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ... 
                                         fpa_Prop,PSI_Prop,bank_Prop); 
  
SMA_TargetProp  = SMA_Prop; 
V_Decrement     = 1 - 0.9999;  %Decrement value for velocity (km/s) 
V_CheckP(1,1)   = V_RelProp;   %Initial guess for velocity (km/s) 
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad) 
IterMax         = 50;          %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                                      1,1,1,1,1,0.5*Period_Prop,r_Prop, ... 
                                      V_CheckP(1,1),lon_Prop,lat_Prop,  ... 
                                      fpa_Prop,PSI_CheckP(1,1),bank_Prop); 
 [r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1)); 
                        
%Semi-major axis (km) 
SMA_CheckP(1,1)  = 0.5*(r_Prop + r_CheckP(1,1));   
  
%Iteration error (s) 
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ... 
                    ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1))); 
                
%Updated velocity (km/s) 
V_CheckP(2,1)    = (V_CheckP(1,1) - V_Decrement) - ... 
                  ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1)); 
  
%Updated heading angle (rad) 
PSI_CheckP(2,1)  = PSI_Prop + ... 
                 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1))); 
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%Difference between calculated and target trajectory states 
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp  - SMA_CheckP(1,1)); 
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Secant loop 
  
%% Secant Iteration 
for ii = 2:IterMax 
    while abs(SMA_TargetProp   - SMA_CheckP(ii-1,1)) > 1E-10 && ... 
          abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ... 
          IterCount < IterMax 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ... 
                       1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1), ... 
                       
lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii,1),bank_Prop); 
         
        [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_CheckP(ii,1)   = 0.5*(r_Prop + r_CheckP(ii,1));  
         
        %Iteration error (sec) 
        GuessErrorP(ii,1)  = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ... 
                               (V_CheckP(ii,1) - V_CheckP(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_CheckP(ii+1,1)   = V_CheckP(ii,1) - ... 
                   ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_CheckP(ii+1,1) = PSI_Prop + ... 
              asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp –   ... 
                                                         SMA_CheckP(ii,1)); 
        IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ... 
                                                       PSI_CheckP(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end  
  
%Trajectory simulation for re-circularized orbit 
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice,    ... 
                          1,1,1,1,1,Time_Prop,r_Prop,V_CheckP(ii), ... 
                          
lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii),bank_Prop);    
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%Re-defined propagated orbit states                                        
PropOrb_t       = [Skip_t_MOD ; Skip_t_MOD(end) + Orbit_t(2:end)]; 
PropOrb_States  = [Skip_States_MOD(:,1:6) ; Orbit_States(2:end,1:6)]; 
PropOrb_h       = PropOrb_States(:,1) - RE;     %Altitude (km) 
PropOrb_V       = PropOrb_States(:,2);          %Velocity (km/s) 
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ... 
                       + 180),360) - 180;       %Longitude (rad) 
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad) 
  
%Maximum inclination (deg) 
MaxIncl = max(PropOrb_Lat_deg);  
  
%Inclination change (deg) 
dIncl   = MaxIncl - PSI_Init; 
  
%Maximum apogee (km) 
[ApogMax,ApogFlag] = max(Skip_h); 
  
%Elapsed time corresponding to maximum apogee (min) 
ApogTime = (Skip_t(ApogFlag));  
Apogee_Output = [ApogTime,ApogMax]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Total Delta-V 
dV_Descent = Traj_Analysis_MOD(2); %Descent delta-V (km/s) 
dV_ReCirc  = Min_dV;               %Re-circularization delta-V (km/s)  
  
%Total delta-V for descent-boost skip maneuver (km/s) 
dV_Total   = dV_Descent + dV_Boost + dV_ReCirc; 
  
%Hohmann transfer delta-V (km/s) 
[dV_Hohmann,TOF_Hohmann]   = Hohmann_Geocentric(h_Init,max(Skip_h)); 
  
%Combined Hohmann transfer delta-V (km/s) 
[dV_Combined,TOF_Combined] = Hohmann_Combined_dI(h_Init,max(Skip_h),dIncl); 
  
%Bi-elliptic transfer delta-V (km/s) 
[dV_BiElliptic,TOF_BiElliptic] = BiElliptic(h_Init,max(Skip_h),h_Target); 
  
%Two-perigee Hohmann transfer delta-V (km/s) 
[dV_2Perig,TOF_2Perig] = Hohmann_2Perig(h_Init,max(Skip_h)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Maneuver Time-of-Flight 
%Descent-boost maneuver 
TOF_Skip       = (Skip_t_MOD(end))/60; 
  
%Hohmann transfer  
TOF_Hohmann    = TOF_Hohmann/60; 
  
%Combined Hohmann transfer  
TOF_Combined   = TOF_Combined/60; 
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%Bi-elliptic transfer  
TOF_BiElliptic = TOF_BiElliptic/60; 
  
%Two-Perigee Hohmann transfer  
TOF_2Perig     = TOF_2Perig/60; 
  
%Special Output 
Output = ...  
           [h_Target,   dV_Descent,   dV_Boost,dV_ReCirc,   dV_Total, ... 
            dV_Combined,dV_BiElliptic,TOF_Skip,TOF_Combined,TOF_BiElliptic]'; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg  
%Reference orbit 
[Lon_RefOrb,  Lat_RefOrb,  LonSplit_RefOrb,  LatSplit_RefOrb] = ... 
                                             CoordinateJump(RefOrb_States); 
  
%Propagated re-circularized orbit                                         
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ... 
                                             CoordinateJump(PropOrb_States); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plotting Commands 
%Conversion of time units for plotting 
Skip_Time = Skip_t; 
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Geodetic Altitude (km) v. Time  
subplot(2,2,1); box on; grid off; 
hold on; plot(Skip_Time,Skip_States(:,1)-RE,'b');  
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_Target,h_Target],'k-.'); 
hold on; plot(AltCrossings(:,1),AltCrossings(:,2),'go','LineWidth',2); 
xlabel('Time, min'); 
ylabel('Altitude, km'); 
  
h_atm = 120; %Altitude of upper limit of sensible atmosphere (km) 
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');  
  
legend('Descent-Boost Trajectory','Target Altitude','Altitude Crossings', ... 
       'Upper Atmosphere Limit','Location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Geodetic Altitude (km) v. Time  
subplot(2,2,2); box on; grid off; 
hold on; plot(PropOrb_Time,PropOrb_h,'b');   
xlabel('Time, min'); 
ylabel('Altitude, km'); 
  
h_atm = 120; %Altitude of upper limit of sensible atmosphere (km) 
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V (km/s) v. Maneuver Type  
subplot(2,2,3); box on; grid off; 
dV_Bar = [dV_Descent, dV_Boost,   dV_ReCirc,    dV_Total, ... 
          dV_Combined,dV_BiElliptic]; 
bar(dV_Bar); 
set(gca,'XTickLabel',{'Descent +','Boost +','Inject =','Total Skip', ... 
        'Combined','Bi-Elliptic'},'FontSize',8); 
hold on; bar(5,dV_Combined,'r'); 
hold on; bar(6,dV_BiElliptic,'g'); 
% hold on; bar(7,dV_Hohmann,'m'); 
% hold on; bar(8,dV_2Perig,'c'); 
set(gca,'YTick',0:0.25:2.0); 
n = get(gca,'Ytick'); set(gca,'Yticklabel',sprintf('%.2f |',n')); 
xlabel('Maneuver and/or Maneuver Segment','FontSize',10); 
ylabel('\it\DeltaV\rm, km/s','FontSize',10); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection 
subplot(2,2,4); box on; grid off; 
hold on;  
h_Skip = cellfun(@plot,LonSplit_PropOrb, LatSplit_PropOrb);             
hold on;  
h_Ref  = cellfun(@plot,LonSplit_RefOrb,  LatSplit_RefOrb);          
  
set(h_Skip,'LineStyle','--','Color','r'); 
set(h_Ref, 'LineStyle','-','Color','b'); 
  
xlim([-180 180]); ylim([-90 90]); 
% xlim([0 90]); ylim([30 70]); 
% xlim([floor(Lon_Target)-30, ceil(Lon_Target)+30]);  
% ylim([floor(Lat_Target)-20, ceil(Lat_Target)+20]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
if     Map_Choice == 1 
%     hold on; %Plate Carree world map projection 
%     landareas = shaperead('landareas.shp','UseGeoCoords',true); 
%     geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
  
elseif Map_Choice == 2 
    hold on; %Plate Carree world map projection 
    landareas = shaperead('landareas.shp','UseGeoCoords',true); 
    geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Time-of-Flight v. Maneuver Type  
figure; subplot(2,2,1); box on; grid off; 
TOF_Bar = [TOF_Skip,TOF_Combined,TOF_BiElliptic]; 
bar(TOF_Bar); 
set(gca,'XTickLabel',{'Descent-Boost','Combined', ... 
                      'Bi-Elliptic'},'FontSize',8); 
hold on; bar(2,TOF_Combined,'r'); 
hold on; bar(3,TOF_BiElliptic,'g'); 
% hold on; bar(4,TOF_Hohmann,'m'); 
% hold on; bar(5,TOF_2Perig,'c'); 
set(gca,'YTick',0:50:600); 
% n = get(gca,'Ytick'); set(gca,'Yticklabel',sprintf('%.2f |',n')); 
xlabel('Maneuver','FontSize',10); 
ylabel('Time-of-Flight, min','FontSize',10); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
 
 
  

Hohmann_Analysis_Molniya.m 
 
 
clear all; clc; close all; 
  
global RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
Simulation_Choice = 1; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if     Simulation_Choice == 1 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Skip Maneuver Analysis  
perig_Skip = 84.7675; %Perigee altitude (km) 
PSI_Skip   = 58.8;    %Initial heading angle (deg) 
h_Skip     = 1000;    %Initial altitude (km) 
Bank_Skip  = -90;     %Bank angle (deg) 
[Traj_Analysis,Incl_Analysis,Combined_Analysis] = ... 
           BankManeuvers_fxnAltTGT(1,h_Skip,perig_Skip,PSI_Skip,Bank_Skip); 
  
Skip_Time = Traj_Analysis(1,1); %Elapsed time for single skip maneuver (sec) 
dI_Skip   = Incl_Analysis(1,3); %Inclination change for skip maneuver (deg)           
           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Molniya Orbit Parameters 
SMA_Molniya = 26562; %Molniya orbit semi-major axis (km) 
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%Perigee 
h_perig = Traj_Analysis(1,3);        %Altitude (km) 
r_perig = h_perig + RE;              %Radius (km) 
  
%Apogee 
r_apog  = (2*SMA_Molniya) - r_perig; %Radius (km) 
h_apog  = r_apog - RE;               %Altitude (km) 
  
%Molniya orbit eccentricity 
ecc     = Eccentricity(r_apog,r_perig); 
  
%Orbit velocity 
V_perig = OrbitVelocity(h_perig + RE,ecc,0);   %Perigee  
V_apog  = OrbitVelocity(h_apog  + RE,ecc,180); %Apogee  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Total Skip Maneuver Delta-V 
dV_Maneuver = Traj_Analysis(1,5);       %Delta-V for skip w/o re-circ (km/s) 
V_EndSkip   = Traj_Analysis(1,4);       %Velocity at skip apogee (km/s) 
dV_Insert   = abs(V_perig - V_EndSkip); %Molniya insertion delta-V (km/s) 
  
%Total delta-V for skip maneuver (km/s) 
dV_Skip   = dV_Maneuver + dV_Insert;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Hohmann Transfer Analysis 
h_init = [300:1:5000]';                      %Initial altitude (km) 
dI     = (linspace(0.5,30,length(h_init)))'; %Inclination change (deg)  
  
[dV_perig,TOF_perig] = Hohmann_VelInput(h_init,h_perig,V_perig); 
[dV_apog, TOF_apog]  = Hohmann_VelInput(h_init,h_apog, V_apog); 
  
%Combined Hohmann transfer simulations 
[dV_Combined_0300,TOF_Combined_0300] =  ... 
                        Hohmann_Combined_VelInput(300,h_perig,dI,V_perig); 
[dV_Combined_0504,TOF_Combined_0504]  = ... 
                        
Hohmann_Combined_VelInput(h_perig,h_perig,dI,V_perig); 
[dV_Combined_1000,TOF_Combined_1000]  = ... 
                        Hohmann_Combined_VelInput(1000,h_perig,dI,V_perig); 
[dV_Combined_5000,TOF_Combined_5000]  = ... 
                        Hohmann_Combined_VelInput(5000,h_perig,dI,V_perig); 
                     
TOF_Combined_0300 = TOF_Combined_0300.*ones(length(dV_Combined_0300),1);                     
TOF_Combined_0504 = TOF_Combined_0504.*ones(length(dV_Combined_0504),1); 
TOF_Combined_1000 = TOF_Combined_1000.*ones(length(dV_Combined_1000),1); 
TOF_Combined_5000 = TOF_Combined_5000.*ones(length(dV_Combined_5000),1); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Delta-V (km/s) v. Initial Altitude (km) 
subplot(2,2,1); box on; grid off; 
hold on; plot(h_init,dV_perig,'b-'); 
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hold on; plot(h_init,dV_apog,'r-'); 
hold on; plot(h_Skip,dV_Skip,'kd','LineWidth',2); 
xlabel('Initial Altitude, km');  
ylabel('\it\DeltaV\rm, km/s'); 
legend('Perigee Transfer','Apogee Transfer', ... 
       'Skip Entry, \it\sigma\rm = -90^o','Location','SouthWest');  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Delta-V (km/s) v. Inclination Change (deg) 
subplot(2,2,2); box on; grid off; 
hold on; plot(dI,dV_Combined_0300,'k-'); 
hold on; plot(dI,dV_Combined_0504,'b-'); 
hold on; plot(dI,dV_Combined_1000,'r-'); 
hold on; plot(dI,dV_Combined_5000,'g-'); 
hold on; plot(dI_Skip,dV_Skip,'kd','LineWidth',2); 
xlabel('Inclination Change, deg');  
ylabel('\it\DeltaV\rm, km/s'); 
legend('\ith_i\rm = 300 km',                          ... 
      ['\ith_i\rm = ',num2str(floor(h_perig)),' km'], ... 
       '\ith_i\rm = 1000 km','\ith_i\rm = 5000 km',   ... 
       'Skip Entry, \it\sigma\rm = -90^o','Location','NorthWest');  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Delta-V (km/s) v. Time-of-Flight  
subplot(2,2,3); box on; grid off; 
hold on; plot(TOF_perig./60,dV_perig,'b-'); 
hold on; plot(TOF_apog./60,dV_apog,'r-'); 
hold on; plot(Skip_Time./60,dV_Skip,'kd','LineWidth',2); 
xlabel('Time-of-Flight to Orbit Injection, min');  
ylabel('\it\DeltaV\rm, km/s'); 
legend('Perigee Transfer','Apogee Transfer', ... 
       'Skip Entry, \it\sigma\rm = -90^o','Location','SouthWest');  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Delta-V (km/s) v. Time-of-Flight 
subplot(2,2,4); box on; grid off; 
hold on; plot3(TOF_Combined_0300./60,dI,dV_Combined_0300,'k-'); 
hold on; plot3(TOF_Combined_0504./60,dI,dV_Combined_0504,'b-'); 
hold on; plot3(TOF_Combined_1000./60,dI,dV_Combined_1000,'r-'); 
hold on; plot3(TOF_Combined_5000./60,dI,dV_Combined_5000,'g-'); 
hold on; plot3(Skip_Time./60,dI_Skip,dV_Skip,'kd','LineWidth',2); 
xlabel('Time-of-Flight to Orbit Injection, min'); 
ylabel('Inclination Change, deg'); 
zlabel('\it\DeltaV\rm, km/s'); 
legend('\ith_i\rm = 300 km',                          ... 
      ['\ith_i\rm = ',num2str(floor(h_perig)),' km'], ... 
       '\ith_i\rm = 1000 km','\ith_i\rm = 5000 km',   ... 
       'Skip Entry, \it\sigma\rm = -90^o','Location','NorthEastOutSide'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
elseif Simulation_Choice == 2 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Hohmann Transfer Analysis 
h_init   = [300:1:5000]'; %Initial altitude (km) 
h_perig = 504;            %Molniya perigee altitude (km) 
h_apog  = 39834;          %Molniya apogee altitude (km) 
dI      = (linspace(1,30,length(h_init)))'; %Inclination change (deg)  
  
%Molniya orbit eccentricity 
ecc     = Eccentricity(h_apog + RE,h_perig + RE); 
  
%Orbit velocity 
V_perig = OrbitVelocity(h_perig + RE,ecc,0);   %Perigee  
V_apog  = OrbitVelocity(h_apog  + RE,ecc,180); %Apogee  
  
% %Hohmann transfer simulation 
[dV_perig,TOF_perig] = Hohmann_VelInput(h_init,h_perig,V_perig); 
[dV_apog, TOF_apog]  = Hohmann_VelInput(h_init,h_apog, V_apog); 
  
%Combined Hohmann transfer simulations 
[dV_Combined_0300,TOF_Combined_0300] =  ... 
                        Hohmann_Combined_VelInput(300,h_perig,dI,V_perig); 
[dV_Combined_0504,TOF_Combined_0504]  = ... 
                        Hohmann_Combined_VelInput(504,h_perig,dI,V_perig); 
[dV_Combined_1000,TOF_Combined_1000]  = ... 
                        Hohmann_Combined_VelInput(1000,h_perig,dI,V_perig); 
[dV_Combined_5000,TOF_Combined_5000]  = ... 
                        Hohmann_Combined_VelInput(5000,h_perig,dI,V_perig); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Delta-V (km/s) v. Initial Altitude (km) 
subplot(1,2,1); box on; grid off; 
hold on; plot(h_init,dV_perig,'b-'); 
hold on; plot(h_init,dV_apog,'r-'); 
xlabel('Initial Altitude, km');  
ylabel('\it\DeltaV\rm, km/s'); 
legend('Perigee Transfer','Apogee Transfer','Location','SouthWest');  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Delta-V (km/s) v. Inclination Change (deg) 
subplot(1,2,2); box on; grid off; 
hold on; plot(dI,dV_Combined_0300,'k-'); 
hold on; plot(dI,dV_Combined_0504,'b-'); 
hold on; plot(dI,dV_Combined_1000,'r-'); 
hold on; plot(dI,dV_Combined_5000,'g-'); 
xlabel('Inclination Change, deg');  
ylabel('\it\DeltaV\rm, km/s'); 
legend('\ith_i\rm = 300 km', '\ith_i\rm = 504 km',  ... 
       '\ith_i\rm = 1000 km','\ith_i\rm = 5000 km','Location','NorthWest');  
    
end 
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Hohmann_Combined.m 
 
function [dV_Combined,TOF] = Hohmann_Combined(h1,h2,i1_deg,i2_deg) 
  
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Transfer Orbit Parameters 
r1 = h1 + RE; r2 = h2 + RE;  
  
TOF   = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec) 
sma_t = (r1 + r2)./2;                    %Semi-major axis (km) 
e_t   = -MU./(2.*sma_t);                 %Specific mech. energy (km^2/s^2) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Inclination-Change Parameters 
i1 = deg2rad(i1_deg); i2 = deg2rad(i2_deg); 
dI = i2 - i1; 
  
%Estimation method 
R  = r2./r1;  
s  = (1./dI).*atan(sin(dI)./((R.^(3/2)) + cos(dI))); 
dI_init  = s.*dI; 
dI_final = (1 - s).*dI; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #1 
Vc1  = sqrt(MU./r1); 
Vp   = sqrt(2.*((MU./r1) + e_t)); 
  
dV_1 = sqrt((Vc1.^2) + (Vp.^2) - (2.*Vc1.*Vp.*cos(dI_init))); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #2 
Vc2  = sqrt(MU./r2); 
Va   = sqrt(2.*((MU./r2) + e_t)); 
  
dV_2 = sqrt((Vc2.^2) + (Va.^2) - (2.*Vc2.*Va.*cos(dI_final))); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V Required for Combined Hohmann Transfer 
dV_Combined = dV_1 + dV_2; 
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Hohmann_Combined_dI.m 
 
function [dV_Combined,TOF] = Hohmann_Combined_dI(h1,h2,dI_deg) 
  
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Transfer Orbit Parameters 
r1 = h1 + RE; r2 = h2 + RE;  
  
TOF   = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec) 
sma_t = (r1 + r2)./2;                    %Semi-major axis (km) 
e_t   = -MU./(2.*sma_t);                 %Specific mech. energy (km^2/s^2) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Inclination Change Parameters 
dI = deg2rad(dI_deg); 
  
%Estimation method 
R  = r2./r1;  
s  = (1./dI).*atan(sin(dI)./((R.^(3/2)) + cos(dI))); 
dI_init  = s.*dI; 
dI_final = (1 - s).*dI; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #1 
Vc1 = sqrt(MU./r1); 
Vp  = sqrt(2.*((MU./r1) + e_t)); 
dV1 = sqrt((Vc1.^2) + (Vp.^2) - (2.*Vc1.*Vp.*cos(dI_init))); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #2 
Vc2 = sqrt(MU./r2); 
Va  = sqrt(2.*((MU./r2) + e_t)); 
dV2 = sqrt((Vc2.^2) + (Va.^2) - (2.*Vc2.*Va.*cos(dI_final))); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V Required for Combined Hohmann Transfer 
dV_Combined = dV1 + dV2; 
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Hohmann_Combined_VelInput.m 
 
function [dV_Combined,TOF] = Hohmann_Combined_VelInput(h1,h2,dI_deg,V2) 
  
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Transfer Orbit Parameters 
r1 = h1 + RE; r2 = h2 + RE;  
  
TOF   = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec) 
sma_t = (r1 + r2)./2;                    %Semi-major axis (km) 
e_t   = -MU./(2.*sma_t);                 %Specific mech. energy (km^2/s^2) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Inclination Change Parameters 
dI = deg2rad(dI_deg); 
  
%Estimation method 
R  = r2./r1;  
s  = (1./dI).*atan(sin(dI)./((R.^(3/2)) + cos(dI))); 
dI_init  = s.*dI; 
dI_final = (1 - s).*dI; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #1 
V1  = sqrt(MU./r1); 
Vt1 = sqrt(2.*((MU./r1) + e_t)); 
dV1 = sqrt((V1.^2) + (Vt1.^2) - (2.*V1.*Vt1.*cos(dI_init))); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #2 
%Note: The velocity 'V2' is a function input representing either: 
% (a) Circular orbit velocity 
% (b) Apogee orbit velocity 
% (c) Perigee orbit velocity 
Vt2  = sqrt(2.*((MU./r2) + e_t)); 
dV2 = sqrt((V2.^2) + (Vt2.^2) - (2.*V2.*Vt2.*cos(dI_final))); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V Required for Combined Hohmann Transfer 
dV_Combined = dV1 + dV2; 
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Hohmann_Geocentric.m 
 
function [dV_Total,TOF,ecc_t,sma_t] = Hohmann_Geocentric(h1,h2) 
  
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Conversion from Altitude to Geocentric Radius 
r1 = h1 + RE; r2 = h2 + RE; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Transfer Orbit 
ecc_t = abs(((r2 - r1)./(r2 + r1)));       %Eccentricity 
sma_t = (r1 + r2)./2;                      %Semi-major axis (km) 
e_t   = -MU./(2.*sma_t);                   %Specific mech. energy (km^2/s^2) 
TOF   = pi.*sqrt(((r1 + r2).^3)./(8.*MU)); %Time-of-flight (s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #1  
V1    = sqrt(MU./r1);              %Circular orbit velocity (km/s) 
Vt1   = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s) 
dV1   = abs(V1 - Vt1);             %Delta-V to enter transfer orbit (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #2 
V2    = sqrt(MU./r2);              %Circular orbit velocity (km/s) 
Vt2   = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s) 
dV2   = abs(V2 - Vt2);             %Delta-V to re-circularize at r2 (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V Required for Combined Hohmann Transfer 
dV_Total = dV1 + dV2; 
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Hohmann_Geodetic.m 
 
function [dV_Total,TOF,ecc_t,sma_t] = Hohmann_Geodetic(h_gd1,h_gd2) 
  
global MU RE FlatE 
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Conversion from Geodetic to Geocentric Coordinates 
[r1, lat1] = Geodetic2Geocentric(h_gd1,0,RE,FlatE); 
[r2, lat2] = Geodetic2Geocentric(h_gd2,0,RE,FlatE); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Transfer Orbit 
ecc_t = abs(((r2 - r1)./(r2 + r1)));       %Eccentricity 
sma_t = (r1 + r2)./2;                      %Semi-major axis (km) 
e_t   = -MU./(2.*sma_t);                   %Specific mech. energy (km^2/s^2) 
TOF   = pi.*sqrt(((r1 + r2).^3)./(8.*MU)); %Time-of-flight (s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #1  
V1    = sqrt(MU./r1);              %Circular orbit velocity (km/s) 
Vt1   = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s) 
dV1   = abs(V1 - Vt1);             %Delta-V to enter transfer orbit (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #2 
V2    = sqrt(MU./r2);              %Circular orbit velocity (km/s) 
Vt2   = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s) 
dV2   = abs(V2 - Vt2);             %Delta-V to re-circularize at r2 (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V Required for Combined Hohmann Transfer 
dV_Total = dV1 + dV2; 
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Hohmann_SkipReCirc.m 
 
function [dV_Total,TOF,ecc_t,sma_t] = Hohmann_SkipReCirc(V1,r1,r2) 
  
global MU 
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Transfer Orbit 
ecc_t = abs(((r2 - r1)./(r2 + r1)));       %Eccentricity 
sma_t = (r1 + r2)./2;                      %Semi-major axis (km) 
e_t   = -MU./(2.*sma_t);                   %Specific mech. energy (km^2/s^2) 
TOF   = pi.*sqrt(((r1 + r2).^3)./(8.*MU)); %Time-of-flight (s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #1  
Vt1   = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s) 
dV1   = abs(V1 - Vt1);             %Delta-V to enter transfer orbit (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #2 
V2    = sqrt(MU./r2);              %Circular orbit velocity (km/s) 
Vt2   = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s) 
dV2   = abs(V2 - Vt2);             %Delta-V to recircularize at r2 (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V Required for Combined Hohmann Transfer 
dV_Total = dV1 + dV2; 
 
 

 
 
 
 
 
 
 
 
 
 



www.manaraa.com

284 

 
 
 
 
 
 
 
 

Hohmann_VelInput.m 
 
function [dV_Total,TOF] = Hohmann_VelInput(h1,h2,V2) 
  
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Calculation of Transfer Orbit Parameters 
r1 = h1 + RE; r2 = h2 + RE;  
  
TOF   = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec) 
sma_t = (r1 + r2)./2;                    %Semi-major axis (km) 
e_t   = -MU./(2.*sma_t);                 %Specific mech. energy (km^2/s^2) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #1  
V1    = sqrt(MU./r1);              %Circular orbit velocity (km/s) 
Vt1   = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s) 
dV1   = abs(V1 - Vt1);             %Delta-V to enter transfer orbit (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Velocity Parameters for Orbit #2  
%Note: The velocity 'V2' is a function input representing either: 
% (a) Circular orbit velocity 
% (b) Apogee orbit velocity 
% (c) Perigee orbit velocity 
Vt2   = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s) 
dV2   = abs(V2 - Vt2);             %Delta-V to recircularize at r2 (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Total Delta-V Required for Combined Hohmann Transfer 
dV_Total = dV1 + dV2; 
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PlanarManeuvers.m 
 
% function [Trajectory_Analysis] = PlanarManeuvers(Target_Choice,Xing) 
clear all; clc; close all; 
  
global MU RE   
global Lat_Denver   Lon_Denver   Lat_Gibraltar Lon_Gibraltar 
global Lat_Glasgow  Lon_Glasgow  Lat_Grozny    Lon_Grozny 
global Lat_Moscow   Lon_Moscow   Lat_Ponti     Lon_Ponti    
global Lat_Pyong    Lon_Pyong    Lat_Reyk      Lon_Reyk    
global Lat_Tehran   Lon_Tehran   Lat_Tokyo     Lon_Tokyo 
global Lat_Brasil   Lon_Brasil   Lat_Buenos    Lon_Buenos 
global Lat_Canberra Lon_Canberra Lat_Cape      Lon_Cape 
  
WGS84Constants; %Loads global constants from external m-file 
GroundTargets;  %Loads ground target geographical coordinates (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Target Selection 
Vehicle_Choice = 1; 
Target_Choice  = 5; 
Xing   = 24; 
VCoeff = .965; %Fraction coefficient to modify velocity guess 
  
if     Target_Choice == 1  %Denver, United States 
    Lat_Target = Lat_Denver;    Lon_Target = Lon_Denver;    dLat = 3; 
elseif Target_Choice == 2  %Gibraltar, United Kingdom 
    Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5; 
elseif Target_Choice == 3  %Glasgow, Scotland 
    Lat_Target = Lat_Glasgow;   Lon_Target = Lon_Glasgow;   dLat = 3; 
elseif Target_Choice == 4  %Grozny, Chechnya 
    Lat_Target = Lat_Grozny;    Lon_Target = Lon_Grozny;    dLat = 3; 
elseif Target_Choice == 5  %Moscow, Russia 
    Lat_Target = Lat_Moscow;    Lon_Target = Lon_Moscow;    dLat = 5; 
elseif Target_Choice == 6  %Pontianak, Indonesia 
    Lat_Target = Lat_Ponti;     Lon_Target = Lon_Ponti;     dLat = 7;  
elseif Target_Choice == 7  %Pyongyang, North Korea 
    Lat_Target = Lat_Pyong;     Lon_Target = Lon_Pyong;     dLat = 5; 
elseif Target_Choice == 8  %Reykjavik, Iceland 
    Lat_Target = Lat_Reyk;      Lon_Target = Lon_Reyk;      dLat = 3;  
elseif Target_Choice == 9  %Tehran, Iran 
    Lat_Target = Lat_Tehran;    Lon_Target = Lon_Tehran;    dLat = 5; 
elseif Target_Choice == 10 %Tokyo, Japan 
    Lat_Target = Lat_Tokyo;     Lon_Target = Lon_Tokyo;     dLat = 4; 
elseif Target_Choice == 11 %Brasilia, Brazil 
    Lat_Target = Lat_Brasil;    Lon_Target = Lon_Brasil;    dLat = 4; 
elseif Target_Choice == 12 %Buenos Aires, Argentina 
    Lat_Target = Lat_Buenos;    Lon_Target = Lon_Buenos;    dLat = 4; 
elseif Target_Choice == 13 %Canberra, Australia 
    Lat_Target = Lat_Canberra;  Lon_Target = Lon_Canberra;  dLat = 4; 
elseif Target_Choice == 14 %Cape Town, South Africa 
    Lat_Target = Lat_Cape;      Lon_Target = Lon_Cape;      dLat = 4; 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
if Vehicle_Choice == 9    %VEHICLE SELECTION OVERRIDE 
    mass = 2000;          %Mass (kg) 
    S_m2 = 18.5;          %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = 0.5;           %Drag coefficient 
    Cl   = 3.0;           %Lift coefficient 
else 
    [Vehicle] = VehicleSpecs(Vehicle_Choice); 
    mass = Vehicle.mass;  %Mass (kg) 
    S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Vehicle.Cd;    %Drag coefficient 
    Cl   = Vehicle.Cl;    %Lift coefficient 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Reference Orbit Conditions 
Time_Max = 1;    %Maximum simulation time (days) 
ecc_Ref  = 0;    %Orbit eccentricity 
h_Ref    = 1000; %Orbit geodetic altitude (km) 
lon_Ref  = 0;    %Initial longitude (deg) 
lat_Ref  = 0;    %Initial geodetic latitude (deg) 
fpa_Ref  = 0;    %Flight-path angle (deg) 
PSI_Ref  = 70;   %Heading angle (deg) 
bank     = 0;    %Bank angle (deg) 
  
%Converts and overwrites initial angle variables from (deg) to (rad) 
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref); 
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);  
  
%Reference orbit parameters 
r_Ref     = h_Ref + RE;                         %Radial position (km) 
SMA_Ref   = 0.5*(r_Ref + r_Ref);                %Semi-major axis (km) 
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU);        %Orbit period (sec) 
V_Ref     = sqrt(MU*((2/r_Ref) - (1/SMA_Ref))); %Orbit velocity (km/s) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Ref,lat_Ref, ... 
                                 fpa_Ref,PSI_Ref,bank); 
  
%Conversion of time units from days to seconds 
Time_Max = Time_Max*(24)*(60)*(60); 
                 
SMA_Target0     = SMA_Ref;    %Target semi-major axis for iteration (km) 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check0(1,1)   = V_Rel;      %Initial guess for velocity (km/s) 
PSI_Check0(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
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%% First Iteration 
%Trajectory simulation [0:t: 0.5*RefPeriod] 
[Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice,        ... 
                          1,1,1,1,1,0.5*RefPeriod,r_Ref,V_Check0(1,1), ... 
                          lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank); 
  
[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1)); 
                       
%Semi-major axis (km) 
SMA_Check0(1,1)  = 0.5*(r_Ref + r_Check0(1,1));   
  
%Iteration error (s) 
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/  ... 
                    ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1))); 
                
%Updated velocity (km/s) 
V_Check0(2,1)    = (V_Check0(1,1) - V_Decrement) - ... 
                   ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check0(2,1)  = PSI_Ref + ... 
                   asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1)); 
IterDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1)); 
  
IterCount0 = 1; %Initializes iteration counter for Newton-Raphson loop 
  
%% Newton-Raphson Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target0 - SMA_Check0(ii-1,1))      > 1E-20 && ... 
          abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-20 
       
        %Trajectory simulation [0:t: 0.5*RefPeriod] 
        [Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ... 
                          1,1,1,1,1,0.5*RefPeriod,r_Ref,V_Check0(ii,1), ... 
                          lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank); 
         
        [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check0(ii,1)   = 0.5*(r_Ref + r_Check0(ii,1));  
         
        %Iteration error (sec) 
        GuessError0(ii,1)  = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ... 
                              (V_Check0(ii,1) - V_Check0(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check0(ii+1,1)   = V_Check0(ii,1) - ... 
                ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1)); 
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        %Updated heading angle (rad) 
        PSI_Check0(ii+1,1) = PSI_Ref + ... 
                asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1)); 
        IterDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)); 
         
        ii = ii + 1;                 %Update to row-index counter 
        IterCount0 = IterCount0 + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end                         
  
V_Rel0   = V_Check0(ii);   %Orbital velocity (km/s) 
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad) 
  
%Trajectory simulation for reference orbit 
[RefOrb_t, RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice,    ... 
                                    1,1,1,1,1,Time_Max,r_Ref,V_Rel0, ... 
                                    lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank); 
               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Manipulation of Reference Orbit Trajectory Solutions 
r_Data   = RefOrb_States(:,1); %Radial position (km) 
h_Data   = r_Data - RE;        %Altitude (km) 
Lon_Data = RefOrb_States(:,3); %Longitude (rad) 
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad) 
  
%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180) 
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180; 
  
%Converts geodetic latitude from radians to degrees  
Lat_Data = rad2deg(Lat_Data);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Trajectory Crossings of Target Latitude 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(Lon_Data) 
    mm = mm + 1; 
    if abs(Lat_Data(ii) - Lat_Target) < 10  
        LatCrossing(mm,1)   = RefOrb_t(ii); %Time (sec) 
        LatCrossing(mm,2)   = h_Data(ii);   %Altitude (km) 
        LatCrossing(mm,3)   = Lon_Data(ii); %Longitude (deg) 
        LatCrossing(mm,4)   = Lat_Data(ii); %Geocentric latitude (deg) 
    else 
        LatCrossing(mm,1:4) = 0; %Arbitrary value for non-crossings 
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Latitude Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
 
for ii = 1:length(LatCrossing)      
    if LatCrossing(ii) ~= 0 
        mm = mm + 1; 
        FlagVector(mm,1)    = ii; 
        CrossingIdent(mm,:) = LatCrossing(ii,:); 
    end 
end 
FlagVector = [FlagVector;0]; %Indices corresponding to latitude crossings 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Jumps in Latitude Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector)-1 
    if abs((FlagVector(ii+1) - FlagVector(ii))) > 1 
        mm = mm + 1; 
        CrossingJump(mm,1) = ii; 
    end 
end 
CrossingJump = [0;CrossingJump]; %Indices of jumps in latitude crossings  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Interpolation of Latitude Crossing Trajectories 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(CrossingJump) 
    mm = mm + 1; 
    CrossInterp(mm,:) = ... 
                 interp1(LatCrossing(FlagVector(CrossingJump(ii-1)+1):  ... 
                                     FlagVector(CrossingJump(ii)),4),   ... 
                         LatCrossing(FlagVector(CrossingJump(ii-1)+1):  ... 
                                     FlagVector(CrossingJump(ii)),1:3), ... 
                         Lat_Target,'spline'); %Cubic spline interpolation 
end          
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Identifies whether Crossing is East or West of Target Longitude 
mm = 0; %Initializes vector concatenation counter for East crossings 
nn = 0; %Initializes vector concatenation counter for West crossings 
for ii = 1:length(CrossInterp(:,3)) 
    if     CrossInterp(ii,3) > Lon_Target && CrossInterp(ii,3) <  180 
        mm = mm + 1; 
        CrossingEast(mm,1) = CrossInterp(ii,1); %Time (sec) 
        CrossingEast(mm,2) = CrossInterp(ii,3); %Longitude (deg)         
    elseif CrossInterp(ii,3) < Lon_Target && CrossInterp(ii,3) > -180 
        nn = nn + 1; 
        CrossingWest(nn,1) = CrossInterp(ii,1); %Time (sec) 
        CrossingWest(nn,2) = CrossInterp(ii,3); %Longitude (deg) 
    end 
end 
  
EastFlag = 1.*ones(length(CrossingEast),1); %Flag indicating 'East' crossing 
WestFlag = 2.*ones(length(CrossingWest),1); %Flag indicating 'West' crossing  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Latitude Crossing Data 
%Difference between interpolated and target longitudes 
dLonEast = abs(CrossingEast(:,2) - Lon_Target); 
dLonWest = abs(CrossingWest(:,2) - Lon_Target); 
  
%Number of perturbed orbits ('fix' truncation yields integer values) 
OrbNumEast = fix(CrossingEast(:,1)./RefPeriod); 
OrbNumWest = fix(CrossingWest(:,1)./RefPeriod); 
  
%Array components: Time, longitude, longitude difference, number of orbits 
Crossings  = [CrossingEast, dLonEast, OrbNumEast, EastFlag; ... 
              CrossingWest, dLonWest, OrbNumWest, WestFlag]; 
  
%Removal of rows with zero reference orbits           
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(Crossings) 
    if Crossings(ii,4) ~= 0 
        mm = mm + 1; 
        Crossings_States(mm,:) = Crossings(ii,:); 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Perturbed Orbit Parameters  
%Delta-period between crossings and target per orbit (sec/orbit) 
dPeriod = Crossings_States(:,3).*(1/15).*(3600).*(1./Crossings_States(:,4)); 
  
%Perturbed orbit periods (sec) 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(Crossings_States) 
    if     Crossings_States(ii,end) == 1 %East Crossing (Increase SMA) 
        mm = mm + 1; 
        Period_Skip0(mm,:) = [RefPeriod + dPeriod(ii,1), ... 
                              Crossings_States(ii,end)]; 
         
    elseif Crossings_States(ii,end) == 2 %West Crossing (Decrease SMA) 
        mm = mm + 1; 
        Period_Skip0(mm,:) = [RefPeriod - dPeriod(ii,1), ... 
                              Crossings_States(ii,end)]; 
    end 
end    
  
%Perturbed orbit semi-major axes (km) 
SMA_Skip0 = [(MU.*((Period_Skip0(:,1)./(2*pi)).^2)).^(1/3), ... 
              Crossings_States(:,end)];      
           
%Array components: Time, longitude, longitude difference,  
%                  number of orbits, skip period, skip SMA 
Crossings_FullStates = [Crossings_States(:,1:4),Period_Skip0(:,1),SMA_Skip0];             
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Transformation of 'Impacting' Perturbed Orbits  
mm = 0; nn = 0; %Initializes vector concatenation counters at zero 
for ii = 1:length(Crossings_FullStates(:,1)) 
    if     Crossings_FullStates(ii,6) < 7000 %(km) 
        mm = mm + 1; 
        GroundImpact(mm,:) = Crossings_FullStates(ii,:); 
    elseif Crossings_FullStates(ii,6) > 7000 %(km)  
        nn = nn + 1; 
        NoImpact(nn,:)     = Crossings_FullStates(ii,:); 
    end 
end 
  
%Updated longitude difference, crossing time, and number of reference orbits 
dLonWest_Update0   = 360 - (GroundImpact(:,3));  
dLonWest_Time0     = GroundImpact(:,1) + (dLonWest_Update0/360); 
OrbNumWest_Update0 = fix(dLonWest_Time0(:,1)./RefPeriod); 
  
%Removal of rows with zero reference orbits           
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(OrbNumWest_Update0) 
    if OrbNumWest_Update0(ii,1) ~= 0 
        mm = mm + 1; 
        dLonWest_Update(mm,:)   = dLonWest_Update0(ii,:); 
        OrbNumWest_Update(mm,:) = OrbNumWest_Update0(ii,:); 
    end 
end 
  
%Updated delta-periods (sec) 
dPeriod_Update     = dLonWest_Update(:,1).*(1/15).*(60).*(60).* ... 
                     (1./OrbNumWest_Update(:,1)); 
                  
%Updated perturbed orbit periods (sec)                  
Period_Skip_Update = RefPeriod + dPeriod_Update; 
  
%Assignment of 'East' crossing flag since maneuver is now 'ascending' 
EastFlag_Update = 1.*ones(length(dLonWest_Update),1);  
  
%Updated perturbed orbit semi-major axes (km) 
SMA_Skip_Update = (MU.*((Period_Skip_Update(:,1)./(2*pi)).^2)).^(1/3); 
  
%Unsorted perturbed orbit parameters 
SMA_Skip_UnSort = [NoImpact(:,5), NoImpact(:,6), NoImpact(:,4),   ... 
                   NoImpact(:,2), NoImpact(:,end);                ... 
                   Period_Skip_Update(:,1), SMA_Skip_Update(:,1), ... 
                   OrbNumWest_Update(:,1), GroundImpact(:,2),     ... 
                   EastFlag_Update(:,1)]; 
  
%Sorting of perturbed orbit parameters according to crossing flag 
[SMA_Sort,I] = sort(SMA_Skip_UnSort(:,5)); 
SMA_Skip     = SMA_Skip_UnSort(I,:); 
  
%Removal of negative perturbed periods  
SMA_Skip(any(SMA_Skip(:,1)<0,2),:) = [];  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Maneuver (Descent or Ascent) Velocity  
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(SMA_Skip) 
    mm = mm + 1; 
    if     SMA_Skip(ii,end) == 1 %East Crossing, Reference Orbit = Perigee 
        SMA_Target(mm,:) = [SMA_Skip(ii,2),SMA_Skip(ii,end)]; 
        r_Perig(mm,1)    = r_Ref; 
        r_Apog(mm,1)     = (2.*SMA_Target(mm,1)) - r_Perig(mm,1); 
        HalfPeriod(mm,1) = (0.5).*SMA_Skip(ii,1); 
        V_Initial(mm,1)  = sqrt((2.*MU.*r_Apog(mm,1))./ ... 
                           (r_Perig(mm,1).*(r_Apog(mm,1) + r_Perig(mm,1)))); 
    elseif SMA_Skip(ii,end) == 2 %West Crossing, Reference Orbit = Apogee 
        SMA_Target(mm,:) = [SMA_Skip(ii,2),SMA_Skip(ii,end)]; 
        r_Apog(mm,1)     = r_Ref; 
        r_Perig(mm,1)    = (2.*SMA_Target(mm,1)) - r_Apog(mm,1); 
        HalfPeriod(mm,1) = (0.5).*SMA_Skip(ii,1); 
        V_Initial(mm,1)  = sqrt((2.*MU.*r_Perig(mm,1))./ ... 
                           (r_Apog(mm,1).*(r_Apog(mm,1) + r_Perig(mm,1)))); 
    end 
end 
  
V_Decrement    = 1 - 0.9999;                %Decrement value for velocity  
V_Check(1,1)   = VCoeff.*V_Initial(Xing,1); %Guess for velocity (km/s) 
PSI_Check(1,1) = PSI_Ref;                   %Guess for heading angle (rad) 
IterMax        = 50;                        %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_t, Traj_States] = Maneuver_MainFunction(Vehicle_Choice,          ... 
                        1,1,1,1,1,HalfPeriod(Xing),r_Ref,V_Check(1,1), ... 
                        lon_Ref,lat_Ref,fpa_Ref,PSI_Check(1,1),bank); 
  
if     SMA_Target(Xing,2) == 1 %Find: Apogee radial position (km) 
    [r_Check(1,1),ApogFlag]  = max(Traj_States(:,1)); 
elseif SMA_Target(Xing,2) == 2 %Find: Perigee radial position (km) 
    [r_Check(1,1),PerigFlag] = min(Traj_States(:,1)); 
end 
  
%Semi-major axis (km) 
SMA_Check(1,1)  = 0.5*(r_Ref + r_Check(1,1));   
  
%Iteration error (s) 
GuessError(1,1) = -((SMA_Check(1,1) - SMA_Ref)/  ... 
                   ((V_Check(1,1) - V_Decrement) - V_Check(1,1))); 
                
%Updated velocity (km/s) 
V_Check(2,1)    = (V_Check(1,1) - V_Decrement) - ... 
                  ((SMA_Target(Xing,1) - SMA_Check(1,1))/GuessError); 
  
%Updated heading angle (rad) 
PSI_Check(2,1) = PSI_Ref + ... 
                 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check(2,1))); 
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%Difference between calculated and target trajectory states 
IterDiff_SMA(1,1) = abs(SMA_Target(Xing,1) - SMA_Check(1,1)); 
IterDiff_PSI(1,1) = abs(PSI_Check(2,1)   - PSI_Check(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Newton-Raphson loop 
  
%% Newton-Raphson Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target(Xing,1) - SMA_Check(ii-1,1)) > 1E-10 && ... 
          abs(PSI_Check(ii,1) - PSI_Check(ii-1,1))    > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_t, Traj_States] = Maneuver_MainFunction(Vehicle_Choice,   ... 
                        1,1,1,1,1,HalfPeriod(Xing),r_Ref,V_Check(ii,1), ... 
                        lon_Ref,lat_Ref,fpa_Ref,PSI_Check(ii,1),bank); 
         
        if     SMA_Target(Xing,2) == 1 %Find: Perigee radial position (km) 
            [r_Check(ii,1),PerigFlag] = max(Traj_States(:,1)); 
                                
        elseif SMA_Target(Xing,2) == 2 %Find: Apogee radial position (km) 
            [r_Check(ii,1),ApogFlag]  = min(Traj_States(:,1)); 
        end 
         
        %Current iteration semi-major axis (km) 
        SMA_Check(ii,1)  = 0.5*(r_Ref + r_Check(ii,1));  
         
        %Iteration error (sec) 
        GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ... 
                            (V_Check(ii,1) - V_Check(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check(ii+1,1)  = V_Check(ii,1) - ... 
                 ((SMA_Target(Xing,1) - SMA_Check(ii,1))/GuessError(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_Check(ii+1,1) = PSI_Ref + ... 
                 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterDiff_SMA(ii,1) = abs(SMA_Target(Xing,1) - SMA_Check(ii,1)); 
        IterDiff_PSI(ii,1) = abs(PSI_Check(ii,1)  - PSI_Check(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end 
  
V_Maneuver   = V_Check(ii,1);           %Maneuver velocity for target SMA  
dV_Maneuver  = abs(V_Maneuver - V_Rel); %Maneuver delta-V (km/s) 
PSI_Maneuver = PSI_Check(ii,1);         %Maneuver heading angle (deg) 
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%Trajectory simulation for skip maneuver 
[Skip_t, Skip_States] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ... 
                        SMA_Skip(Xing,1)*(SMA_Skip(Xing,3)),r_Ref,      ... 
                       V_Maneuver,lon_Ref,lat_Ref,fpa_Ref,PSI_Maneuver,bank); 
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Propagation of Re-Circularized Orbit 
Time_Max = 5000;               %Maximum simulation time (s) 
ecc      = 0;                  %Orbit eccentricity 
r_Prop   = Skip_States(end,1); %Orbit radial position (km) 
h_Prop   = r_Prop - RE;        %Orbit altitude (km) 
lon_Prop = Skip_States(end,3); %Initial longitude (rad) 
lat_Prop = Skip_States(end,4); %Initial geodetic latitude (rad) 
fpa_Prop = 0;                  %Flight-path angle (rad) 
PSI_Prop = PSI_Ref;            %Heading angle (rad) 
bank     = 0;                  %Bank angle (deg) 
  
%Re-circularized orbit parameters 
SMA_Prop    = 0.5*(r_Prop + r_Prop);        %Semi-major axis (km) 
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_RelProp, PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ... 
                                          fpa_Prop,PSI_Prop,bank); 
  
SMA_TargetProp     = SMA_Prop;   %Target semi-major axis for iteration (km) 
V_Decrement        = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_CheckProp(1,1)   = V_RelProp;  %Initial guess for velocity (km/s) 
PSI_CheckProp(1,1) = PSI_Prop;   %Initial guess for heading angle (rad) 
IterMax            = 50;         %Maximum number of iterations  
  
%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice,         ... 
                     1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckProp(1,1), ... 
                     lon_Prop,lat_Prop,fpa_Prop,PSI_CheckProp(1,1),bank); 
                     [r_CheckProp(1,1),ApogFlag] = max(Traj_StatesP(:,1)); 
                        
%Semi-major axis (km) 
SMA_CheckProp(1,1)  = 0.5*(r_Prop + r_CheckProp(1,1));   
  
%Iteration error (s) 
GuessError_Prop(1,1) = -((SMA_CheckProp(1,1) - SMA_Prop)/ ... 
              ((V_CheckProp(1,1) - V_Decrement) - V_CheckProp(1,1))); 
                
%Updated velocity (km/s) 
V_CheckProp(2,1)    = (V_CheckProp(1,1) - V_Decrement) - ... 
              ((SMA_TargetProp - SMA_CheckProp(1,1))/GuessError_Prop(1,1)); 
  
%Updated heading angle (rad) 
PSI_CheckProp(2,1)  = PSI_Prop + ... 
              asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckProp(2,1))); 
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%Difference between calculated and target trajectory states 
IterDiff_SMA_Prop(1,1) = abs(SMA_TargetProp - SMA_CheckProp(1,1)); 
IterDiff_PSI_Prop(1,1) = abs(PSI_CheckProp(2,1) - PSI_CheckProp(1,1)); 
IterCount_Prop = 1; %Initializes iteration counter for Newton-Raphson loop 
  
%% Newton-Raphson Iteration 
for ii = 2:IterMax 
    while abs(SMA_TargetProp - SMA_CheckProp(ii-1,1))      > 1E-10 &&   ... 
          abs(PSI_CheckProp(ii,1) - PSI_CheckProp(ii-1,1)) > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ... 
                    1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckProp(ii,1), ... 
                    lon_Prop,lat_Prop,fpa_Prop,PSI_CheckProp(ii,1),bank); 
         
        [r_CheckProp(ii,1),ApogFlag] = max(Traj_StatesP(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_CheckProp(ii,1)   = 0.5*(r_Prop + r_CheckProp(ii,1));  
         
        %Iteration error (sec) 
        GuessError_Prop(ii,1) = -((SMA_CheckProp(ii,1) –   ... 
                                   SMA_CheckProp(ii-1,1))/ ... 
                                 (V_CheckProp(ii,1) - V_CheckProp(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_CheckProp(ii+1,1)   = V_CheckProp(ii,1) - ... 
           ((SMA_TargetProp - SMA_CheckProp(ii,1))/GuessError_Prop(ii,1)); 
         
        %Updated heading angle (rad) 
        PSI_CheckProp(ii+1,1) = PSI_Prop + ... 
           asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckProp(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp - SMA_CheckProp(ii,1)); 
        IterDiff_PSI_Prop(ii,1) = abs(PSI_CheckProp(ii,1) – ... 
                                      PSI_CheckProp(ii-1,1)); 
         
        ii = ii + 1;                         %Update to row-index counter 
        IterCount_Prop = IterCount_Prop + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end  
  
%Trajectory simulation for re-circularized orbit 
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice,    ... 
                        1,1,1,1,1,Time_Max,r_Prop,V_CheckProp(ii), ... 
                        lon_Prop,lat_Prop,fpa_Prop,PSI_CheckProp(ii),bank); 
                                       
%Concatenation of maneuver and orbit propagation time vectors  
PropOrb_t       = [Skip_t ; Skip_t(end) + Orbit_t(2:end)]; 
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%Concatenation of maneuver and orbit propagation states  
PropOrb_States  = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)]; 
PropOrb_h       = PropOrb_States(:,1) - RE;     %Altitude (km) 
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ... 
                       + 180),360) - 180;       %Longitude (rad) 
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad) 
                 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Propagated Trajectory Crossings of Target Coordinates 
%Longitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lon_deg) 
    mm = mm + 1; 
    if abs(PropOrb_Lon_deg(ii) - Lon_Target) < 20  
        LonTGT_Crossing(mm,1) = PropOrb_t(ii); 
        LonTGT_Crossing(mm,2) = PropOrb_h(ii); 
        LonTGT_Crossing(mm,3) = PropOrb_Lat_deg(ii); 
        LonTGT_Crossing(mm,4) = PropOrb_Lon_deg(ii); 
    else 
        LonTGT_Crossing(mm,1:4) = 0; 
    end 
end 
  
%Latitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lat_deg) 
    mm = mm + 1; 
    if abs(PropOrb_Lat_deg(ii) - Lat_Target) < 20  
        LatTGT_Crossing(mm,1) = PropOrb_t(ii); 
        LatTGT_Crossing(mm,2) = PropOrb_h(ii); 
        LatTGT_Crossing(mm,3) = PropOrb_Lon_deg(ii); 
        LatTGT_Crossing(mm,4) = PropOrb_Lat_deg(ii); 
    else 
        LatTGT_Crossing(mm,1:4) = 0; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Crossings 
%Longitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(LonTGT_Crossing)      
    if LonTGT_Crossing(ii) ~= 0 
        mm = mm + 1; 
        FlagVector_Lon(mm,1)  = ii; 
        WithinIdent_Lon(mm,:) = LonTGT_Crossing(ii,:); 
    end 
end 
FlagVector_Lon = [FlagVector_Lon;0]; 
  
%Latitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(LatTGT_Crossing)      
    if LatTGT_Crossing(ii) ~= 0 
        mm = mm + 1; 
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        FlagVector_Lat(mm,1)  = ii; 
        WithinIdent_Lat(mm,:) = LatTGT_Crossing(ii,:); 
    end 
end 
FlagVector_Lat = [FlagVector_Lat;0]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Jumps in Crossings 
%Longitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector_Lon)-1 
    if abs((FlagVector_Lon(ii+1) - FlagVector_Lon(ii))) > 1 
        mm = mm + 1; 
        LonTGT_Jump(mm,1) = ii; 
    end 
end 
LonTGT_Jump = [0;LonTGT_Jump]; 
  
%Latitude crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector_Lat)-1 
    if abs((FlagVector_Lat(ii+1) - FlagVector_Lat(ii))) > 1 
        mm = mm + 1; 
        LatTGT_Jump(mm,1) = ii; 
    end 
end 
LatTGT_Jump = [0;LatTGT_Jump]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Interpolation of Crossing Trajectories 
%Longitude crossings 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(LonTGT_Jump) 
    mm = mm + 1; 
    LonTGT_Interp(mm,:) = ... 
        interp1(LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1):  ... 
                                FlagVector_Lon(LonTGT_Jump(ii)),4),   ... 
                LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1):  ... 
                                FlagVector_Lon(LonTGT_Jump(ii)),1:3), ... 
                Lon_Target,'spline'); %Cubic spline interpolation 
end    
  
%Latitude crossings 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(LatTGT_Jump) 
    mm = mm + 1; 
    LatTGT_Interp(mm,:) = ... 
        interp1(LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1):  ... 
                                FlagVector_Lat(LatTGT_Jump(ii)),4),   ... 
                LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1):  ... 
                                FlagVector_Lat(LatTGT_Jump(ii)),1:3), ... 
                Lat_Target,'spline'); %Cubic spline interpolation 
end  
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%Removal of negative perturbed periods  
LatTGT_Interp(any(LatTGT_Interp(:,1)<0,2),:) = [];  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                     
%% Determination of Minimum Target Miss Distance  
%Target miss distance for both spherical and oblate planetary models 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lon_deg) 
    mm = mm + 1; 
    SphereDist_Lon = CoordDist(Lon_Target,Lon_Target, ... 
                               Lat_Target,LonTGT_Interp(:,3),1); 
end 
  
%Longitudinal target miss distance (km) 
[MinDistance_Lon,MinFlag_Lon] = min(SphereDist_Lon(:,1)); 
  
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(PropOrb_Lat_deg) 
    mm = mm + 1; 
    SphereDist_Lat = CoordDist(Lon_Target,LatTGT_Interp(:,3), ... 
                               Lat_Target,Lat_Target,1); 
end 
  
%Latitudinal target miss distance (km) 
[MinDistance_Lat,MinFlag_Lat] = min(SphereDist_Lat(:,1)); 
  
MinDist_Vec = [MinDistance_Lon, MinDistance_Lat]; %Miss distance vector 
MinFlag_Vec = [MinFlag_Lon,     MinFlag_Lat];     %Minimum flag vector 
  
[MinDistance, MinIndex] = min(MinDist_Vec); %Minimum miss distance 
MinFlag     = MinFlag_Vec(MinIndex);        %Flag for minimum miss distance 
  
%Determination of interpolated data set associated with min. miss distance 
if     MinIndex == 1 
    MinInterp = LonTGT_Interp; %Interpolated data for longitude crossing 
elseif MinIndex == 2 
    MinInterp = LatTGT_Interp; %Interpolated data for latitude crossing 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Total Skip Maneuver Delta-V 
V_EndSkip = Skip_States(end,2);         %Velocity where fpa = 0 (km/s) 
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)  
 
%Total delta-V for skip maneuver (km/s) 
dV_SkipTotal = dV_Maneuver + dV_ReCirc;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Target Arrival and Trajectory Parameters 
%Time-of-arrival at target (hr) 
TimeArrival = (MinInterp(MinFlag,1))*(1/60)*(1/60);  
  
%Altitude-of-arrival at target (km) 
AltArrival  = MinInterp(MinFlag,2);  
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PertOrbNum  = SMA_Skip(Xing,3);   %Number of perturbed orbits 
TypeFlag    = SMA_Target(Xing,2); %Type of maneuver flag 
  
h_Apog      = r_Apog(Xing) - RE;  %Skip apogee altitude (km) 
h_Perig     = r_Perig(Xing) - RE; %Skip perigee altitude (km) 
SkipEcc     = ((r_Apog(Xing) - r_Perig(Xing))/ ... 
               (r_Apog(Xing) + r_Perig(Xing))); %Eccentricity 
  
%Payload imager field-of-view (FOV) and resolution during over-flight 
%Visible spectrum imager 
[FOV_m2_Vis, FOV_km2_Vis, Resolution_Vis] = ... 
                        PayloadImager(AltArrival*(1.0E3),1.15,2.70,1.0E-6);  
%Infrared spectrum imager                     
[FOV_m2_IR,  FOV_km2_IR,  Resolution_IR]  = ... 
                       PayloadImager(AltArrival*(1.0E3),1.15,2.70,11.0E-6); 
  
%Over-flight parameter matrix                    
Trajectory_Analysis = [TypeFlag, TimeArrival, AltArrival,             ... 
                       SMA_Skip(Xing,4), PertOrbNum, h_Apog, h_Perig, ... 
                       SkipEcc, Resolution_Vis, dV_SkipTotal,         ... 
                       MinDistance, dV_Maneuver, dV_ReCirc, Resolution_IR]; 
                    
%Prints notification of maneuver simulation completion to command window 
fprintf('Simulation Run: %d \n',Xing);   
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg  
%Reference orbit 
[Lon_RefOrb,  Lat_RefOrb,  LonSplit_RefOrb, LatSplit_RefOrb] = ... 
                                            CoordinateJump(RefOrb_States); 
%Maneuver orbit                                         
[Lon_Skip,    Lat_Skip,    LonSplit_Skip, LatSplit_Skip] = ... 
                                            CoordinateJump(Skip_States);  
%Propagated re-circularized orbit                                         
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ... 
                                            CoordinateJump(PropOrb_States); 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Command Window Printing 
fprintf('Maneuver Velocity:          %f km/s \n', V_Maneuver); 
fprintf('Maneuver Heading Angle:    %f deg   \n', rad2deg(PSI_Maneuver)); 
fprintf('Number of Iterations:       %d      \n', IterCount); 
fprintf('Minimum Miss Distance:      %f km   \n', MinDistance); 
fprintf('Time-of-Arrival:           %f  hr   \n', TimeArrival); 
fprintf('Maneuver Delta-V:           %f km/s \n', dV_Maneuver); 
fprintf('Total Delta-V:              %f km/s \n', dV_SkipTotal); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plotting Commands 
%Conversion of time units for plotting 
[Skip_Time,    time_string] = TimeUtility(Skip_t,2); 
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2);  
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%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection 
subplot(2,2,1); box on; grid off; 
hold on; cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);           
xlim([-180 180]); ylim([-90 90]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
%Coordinates (x,y) for target latitude, longitude end points 
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target]; 
p1_Lon = [Lon_Target, -90];  p2_Lon = [Lon_Target, 90]; 
  
%Target latitude, longitude lines 
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:'); 
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:'); 
  
hold on; %Plate Carree world map projection 
landareas = shaperead('landareas.shp','UseGeoCoords',true); 
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
  
%Target location 
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ... 
                                    'MarkerFaceColor','r','MarkerSize',5); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Geocentric Latitude (deg) v. Longitude (deg) 
subplot(2,2,2); box on; grid off; 
hold on; cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);                           
% xlim([-180 180]); ylim([-90 90]); 
xlim([-180 180]);  
ylim([floor(Lat_Target)-5, ceil(Lat_Target)+5]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
%Coordinates (x,y) for target latitude, longitude end points 
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target]; 
p1_Lon = [Lon_Target, -90];  p2_Lon = [Lon_Target, 90]; 
  
%Trajectory crossings of target latitude 
hold on;  
plot(CrossingIdent(:,3),CrossingIdent(:,4),'ko');         
hold on;  
plot(CrossInterp(:,3),Lat_Target,'gs','LineWidth',2); 
  
%Target latitude, longitude lines 
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r--'); 
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r--'); 
  
%Target location 
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ... 
                                    'MarkerFaceColor','r','MarkerSize',5); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                 
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection 
subplot(2,2,3); box on; grid off; 
hold on;  
h_Ref  = cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb); 
hold on; 
h_Prop = cellfun(@plot,LonSplit_PropOrb,LatSplit_PropOrb);        
  
set(h_Ref, 'LineStyle','-','Color','b'); 
set(h_Prop,'LineStyle','--','Color','r'); 
  
xlim([-180 180]); ylim([-90 90]); 
% xlim([floor(Lon_Target)-10, ceil(Lon_Target)+10]);  
% ylim([floor(Lat_Target)-10, ceil(Lat_Target)+10]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
% legend('Reference Orbit','Perturbed Orbit','Location','NorthEast'); 
  
%Coordinates (x,y) for target latitude, longitude end points 
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target]; 
p1_Lon = [Lon_Target, -90];  p2_Lon = [Lon_Target, 90]; 
  
%Target latitude, longitude lines 
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:'); 
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:'); 
  
hold on; %Plate Carree world map projection 
landareas = shaperead('landareas.shp','UseGeoCoords',true); 
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
  
%Target location 
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ... 
                                    'MarkerFaceColor','r','MarkerSize',5); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                 
%% Geodetic Altitude (km) vs. Time (sec) 
[PropOrb_t, time_string] = TimeUtility(PropOrb_t,2); %Time unit conversion 
subplot(2,2,4); box on; grid on; 
 
plot(PropOrb_t,PropOrb_h,'b');                                    
xlabel(['Time, ', time_string]);  
ylabel('Geodetic Altitude, km'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
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RefOrb_Targeting.m 
 
clear all; clc; close all; 
  
global MU RE   
global Lat_Denver   Lon_Denver   Lat_Gibraltar Lon_Gibraltar 
global Lat_Glasgow  Lon_Glasgow  Lat_Grozny    Lon_Grozny 
global Lat_Moscow   Lon_Moscow   Lat_Ponti     Lon_Ponti    
global Lat_Pyong    Lon_Pyong    Lat_Reyk      Lon_Reyk    
global Lat_Tehran   Lon_Tehran   Lat_Tokyo     Lon_Tokyo 
global Lat_Brasil   Lon_Brasil   Lat_Buenos    Lon_Buenos 
global Lat_Canberra Lon_Canberra Lat_Cape      Lon_Cape 
  
WGS84Constants; %Loads global constants from external m-file 
GroundTargets;  %Loads ground target geographical coordinates (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Target Selection and Targeting Loop Initialization 
Vehicle_Choice = 1; 
Target_Choice  = 12; 
  
if     Target_Choice == 1  %Denver, United States 
    Lat_Target = Lat_Denver;    Lon_Target = Lon_Denver;    dLat = 3; 
elseif Target_Choice == 2  %Gibraltar, United Kingdom 
    Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5; 
elseif Target_Choice == 3  %Glasgow, Scotland 
    Lat_Target = Lat_Glasgow;   Lon_Target = Lon_Glasgow;   dLat = 3; 
elseif Target_Choice == 4  %Grozny, Chechnya 
    Lat_Target = Lat_Grozny;    Lon_Target = Lon_Grozny;    dLat = 3; 
elseif Target_Choice == 5  %Moscow, Russia 
    Lat_Target = Lat_Moscow;    Lon_Target = Lon_Moscow;    dLat = 3; 
elseif Target_Choice == 6  %Pontianak, Indonesia 
    Lat_Target = Lat_Ponti;     Lon_Target = Lon_Ponti;     dLat = 7;  
elseif Target_Choice == 7  %Pyongyang, North Korea 
    Lat_Target = Lat_Pyong;     Lon_Target = Lon_Pyong;     dLat = 5; 
elseif Target_Choice == 8  %Reykjavik, Iceland 
    Lat_Target = Lat_Reyk;      Lon_Target = Lon_Reyk;      dLat = 3;  
elseif Target_Choice == 9  %Tehran, Iran 
    Lat_Target = Lat_Tehran;    Lon_Target = Lon_Tehran;    dLat = 5; 
elseif Target_Choice == 10 %Tokyo, Japan 
    Lat_Target = Lat_Tokyo;     Lon_Target = Lon_Tokyo;     dLat = 4; 
elseif Target_Choice == 11 %Brasilia, Brazil 
    Lat_Target = Lat_Brasil;    Lon_Target = Lon_Brasil;    dLat = 4; 
elseif Target_Choice == 12 %Buenos Aires, Argentina 
    Lat_Target = Lat_Buenos;    Lon_Target = Lon_Buenos;    dLat = 4; 
elseif Target_Choice == 13 %Canberra, Australia 
    Lat_Target = Lat_Canberra;  Lon_Target = Lon_Canberra;  dLat = 4; 
elseif Target_Choice == 14 %Cape Town, South Africa 
    Lat_Target = Lat_Cape;      Lon_Target = Lon_Cape;      dLat = 4; 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Model 
if Vehicle_Choice == 9    %VEHICLE SELECTION OVERRIDE 
    mass = 2000;          %Mass (kg) 
    S_m2 = 18.5;          %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = 0.5;           %Drag coefficient 
    Cl   = 3.0;           %Lift coefficient 
else 
    [Vehicle] = VehicleSpecs(Vehicle_Choice); 
    mass = Vehicle.mass;  %Mass (kg) 
    S_m2 = Vehicle.S_m2;  %Planform area (m^2) 
    S    = S_m2/(1000^2); %Planform area (km^2) 
    Cd   = Vehicle.Cd;    %Drag coefficient 
    Cl   = Vehicle.Cl;    %Lift coefficient 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PSI_Ref0     = 60;       %Initial reference orbit heading angle (deg) 
PSI_Ref      = PSI_Ref0; %Initial estimate for heading angle (deg) 
MissDistance = 9999; %Initializes 'MissDistance' variable for targeting loop 
WhileCount   = 0;    %Initializes 'while'-loop iteration counter 
  
while MissDistance > 2 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Reference Orbit Conditions 
Time_Max = 1;    %Maximum simulation time (days) 
ecc_Ref  = 0;    %Orbit eccentricity 
h_Ref    = 1000; %Orbit geodetic altitude (km) 
lon_Ref  = 0;    %Initial longitude (deg) 
lat_Ref  = 0;    %Initial geodetic latitude (deg) 
fpa_Ref  = 0;    %Flight-path angle (deg) 
bank     = 0;    %Bank angle (deg) 
  
%Converts and overwrites initial angle variables 
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref); 
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);  
  
%Reference orbit parameters 
r_Ref     = h_Ref + RE;                  %Radial position (km) 
SMA_Ref   = 0.5*(r_Ref + r_Ref);         %Semi-major axis (km) 
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec) 
  
%Velocity relative to rotating frame (rotating planet) 
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Ref,lat_Ref, ... 
                                 fpa_Ref,PSI_Ref,bank); 
  
%Conversion of time units from days to seconds 
Time_Max = Time_Max*(24)*(60)*(60); 
SMA_Target0     = SMA_Ref;    %Target semi-major axis (km) 
V_Decrement     = 1 - 0.9999; %Decrement value for velocity (km/s) 
V_Check0(1,1)   = V_Rel;      %Initial guess for velocity (km/s) 
PSI_Check0(1,1) = PSI_Ref;    %Initial guess for heading angle (rad) 
IterMax         = 50;         %Maximum number of iterations  
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%% First Iteration 
%Trajectory simulation [0:t:HalfPeriod] 
[Traj_t0, Traj_States0] = Maneuver_MainFunction(1,1,1,1,1,1, ... 
                          0.5*RefPeriod,r_Ref,V_Check0(1,1), ... 
                          lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank); 
  
[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1)); 
                        
%Semi-major axis (km) 
SMA_Check0(1,1)  = 0.5*(r_Ref + r_Check0(1,1));   
  
%Iteration error (s) 
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ... 
                    ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1))); 
                
%Updated velocity (km/s) 
V_Check0(2,1)    = (V_Check0(1,1) - V_Decrement) - ... 
                   ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1)); 
  
%Updated heading angle (rad) 
PSI_Check0(2,1)  = PSI_Ref + ... 
               asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(2,1))); 
                      
%Difference between calculated and target trajectory states 
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1)); 
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1)); 
  
IterCount = 1; %Initializes iteration counter for Newton-Raphson loop 
  
%% Newton-Raphson Iteration 
for ii = 2:IterMax 
    while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ... 
          abs(PSI_Check0(ii,1)  - PSI_Check0(ii-1,1)) > 1E-10 
       
        %Trajectory simulation [0:t:HalfPeriod] 
        [Traj_t0, Traj_States0] = Maneuver_MainFunction(1,1,1,1,1,1,  ... 
                            0.5*RefPeriod,r_Ref,V_Check0(ii,1), ... 
                            lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank); 
         
        [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1)); 
         
        %Current iteration semi-major axis (km) 
        SMA_Check0(ii,1)   = 0.5*(r_Ref + r_Check0(ii,1));  
         
        %Iteration error (sec) 
        GuessError0(ii,1)  = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ... 
                              (V_Check0(ii,1) - V_Check0(ii-1,1))); 
                         
        %Updated velocity (km/s) 
        V_Check0(ii+1,1)   = V_Check0(ii,1) - ... 
                      ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1)); 
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        %Updated heading angle (rad) 
        PSI_Check0(ii+1,1) = PSI_Ref + ... 
            asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1))); 
                                      
        %Difference between calculated and target trajectory states 
        IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1)); 
        IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ... 
                                                      PSI_Check0(ii-1,1)); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end                         
  
V_Rel0   = V_Check0(ii);   %Velocity (km/s) 
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad) 
  
%Trajectory simulation for reference orbit 
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(1,1,1,1,1,1,Time_Max, ... 
                       r_Ref,V_Rel0,lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank); 
                    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Manipulation  
r_Data   = RefOrb_States(:,1); %Radial position (km) 
h_Data   = r_Data - RE;        %Altitude (km) 
Lon_Data = RefOrb_States(:,3); %Longitude (rad) 
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad) 
  
%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180) 
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180; 
  
%Converts geodetic latitude from radians to degrees  
Lat_Data = rad2deg(Lat_Data);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Trajectory Crossings of Target Longitude 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(Lon_Data) 
    mm = mm + 1; 
    if abs(Lon_Data(ii) - Lon_Target) < 10  
        LonCrossing(mm,1) = RefOrb_t(ii); 
        LonCrossing(mm,2) = h_Data(ii); 
        LonCrossing(mm,3) = Lat_Data(ii); 
        LonCrossing(mm,4) = Lon_Data(ii); 
    else 
        LonCrossing(mm,1:4) = 0; 
    end 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Longitude Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(LonCrossing)      
    if LonCrossing(ii) ~= 0 
        mm = mm + 1; 
        FlagVector(mm,1) = ii; 
        WithinIdent(mm,:) = LonCrossing(ii,:); 
    end 
end 
FlagVector = [FlagVector;0]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Indices Corresponding to Jumps in Longitude Crossings 
mm   = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(FlagVector)-1 
    if abs((FlagVector(ii+1) - FlagVector(ii))) > 1 
        mm = mm + 1; 
        LonJump(mm,1) = ii; 
    end 
end 
LonJump = [0;LonJump]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Interpolation of Longitude Crossing Trajectories 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 2:length(LonJump) 
    mm = mm + 1; 
    LonInterp(mm,:) = ... 
        interp1(LonCrossing(FlagVector(LonJump(ii-1)+1):  ... 
                            FlagVector(LonJump(ii)),4),   ... 
                LonCrossing(FlagVector(LonJump(ii-1)+1):  ... 
                            FlagVector(LonJump(ii)),1:3), ... 
                Lon_Target,'spline'); %Cubic spline interpolation 
end    
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                     
%% Determination of Minimum Target Miss Distance  
%Target miss distance for both spherical and oblate planetary models 
mm = 0; %Initializes vector concatenation counter at zero 
for ii = 1:length(Lat_Data) 
    mm = mm + 1; 
    SphereDist = ...                
              CoordDist(Lon_Target,Lon_Target,Lat_Target,LonInterp(:,3),1); 
end 
 
%Target miss distance (km) 
[MinDistance,MinFlag] = min(SphereDist(:,1)); 
MissDistance = MinDistance 
  
%Time-of-arrival at target (hr) 
TimeArrival  = (LonInterp(MinFlag,1))*(1/60)*(1/60); 
  
%Latitude-of-arrival at target (deg) 
LatArrival   = LonInterp(MinFlag,3); 
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if      LatArrival > Lat_Target 
    if     MissDistance >  1000 
        PSI_Ref = rad2deg(PSI_Ref) + 1.0; 
    elseif MissDistance >  100 && MissDistance <= 1000 
        PSI_Ref = rad2deg(PSI_Ref) + 0.5; 
    elseif MissDistance >  20  && MissDistance <= 100 
        PSI_Ref = rad2deg(PSI_Ref) + 0.1; 
    elseif MissDistance >  3  && MissDistance  <= 20 
        PSI_Ref = rad2deg(PSI_Ref) + 0.01; 
    elseif MissDistance <= 3 
        PSI_Ref = rad2deg(PSI_Ref) + 0.001; 
    end 
     
elseif LatArrival < Lat_Target 
    if     MissDistance >  1000 
        PSI_Ref = rad2deg(PSI_Ref) - 1.0; 
    elseif MissDistance >  100 && MissDistance <= 1000 
        PSI_Ref = rad2deg(PSI_Ref) - 0.5; 
    elseif MissDistance >  20  && MissDistance <= 100 
        PSI_Ref = rad2deg(PSI_Ref) - 0.1; 
    elseif MissDistance >  3  && MissDistance  <= 20 
        PSI_Ref = rad2deg(PSI_Ref) - 0.01; 
    elseif MissDistance <= 3 
        PSI_Ref = rad2deg(PSI_Ref) - 0.001; 
    end 
end 
  
WhileCount = WhileCount + 1; %Update to 'while'-loop iteration counter 
  
%Clearing of variables for targeting loop 
clear LonCrossing; clear FlagVector; clear WithinIdent; 
clear LonJump;     clear LonInterp; 
  
end 
  
%Payload imager field-of-view (FOV) and resolution during over-flight 
%Visible spectrum imager 
[FOV_m2_Vis,FOV_km2_Vis,Resolution_Vis] = ... 
                             PayloadImager(h_Ref*(1.0E3),1.15,2.70,1.0E-6); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of Simple Plane Change Delta-V 
%Initial velocity relative to rotating frame (rotating planet)  
[V_Rel_Init,PSI_Rel_Init] = RelativeStates(mass,S,Cd,Cl,h_Ref,lat_Ref, ... 
                                           fpa_Ref,deg2rad(PSI_Ref0),bank); 
  
dV_Simple = InclinationChange(V_Rel_Init,fpa_Ref,abs(PSI_Ref0 - PSI_Ref)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg  
%Reference orbit 
[Lon_RefOrb, Lat_RefOrb, LonSplit_RefOrb,LatSplit_RefOrb] = ... 
                                            CoordinateJump(RefOrb_States); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Command Window Printing 
fprintf('Minimum Miss Distance:          %f km   \n', MinDistance); 
fprintf('Time-of-Arrival:                %f hr   \n', TimeArrival); 
fprintf('Simple Plane Change Delta-V:    %f km/s \n', dV_Simple); 
  
return 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plotting Commands 
%Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection 
figure; box on; grid on; 
hold on; cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);          
xlim([-180 180]); ylim([-90 90]); 
xlabel('Longitude, deg');  
ylabel('Geocentric Latitude, deg'); 
  
%Coordinates (x,y) for target latitude, longitude end points 
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target]; 
p1_Lon = [Lon_Target, -90];  p2_Lon = [Lon_Target, 90]; 
  
%Target latitude, longitude lines 
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:'); 
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:'); 
  
% hold on; %Plate Carree world map projection 
% landareas = shaperead('landareas.shp','UseGeoCoords',true); 
% geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]); 
  
%Target location 
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ... 
                                    'MarkerFaceColor','r','MarkerSize',5); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
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Trajectory_3DPlotting.m 
 
global RE 
global Lat_Denver   Lon_Denver   Lat_Gibraltar Lon_Gibraltar 
global Lat_Glasgow  Lon_Glasgow  Lat_Grozny    Lon_Grozny 
global Lat_Moscow   Lon_Moscow   Lat_Ponti     Lon_Ponti    
global Lat_Pyong    Lon_Pyong    Lat_Reyk      Lon_Reyk    
global Lat_Tehran   Lon_Tehran   Lat_Tokyo     Lon_Tokyo 
global Lat_Brasil   Lon_Brasil   Lat_Buenos    Lon_Buenos 
global Lat_Canberra Lon_Canberra Lat_Cape      Lon_Cape 
  
WGS84Constants; %Loads global constants from external m-file 
GroundTargets;  %Loads ground target geographical coordinates (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Target Selection  
Target_Choice  = 5; 
  
if     Target_Choice == 1  %Denver, United States 
    Lat_Target = Lat_Denver;    Lon_Target = Lon_Denver;    dLat = 3; 
elseif Target_Choice == 2  %Gibraltar, United Kingdom 
    Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5; 
elseif Target_Choice == 3  %Glasgow, Scotland 
    Lat_Target = Lat_Glasgow;   Lon_Target = Lon_Glasgow;   dLat = 3; 
elseif Target_Choice == 4  %Grozny, Chechnya 
    Lat_Target = Lat_Grozny;    Lon_Target = Lon_Grozny;    dLat = 3; 
elseif Target_Choice == 5  %Moscow, Russia 
    Lat_Target = Lat_Moscow;    Lon_Target = Lon_Moscow;    dLat = 3; 
elseif Target_Choice == 6  %Pontianak, Indonesia 
    Lat_Target = Lat_Ponti;     Lon_Target = Lon_Ponti;     dLat = 7;  
elseif Target_Choice == 7  %Pyongyang, North Korea 
    Lat_Target = Lat_Pyong;     Lon_Target = Lon_Pyong;     dLat = 5; 
elseif Target_Choice == 8  %Reykjavik, Iceland 
    Lat_Target = Lat_Reyk;      Lon_Target = Lon_Reyk;      dLat = 3;  
elseif Target_Choice == 9  %Tehran, Iran 
    Lat_Target = Lat_Tehran;    Lon_Target = Lon_Tehran;    dLat = 5; 
elseif Target_Choice == 10 %Tokyo, Japan 
    Lat_Target = Lat_Tokyo;     Lon_Target = Lon_Tokyo;     dLat = 4; 
elseif Target_Choice == 11 %Brasilia, Brazil 
    Lat_Target = Lat_Brasil;    Lon_Target = Lon_Brasil;    dLat = 4; 
elseif Target_Choice == 12 %Buenos Aires, Argentina 
    Lat_Target = Lat_Buenos;    Lon_Target = Lon_Buenos;    dLat = 4; 
elseif Target_Choice == 13 %Canberra, Australia 
    Lat_Target = Lat_Canberra;  Lon_Target = Lon_Canberra;  dLat = 4; 
elseif Target_Choice == 14 %Cape Town, South Africa 
    Lat_Target = Lat_Cape;      Lon_Target = Lon_Cape;      dLat = 4; 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 3-D Globe Model 
figure; clf reset; 
Earth = referenceSphere('earth','km'); 
Earth.Radius = RE; 
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ax = axesm('globe','Geoid',Earth,'Grid','off', ... 
           'GLineWidth',1,'GLineStyle','-',    ... 
           'Gcolor',[0.9 0.9 0.1],'Galtitude',100); 
  
set(ax,'Position',[0 0 1 1]); 
axis equal off; view(3); load topo; 
geoshow(topo,topolegend,'DisplayType','texturemap'); 
demcmap(topo); 
land   = shaperead('landareas',  'UseGeoCoords',true); 
plotm([land.Lat],[land.Lon],'Color','black');    hold on; 
rivers = shaperead('worldrivers','UseGeoCoords',true); 
plotm([rivers.Lat],[rivers.Lon],'Color','blue'); hold on; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 3-D Ground Track Trajectory 
%Initial maneuver and propagated trajectory 
VecEnd = 341; 
LatProp_Data = PropOrb_States(1:VecEnd,4); 
LonProp_Data = PropOrb_States(1:VecEnd,3); 
AltProp_Data = PropOrb_h(1:VecEnd,1); 
  
% plotm(rad2deg(Lat_Data),rad2deg(Lon_Data),'k-','MarkerSize',2); hold on;  
X_Prop       = (RE + 1.*AltProp_Data).*sin((pi/2) - 
LatProp_Data).*cos(LonProp_Data); 
Y_Prop       = (RE + 1.*AltProp_Data).*sin((pi/2) - 
LatProp_Data).*sin(LonProp_Data); 
Z_Prop       = (RE + 1.*AltProp_Data).*cos((pi/2) - LatProp_Data); 
plot3(X_Prop,Y_Prop,Z_Prop,'y-','LineWidth',1.5); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Molniya 3-42 Orbit Trajectory 
load PropOrb_States_342; 
load PropOrb_h_342; 
load PropOrb_t_342; 
  
VecEnd2 = 131; 
LatProp_Data342 = PropOrb_States_342(1:VecEnd2,4); 
LonProp_Data342 = PropOrb_States_342(1:VecEnd2,3); 
AltProp_Data342 = PropOrb_h_342(1:VecEnd2,1); 
  
X_Prop342       = (RE + 1.*AltProp_Data342).*sin((pi/2) - 
LatProp_Data342).*cos(LonProp_Data342); 
Y_Prop342       = (RE + 1.*AltProp_Data342).*sin((pi/2) - 
LatProp_Data342).*sin(LonProp_Data342); 
Z_Prop342       = (RE + 1.*AltProp_Data342).*cos((pi/2) - LatProp_Data342); 
plot3(X_Prop342,Y_Prop342,Z_Prop342,'g-','LineWidth',1.5); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Maneuver trajectory 
LatSkip_Data = Skip_States(:,4); 
LonSkip_Data = Skip_States(:,3); 
AltSkip_Data = Skip_States(:,1) - RE; 
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X_Skip       = (RE + 1.*AltSkip_Data).*sin((pi/2) - 
LatSkip_Data).*cos(LonSkip_Data); 
Y_Skip       = (RE + 1.*AltSkip_Data).*sin((pi/2) - 
LatSkip_Data).*sin(LonSkip_Data); 
Z_Skip       = (RE + 1.*AltSkip_Data).*cos((pi/2) - LatSkip_Data); 
plot3(X_Skip,Y_Skip,Z_Skip,'r-','LineWidth',1.5);  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','k'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
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Appendix G. MATLAB® Code for Support Functions and Utilities 
 
 
 

Table G.1. m-File Classification for Support Functions and Utilities 
 

Filename File Type Description 

COE2RV Function Converts COEs to 𝑟,𝑉�⃗  
CoordDist Function Calculates geodesies 

CoordinateJump Function Shifts data to −180° < 𝜃 < 180° 

DescentDeltaV Function Calculates impulse to alter 𝛾 

Eccentricity Function Calculates orbit eccentricity 

EntryDecel Function Calculates re-entry deceleration 

FirstSkip Function Calculates single skip parameters 

Geocentric2Geodetic Function Calculates geodetic coordinates 

Geodetic2Geocentric Function Calculates geocentric coordinates 

GroundTargets Function Coordinates of sample targets 

HeatFluxModel Function Convective and radiative models 

InclinationChange Function Simple plane change 

KeplerAnomalies Function Calculates eccentric/true anomalies 

OrbitVelocity Function For circular/elliptical orbits 

PayloadImager Function Calculates FOV and resolution 

RelativeStates Function States relative to rotating frame 

RelativeStates_Entry Function States relative to rotating frame 

ROT Function Rotation matrices 

SingleSkip_Maneuver Function Calculates single skip maneuver 

SMARadii Function Calculates apogee and perigee 

TimeUtility Function User-defined time scale for plotting 

TLE2RV Function Converts TLE to 𝑟,𝑉�⃗  
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COE2RV.m 
 
function [r,V] = COE2RV(MU,a,ecc,inc,raan,omega,nu,Angle_Choice) 
  
%Conversion of classical elements from degrees to radians 
if     Angle_Choice == 1 %Angle conversion NOT required 
    inc   = inc;   %Inclination (rad) 
    raan  = raan;  %Right ascension of the ascending node (rad) 
    omega = omega; %Argument of perigee (rad) 
    nu    = nu;    %True anomaly (rad) 
elseif Angle_Choice == 2 %Angle conversion required 
    inc   = deg2rad(inc); 
    raan  = deg2rad(raan); 
    omega = deg2rad(omega); 
    nu    = deg2rad(nu); 
end 
  
%Semi-parameter (km) 
p    = a*(1 - (ecc^2)); 
  
%Radial position vector in PQW-frame 
Rpqw = [((p*cos(nu))/(1 + ecc*cos(nu))); ... 
        ((p*sin(nu))/(1 + ecc*cos(nu))); 0]; 
  
%Velocity vector in PQW-frame 
Vpqw = [-(sqrt(MU/p))*sin(nu); ... 
         (sqrt(MU/p))*(ecc + cos(nu)); 0]; 
      
%Rotation from PQW-frame to IJK-frame          
Rijk = ROT(3,-raan,1)*ROT(1,-inc,1)*ROT(3,-omega,1)*Rpqw; 
Vijk = ROT(3,-raan,1)*ROT(1,-inc,1)*ROT(3,-omega,1)*Vpqw; 
  
%Re-assignment of vector variable names 
r    = Rijk; %(km) 
V    = Vijk; %(km/s) 
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CoordDist.m 
 
function [GeoDist] = CoordDist(Lon1,Lon2,Lat1,Lat2,Model_Choice) 
  
global RE FlatE 
  
WGS84Constants; %Loads global constants FlatErom external m-FlatEile 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Conversion from degrees to radians 
%Note: Longitude range = [0:theta:360] or [0:theta:2*pi] 
Lon1 = deg2rad(Lon1); Lat1 = deg2rad(Lat1); 
Lon2 = deg2rad(Lon2); Lat2 = deg2rad(Lat2); 
 
  
a2 = RE^2;         %Square of semi-major axis (km) 
b  = RE*(1-FlatE); %Semi-minor axis (km) 
b2 = b^2;          %Square of semi-minor axis (km) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if     Model_Choice == 1 
%% Spherical Planet Model: Distance between Two Coordinates (Great Circle)  
GeoDist = RE*acos(sin(Lat1)*sin(Lat2) + ... 
             cos(Lat1)*cos(Lat2)*cos(Lon1 - Lon2)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
elseif Model_Choice == 2 
%% Oblate Planet Model: Distance between Two Coordinates (Vincenty's Method) 
 
%Reduced latitude (rad) 
U1 = atan((1-FlatE)*tan(Lat1));  
U2 = atan((1-FlatE)*tan(Lat2)); 
 
%Longitude difference (rad) 
L = Lon2 - Lon1; 
Lam       = L;  %Initial longitude diff. guess on auxiliary sphere (rad) 
Old_Lam   = 0;  %Initialization of preceding iteration variable (rad) 
IterCount = 0;  %Initialization of iteration counter 
IterMax   = 50; %Maximum number of iterations 
  
for ii = 1:IterMax 
    while abs(Lam - Old_Lam) > 1E-12 
        Old_Lam      = Lam; 
         
        SIN_Sigma    = sqrt(((cos(U2)*sin(Old_Lam))^2) + ... 
                      ((cos(U1)*sin(U2) - sin(U1)*cos(U2)*cos(Old_Lam))^2)); 
        COS_Sigma    = sin(U1)*sin(U2) + cos(U1)*cos(U2)*cos(Old_Lam); 
        AngularDist  = atan2(SIN_Sigma,COS_Sigma); 
         
        SIN_Alpha    = ((cos(U1)*cos(U2)*sin(Old_Lam))/sin(AngularDist)); 
        COS_Alpha2   = 1 - (SIN_Alpha^2); 
        COS_2Sigma_m = cos(AngularDist) - ((2*sin(U1)*sin(U2))/COS_Alpha2); 
        C   = (FlatE/16)*COS_Alpha2*(4 + FlatE*(4 - 3*COS_Alpha2)); 
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        Lam = L + (1-C)*FlatE*SIN_Alpha*(AngularDist + ... 
              C*SIN_Sigma*(COS_2Sigma_m +              ...  
              C*COS_Sigma*(-1 + 2*(COS_2Sigma_m^2)))); 
         
        %Difference between current and preceding longitude difference 
        IterativeDiff_Lam(ii,1) = abs(Lam  - Old_Lam); 
         
        ii = ii + 1;               %Update to row-index counter 
        IterCount = IterCount + 1; %Update to iteration counter 
    end 
    break %Breaks row-index loop once tolerance is fulfilled 
end 
  
u2 = ((a2 - b2)/b2)*COS_Alpha2; 
A  = 1 + (u2/16384)*(4096 + u2*(-768 + u2*(320 - 175*u2))); 
 
B  = (u2/1024)*(256 + u2*(-128 + u2*(74 - 47*u2))); 
dAngularDist = B*SIN_Sigma*(COS_2Sigma_m +                  ... 
               (1/4)*B*(-1 + 2*(COS_2Sigma_m^2) -           ... 
               (1/6)*B*COS_2Sigma_m*(-3 + 4*(SIN_Sigma^2))* ... 
               (-3 + 4*(COS_2Sigma_m^2))));  
GeoDist = abs(b*A*(AngularDist - dAngularDist)); 
  
end 
 
 
 
 
 

CoordinateJump.m 
 
function [Lon_Data,Lat_Data,Lon_Split,Lat_Split] = ...  
                                                  CoordinateJump(traj_states) 
  
lon = traj_states(:,3); %Longitude (rad) 
lat = traj_states(:,4); %Latitude (rad) 
  
%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180) 
Lon_Data = rem((rad2deg(lon') + 180),360) - 180; 
  
%Converts geocentric latitude from radians to degrees  
Lat_Data = rad2deg(lat');  
  
%Re-defines data to reflect jumps in data between 180 and -180 deg 
Lon_Jumps = [0 find(abs(diff(Lon_Data))> 90) length(Lon_Data)];  
Lon_Split = mat2cell(Lon_Data,1,diff(Lon_Jumps)); 
Lat_Split = mat2cell(Lat_Data,1,diff(Lon_Jumps)); 
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DescentDeltaV.m 
 
function [dV1,V1] = DescentDeltaV(h_orbit,h_atm,fpa0_deg) 
 
global MU RE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions 
r0      = h_orbit + RE;      %Radius of initial circular orbit (km) 
r_atm   = h_atm + RE;        %Radius of sensible atmosphere limit (km) 
V0      = sqrt(MU./r0);      %Circular orbit velocity (km/s) 
r_ratio = r_atm./r0;         %Radius ratio 
fpa0    = deg2rad(fpa0_deg); %Flight-path angle (rad) 
cfpa0   = cos(fpa0);         %Variable simplification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Descent Impulse Determination 
%Equation components 
Radicand_num   = 2.*(1 - r_ratio); 
Radicand_denom = r_ratio.*(1 - ((r_ratio.^2).*(cfpa0.^2))); 
Radicand       = Radicand_num./Radicand_denom; 
  
%Descent trajectory impulse (km/s) 
dV1 = V0.*(1 - ((r_ratio.*cfpa0).*sqrt(Radicand))); 
V1 = V0.*sqrt(Radicand); %Entry velocity (km/s) 
 
   
 
 
 

Eccentricity.m 
 
function ecc = Eccentricity(r_apogee,r_perigee) 
  
 ecc = ((r_apogee - r_perigee)/(r_apogee + r_perigee)); %Eccentricity 
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EntryDecel.m 
 
function [decel] = EntryDecel(Gravity_Choice,mass,S,Cd,Cl,r,V,lat,fpa) 
  
global RE FlatE  
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planetary Model  
[GravModel] = GravityModel(r,lat); 
g = GravModel.g; %Spherical gravity model (km/s^2) 
  
if     Gravity_Choice == 1 %Spherical gravity model 
    h_gd = r - RE; 
elseif Gravity_Choice == 2 %J2 gravity model 
    [h_gd,lat_gd] = Geocentric2Geodetic(r,lat,RE,FlatE); 
end 
  
%Atmospheric density (kg/km^3) 
[Rho] = AtmosModel_PostAnalysis(h_gd,2); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Dynamics 
D     = 0.5.*Rho.*Cd.*S.*(V.^2); %Drag force  
L     = 0.5.*Rho.*Cl.*S.*(V.^2); %Lift force  
 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Deceleration  
%Tangential component (along velocity vector) 
decel.Tang    = (D./mass) + (g.*sin(fpa));   
decel.TangG   = decel.Tang./g;   %(g's) 
  
%Normal component (along lift vector) 
decel.Normal  = -(L./mass) - (((V.^2)./r) - g).*cos(fpa); 
decel.NormalG = decel.Normal./g; %(g's) 
  
%Magnitude of deceleration 
decel.Mag     = sqrt((decel.Tang.^2) + (decel.Normal.^2)); 
  
%Magnitude of deceleration (g's) 
decel.Gs      = decel.Mag./g; 
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FirstSkip.m 
 
function [FirstMin,FirstMax,FirstSkip_States] = FirstSkip(t,traj_states) 
  
global RE FlatE 
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Variable Assignment of States (x)  
%Radial position (km) 
r       = traj_states(:,1); 
%Velocity (km/s) 
V       = traj_states(:,2);  
%Longitude (rad) 
lon     = traj_states(:,3);  
%Latitude (rad) 
lat     = traj_states(:,4);  
%Flight-path angle (rad) 
fpa     = traj_states(:,5);  
%Heading angle (rad) 
heading = traj_states(:,6); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of First Perigee States in Skip Trajectory 
for ctr_min = 2:length(r) 
    if r(ctr_min) < r(ctr_min - 1) 
        ctr_min      = ctr_min + 1; 
    else 
        %First perigee 
        ctr_FirstMin = ctr_min - 1;       %Counter value for first perigee 
        FirstMin.t   = t(ctr_FirstMin);   %Time (user-specified units) 
        FirstMin.r   = r(ctr_FirstMin);   %Radial position (km) 
        break 
    end 
end 
  
%States associated with first perigee  
FirstMin.V       = V(ctr_FirstMin);       %Velocity (km/s) 
FirstMin.lon     = lon(ctr_FirstMin);     %Longitude (rad) 
FirstMin.lat     = lat(ctr_FirstMin);     %Geocentric latitude (rad) 
FirstMin.fpa     = fpa(ctr_FirstMin);     %Flight-path angle (rad) 
FirstMin.heading = heading(ctr_FirstMin); %Heading angle (rad) 
  
%Geodetic altitude (km), geodetic latitude (rad) of first perigee 
[FirstMin.h_gd, FirstMin.lat_gd] = ... 
                   Geocentric2Geodetic(FirstMin.r,FirstMin.lat,RE,FlatE); 
                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Determination of First Apogee States in Skip Trajectory 
for ctr_max = (ctr_FirstMin + 1):length(r) 
    if r(ctr_max) > r(ctr_max - 1) && ctr_max < length(r) 
        ctr_max      = ctr_max + 1; 
    else 
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        %First apogee 
        ctr_FirstMax = ctr_max - 1;       %Counter value for first apogee 
        FirstMax.t   = t(ctr_FirstMax);   %Time (user-specified units) 
        FirstMax.r   = r(ctr_FirstMax);   %Radial position (km) 
        break 
    end 
end 
  
%States associated with first perigee  
FirstMax.V       = V(ctr_FirstMax);       %Velocity (km/s) 
FirstMax.lon     = lon(ctr_FirstMax);     %Longitude (rad) 
FirstMax.lat     = lat(ctr_FirstMax);     %Geocentric latitude (rad) 
FirstMax.fpa     = fpa(ctr_FirstMax);     %Flight-path angle (rad) 
FirstMax.heading = heading(ctr_FirstMax); %Heading angle (rad) 
  
%Geodetic altitude (km), geodetic latitude (rad) of first apogee 
[FirstMax.h_gd, FirstMax.lat_gd] = ... 
                   Geocentric2Geodetic(FirstMax.r,FirstMax.lat,RE,FlatE); 
                                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% States Associated with First Skip (from Initial Descent to First Apogee) 
FirstSkip_States.t       = t(1:ctr_FirstMax,1);       %Time 
FirstSkip_States.r       = r(1:ctr_FirstMax,1);       %Radial position (km) 
FirstSkip_States.V       = V(1:ctr_FirstMax,1);       %Velocity (km/s) 
FirstSkip_States.lon     = lon(1:ctr_FirstMax,1);     %Longitude (rad) 
FirstSkip_States.lat     = lat(1:ctr_FirstMax,1);     %Geocentric lat. (rad) 
FirstSkip_States.fpa     = fpa(1:ctr_FirstMax,1);     %FPA (rad) 
FirstSkip_States.heading = heading(1:ctr_FirstMax,1); %Heading angle (rad) 
  
%Geodetic altitude (km), geodetic latitude (rad) of first skip 
[FirstSkip_States.h_gd, FirstSkip_States.lat_gd] = ... 
     Geocentric2Geodetic(FirstSkip_States.r,FirstSkip_States.lat,RE,FlatE); 
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Geocentric2Geodetic.m 
 
function [h_gd, lat_gd] = Geocentric2Geodetic(r,lat,RE,FlatE) 
  
rho = r/RE;  
 
%Geodetic altitude 
h_Component1   = (rho - 1); 
h_Component2   = (0.5.*(1 - cos(2.*lat))).*FlatE; 
h_Component3   = (((1./(4.*rho)) - (1/16)).*(1 - cos(4.*lat))).*(FlatE.^2); 
h_gd   = (h_Component1 + h_Component2 + h_Component3) * RE; 
  
%Geodetic latitude 
lat_Component1 = ((sin(2.*lat))./rho).*FlatE; 
lat_Component2 = (((1./(rho.^2)) - (1./(4.*rho))).*sin(4.*lat)).*(FlatE.^2); 
lat_gd = lat + lat_Component1 + lat_Component2; 
 
 
 
 
 
 

Geodetic2Geocentric.m 
 
function [r_gc, lat_gc] = Geodetic2Geocentric(h_gd,lat_gd,RE,FlatE) 
  
h = h_gd/RE;  
 
%Geocentric altitude 
r_Component1   = (h + 1); 
r_Component2   = (-0.5.*(1 - cos(2.*lat_gd))).*FlatE; 
r_Component3   = (((1./(4.*(h+1))) + (1/16)).*(1-cos(4.*lat_gd))).*(FlatE.^2); 
r_gc   = (r_Component1 + r_Component2 + r_Component3) * RE; 
  
%Geocentric latitude 
lat_Component1 = ((-sin(2.*lat_gd))./(h+1)).*FlatE; 
lat_Component2 = ((-sin(2.*lat_gd))./(2.*((h+1).^2))); 
lat_Component3 = ((1./(4.*((h+1).^2))) + (1./(4.*(h+1)))).*sin(4.*lat_gd); 
lat_gc = lat_gd + lat_Component1 + (lat_Component2 + ... 
                                    lat_Component3).*(FlatE.^2); 
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GroundTargets.m 
 
function GroundTargets 
  
global Lat_Denver   Lon_Denver   Lat_Gibraltar Lon_Gibraltar 
global Lat_Glasgow  Lon_Glasgow  Lat_Grozny    Lon_Grozny 
global Lat_Moscow   Lon_Moscow   Lat_Ponti     Lon_Ponti    
global Lat_Pyong    Lon_Pyong    Lat_Reyk      Lon_Reyk    
global Lat_Tehran   Lon_Tehran   Lat_Tokyo     Lon_Tokyo 
global Lat_Brasil   Lon_Brasil   Lat_Buenos    Lon_Buenos 
global Lat_Canberra Lon_Canberra Lat_Cape      Lon_Cape 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Geographical Coordinates 
%Denver, United States 
Lat_Denver    =   39.7392; %(deg N) 
Lon_Denver    = -104.9842; %(deg W) 
  
%Gibraltar 
Lat_Gibraltar =   36.1430; %(deg N) 
Lon_Gibraltar =   -5.3530; %(deg W) 
  
%Glasgow, Scotland 
Lat_Glasgow   =   55.8700; %(deg N) 
Lon_Glasgow   =   -4.2700; %(deg W) 
  
%Grozny, Chechnya 
Lat_Grozny    =   43.2983; %(deg N) 
Lon_Grozny    =   45.6997; %(deg E) 
  
%Moscow, Russia 
Lat_Moscow   =    55.7517; %(deg N) 
Lon_Moscow   =    37.6178; %(deg E) 
  
%Pontianak, Indonesia 
Lat_Ponti     =    0.0000; %(deg N) 
Lon_Ponti     =  109.3333; %(deg E) 
  
%Pyongyang, North Korea 
Lat_Pyong    =    39.0333; %(deg N) 
Lon_Pyong    =   125.7500; %(deg E) 
  
%Reykjavik, Iceland 
Lat_Reyk     =    64.1333; %(deg N) 
Lon_Reyk     =   -21.9333; %(deg W) 
  
%Tehran, Iran 
Lat_Tehran   =    35.6833; %(deg N) 
Lon_Tehran   =    51.4167; %(deg E) 
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%Tokyo, Japan 
Lat_Tokyo    =    35.6833; %(deg N) 
Lon_Tokyo    =   139.7667; %(deg E) 
  
%Brasilia, Brazil 
Lat_Brasil   =   -15.7810; %(deg S) 
Lon_Brasil   =   -47.9196; %(deg W) 
  
%Buenos Aires, Argentina 
Lat_Buenos   =   -34.6036; %(deg S) 
Lon_Buenos   =   -58.3817; %(deg W) 
  
%Canberra, Australia 
Lat_Canberra =   -35.2828; %(deg S) 
Lon_Canberra =   149.1314; %(deg E) 
  
%Cape Town, South Africa 
Lat_Cape     =   -33.9767; %(deg S) 
Lon_Cape     =    18.4244; %(deg E) 
 
 
 

HeatFluxModel.m 
 
function [HeatModel,Eta,T_KE] = HeatFluxModel(V_SI,Rho_SI,Emissivity, ... 
                                              Tw_F,Tinf_F,mass,S,Cd,Cl) 
                                           
global MU g0 RE BetaH Rho0 StefBoltz   
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Variable/Function Simplication 
Eta  = ((Rho_SI.*Cd.*S)./(2*mass.*BetaH)); %Altitude (non-dimensional) 
T_KE = ((V_SI.^2)./(2*g0.*RE));            %Kinetic energy (non-dimensional) 
Ve   = sqrt(MU/RE);                        %Planetary surface vel. (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Average Wall Heat Flux (Non-Dimensional);       Source: Hicks (2009) 
HeatModel.Qw = Eta.*((T_KE).^(3/2)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Average Stagnation Heat Flux (Non-Dimensional); Source: Hicks (2009) 
HeatModel.Qs = ((Eta).^(1/2)).*((T_KE).^(3/2)); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Stagnation Heat Flux (kW/m^2);                  Source: Rao   (2002) 
%Heating rate constant (kW/m^2) 
Qdot_Bar = 17600*11.35377; %Source: Rao, et al. (2002) 
% Qdot_Bar = 11.357;         %Source: Rao, et al. (2008) 
% Qdot_Bar = 199870;         %Source: Darby-Rao   (2010) 
  
HeatModel.Qdot = Qdot_Bar*((Rho_SI./Rho0).^(0.5)).*((V_SI./Ve).^(3.15));  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Stagnation Heat Flux (kW/m^2);                  Source: Havey (1982) 
Heat_Coeff = 17700; 
Rn_SI      = 0.3048; 
V      = convlength(V_SI,'km','ft');      %Velocity, (km/s)->(ft/s) 
Rn     = convlength(Rn_SI,'m','ft');      %Nose radius, (m)->(ft) 
Rho_m3 = Rho_SI.*(1/(1000^3));            %Density,  (kg/km^3)->(kg/m^3) 
Rho    = convdensity(Rho_m3,'kg/m^3', ... 
                            'slug/ft^3'); %Density,  (kg/m^3)->(sl/ft^3) 
Tw_R   = convtemp(Tw_F,  'F','R');        %Wall temperature,  (deg F)->(R) 
Tinf_R = convtemp(Tinf_F,'F','R');        %Free-stream temp., (deg F)->(R) 
  
hw = 0.24.*Tw_R; 
h0 = (0.24.*Tinf_R) + ((V.^2)./(50063)); 
  
HeatFlux_Havey   = Heat_Coeff.*((Rho./Rn).^(0.5)).* ... 
                   ((V./(1E4)).^(3.07)).*(1 - (hw./h0)); 
HeatModel.QHavey = HeatFlux_Havey.*11.35377; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Stagnation Heat Flux (kW/m^2);                  Source: Galman (1961) 
%Note: Variables (V, Rn, Rho) obtained from preceding section 
HeatFlux_Galman   = ((2*Rn)^(-0.5)).* ... 
                    ((3.18).*(Rho.^(0.5)).*(V.^(3.2)).*(1E-9)); 
HeatModel.QGalman = HeatFlux_Galman.*11.35377; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Radiative Heat Flux (kW/m^2) 
Tinf_K = convtemp(Tinf_F,'F','K'); %Free-stream temperature, (deg F)->(K) 
HeatModel.Qr1   = (Emissivity.*StefBoltz.*((Tinf_K.^4)))./1000; 
 
 
 
 
 

InclinationChange.m 
 
function dV_Simple = InclinationChange(V0,fpa0,dIncl) 
  
%Converts and overwrites initial angle variables 
fpa0 = deg2rad(fpa0); dIncl = deg2rad(dIncl); 
  
%Delta-V required for simple, inclination-only plane change 
dV_Simple = abs(2.*V0.*cos(fpa0).*sin(0.5.*dIncl)); 
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KeplerAnomalies.m 
 
function [E,nu] = KeplerAnomalies(MeanAnom,ecc) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Eccentric Anomaly 
%Initial guess for eccentric anomaly 
if MeanAnom < 0 || MeanAnom > pi 
    E0 = MeanAnom - ecc; 
else 
    E0 = MeanAnom + ecc; 
end 
  
IterCount = 0;  %Counter initialization 
IterMax   = 20; %Maximum number of iterations 
  
%Newton-Rhapson iteration 
E1 = E0 + ((MeanAnom - E0 + (ecc*sin(E0)))/(1 - (ecc*cos(E0)))); 
  
while (abs(E1 - E0) > 1E-15) && (IterCount < IterMax) 
    E0 = E1; 
    E1 = E0 + ((MeanAnom - E0 + (ecc*sin(E0)))/(1 - (ecc*cos(E0)))); 
    IterCount = IterCount + 1; 
end 
  
E = E1; %Eccentric anomaly (rad) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% True Anomaly 
nu = acos((cos(E) - ecc)/(1 - (ecc*cos(E)))); %(rad) 
 
 
 

OrbitVelocity.m 
 
function V = OrbitVelocity(r,ecc,nu_deg) 
  
global MU 
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Orbital Velocity 
nu = deg2rad(nu_deg); %True anomaly (rad) 
  
%Equation components 
V_Component1 = (MU./r); 
V_Component2 = 1 - (ecc^2); 
V_Component3 = 1 + (ecc*cos(nu)); 
V = sqrt(V_Component1.*(2 - (V_Component2./V_Component3))); 
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PayloadImager.m 
 
function [FOV_m2,FOV_km2,Resolution] = PayloadImager(h,Aperture_Diameter, ... 
                                                     FocalLength,lambda) 
  
%NOTE: Altitude (h) is units of meters (m)                                                    
%Linear (ground) resolution (m) 
Resolution = 2.44*(h*lambda*(1/Aperture_Diameter)); 
  
%Image plane radius (m) 
ImagPlane_Radius = 0.5*Aperture_Diameter; 
  
%Angular diameter of FOV (rad) 
FOV_AngularDiam  = 2*atan(ImagPlane_Radius/FocalLength); 
  
%Ground object/FOV (m^2; km^2) 
FOV_m2  = pi*((h*tan(0.5*FOV_AngularDiam))^2); 
FOV_km2 = FOV_m2 * (1/(1000^2)); 
 
 
 
 

RelativeStates.m 
 
function [V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Orbit, ... 
                                          lat,fpa,heading,bank) 
  
global RE OmegaE 
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Variable/Function Simplification 
%Latitude (lat), flight-path (fpa), and bank (sigma) angles 
clat = cos(lat); slat = sin(lat);     
cfpa = cos(fpa); sfpa = sin(fpa); cbank = cos(deg2rad(bank));  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planetary Model  
r = h_Orbit + RE; %Radial position (km) 
[GravModel] = GravityModel(r,lat); 
g = GravModel.g;  %Spherical gravity model (km/s^2) 
  
[Rho] = AtmosModel(h_Orbit,2); 
rho_r = Rho; 
  
%Planetary rotation parameter 
OmegaRot  = OmegaE;  
OmegaRot2 = OmegaRot^2;  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Vehicle Aerodynamics 
D_comp = 0.5*rho_r*Cd*S; %Drag force component 
L_comp = 0.5*rho_r*Cl*S; %Lift force component 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Newton-Raphson Iteration 
PSI_Guess  = heading; %Initial heading angle guess (rad) 
PSI_Update = 999;     %Initialization of heading angle update (rad) 
IterCount  = 0;       %Initialization of iteration counter 
      
while abs(PSI_Update - PSI_Guess) > 1E-12 
    PSI_Update = PSI_Guess; %Re-define current heading angle (rad) 
     
    %Quadratic equation and components 
    A = (1/r) + ((L_comp*cbank)/mass); 
    B = 2*OmegaRot*clat*cos(PSI_Update); 
    C = -(g*cfpa) + (r*OmegaRot2*clat*(clat*cfpa + ... 
          slat*sin(PSI_Update)*sfpa)); 
    V_Check = (-B + sqrt((B^2) - (4*A*C)))/(2*A); 
     
    %Updated heading angle (rad) 
    PSI_Guess = heading + asin((2*pi*r*sin(heading))/(86400*V_Check)); 
     
    %Difference between update and guess heading angle  
    IterativeDiff_PSI = abs(PSI_Update - PSI_Guess);   
    IterCount = IterCount + 1; %Update to iteration counter 
end 
  
V_Rel   = V_Check;   %Relative maneuver velocity (km/s) 
PSI_Rel = PSI_Guess; %Relative heading angle (rad) 
 
 
 

RelativeStates_Entry.m 
 
function [Vrel0_mag,fpa_rel0,heading_rel0] = ... 
                   RelativeStates_Entry(h0,V_Boost,lon0,lat0,fpa0,heading0) 
  
global RE MU OmegaE 
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Maneuver Profile Initial Conditions (Inertial, Unknown Epoch) 
r0         = h0 + RE;               %Radial position (km) 
V0         = sqrt(MU/r0) + V_Boost; %Orbit velocity (km/s) 
  
%Initial radial position and velocity vectors 
r0_init    = [r0; 0; 0]; %(km) 
V0_init    = [0; V0; 0]; %(km/s) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Coordinate Transformations for Initial Conditions 
%Radial position vector relative to inertial frame (km) 
I_r0     = ROT(3,-lon0,1)*ROT(2,lat0,1)*r0_init;  
I_r0_mag = norm(I_r0); %Radial position magnitude (km) 
  
%Vehicle-pointing (VP) velocity vector relative to inertial frame (km/s) 
VP_V0    = ROT(1,-heading0,1)*ROT(3,fpa0,1)*V0_init; 
%Earth-fixed velocity vector relative to inertial frame (km/s) 
I_V0     = ROT(3,-lon0,1)    *ROT(2,lat0,1)*VP_V0; 
  
%Planetary angular velocity vector (rad/s) 
OmegaE_vec = [0; 0; OmegaE]; 
  
%Velocity vector relative to rotating planet (km/s) 
Vrel0_vec = I_V0 - cross(OmegaE_vec,I_r0); 
Vrel0_mag = norm(Vrel0_vec); %Relative velocity vector magnitude (km/s) 
  
%Initial flight-path and heading angles relative to rotating planet (rad) 
fpa_rel0     = (pi/2) - acos((dot(Vrel0_vec,I_r0))/(Vrel0_mag*I_r0_mag)); 
heading_rel0 = (pi/2) - acos((dot(Vrel0_vec,[0;0;1]))/Vrel0_mag); 
 
 
 

ROT.m 
 
function B = ROT(axis,angle,Angle_Choice) 
  
%Conversion of angle from degrees to radians 
if     Angle_Choice == 1 %Angle conversion NOT required 
    angle = angle;     
elseif Angle_Choice == 2 %Angle conversion required 
    angle = deg2rad(angle);  
end 
  
%Rotation matrices 
if     axis == 1 %Rotation about Axis #1 
    B = [1      0           0;... 
         0  cos(angle)  sin(angle);... 
         0 -sin(angle)  cos(angle)];   
elseif axis == 2 %Rotation about Axis #2 
    B = [cos(angle)  0  -sin(angle);... 
             0       1       0;... 
         sin(angle)  0   cos(angle)];     
elseif axis == 3 %Rotation about Axis #3 
    B = [ cos(angle)  sin(angle)  0;... 
         -sin(angle)  cos(angle)  0;... 
              0           0       1]; 
end 
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SingleSkip_Maneuver.m 
 
function [SingleSkip_t,SingleSkip_States] = ... 
          SingleSkip_Maneuver(Choice_1,Choice_2,Choice_3,Choice_4,    ... 
                              Choice_5,Choice_6,Time_Max,r,V,lon,lat, ... 
                              fpa,heading,bank) 
                       
   
%Simulates skip entry trajectory for given initial conditions 
[t_vec, traj_states] = Maneuver_MainFunction(Choice_1,Choice_2, ... 
                       Choice_3,Choice_4,Choice_5,Choice_6,     ... 
                       Time_Max,r,V,lon,lat,fpa,heading,bank); 
  
if isnan(traj_states(end,2)) == 1                    
                    
%Deletes rows with 'NaN'                    
traj_states(isnan(traj_states(:,2)),:)=[];    
  
%Limits time vector length to length of trajectory parameter matrix 
t_vec = t_vec(1:length(traj_states(:,1)),1); 
  
if isempty(traj_states) == 1 
    SingleSkip_t = 0; 
    SingleSkip_States = zeros(1,8); 
    return 
else 
    SingleSkip_t = 0; 
    SingleSkip_States = zeros(1,8); 
    return 
end 
     
else      
    %Determines states associated with single skip maneuver 
    [FirstMin,FirstMax,FirstSkip_States] = FirstSkip(t_vec,traj_states); 
     
    %Re-assignment of time and state vectors for single skip maneuver 
    SingleSkip_t = FirstSkip_States.t; 
    SingleSkip_States = [FirstSkip_States.r,   FirstSkip_States.V,       ... 
                         FirstSkip_States.lon, FirstSkip_States.lat,     ... 
                         FirstSkip_States.fpa, FirstSkip_States.heading, ... 
                         FirstSkip_States.h_gd,FirstSkip_States.lat_gd]; 
end 
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SMARadii.m 
 
function [Radii,Altitude] = SMARadii(sma,ecc) 
  
global RE   
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Radius and altitude of perigee (km) 
Radii.r_perig    = sma*(1 - ecc); 
Altitude.h_perig = Radii.r_perig - RE; 
  
%Radius and altitude of apogee (km) 
Radii.r_apog     = sma*(1 + ecc); 
Altitude.h_apog  = Radii.r_apog - RE; 
 
 
 

TimeUtility.m 
 
function [t_modified,time_string] = TimeUtility(t_vector,Time_Choice) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 'Time_Choice' Options 
%1 = %Retains time unit of 'seconds' 
%2 = %Converts time units from 'seconds' to 'minutes' 
%3 = %Converts time units from 'seconds' to 'hours' 
%4 = %Converts time units from 'seconds' to 'days' 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Time Conversions 
if     Time_Choice == 1 
    t_modified  = t_vector; 
    time_string = '(sec)'; % 'seconds' 
     
elseif Time_Choice == 2 
    t_modified  = t_vector * (1/60); 
    time_string = '(min)'; % 'minutes' 
     
elseif Time_Choice == 3     
    t_modified  = t_vector  * (1/60) * (1/60); 
    time_string = '(hr)';  % 'hours' 
     
elseif Time_Choice == 4     
    t_modified  = t_vector  * (1/60) * (1/60) * (1/24); 
    time_string = '(day)'; % 'days' 
end 
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TLE2RV.m 
 
function [PositionVec,VelocityVec,h_perig,h_apog] = ... 
        TLE2RV(incl_deg,raan_deg,ecc,omega_deg,MeanAnom_deg,MeanMotion_rev) 
  
global MU   
  
WGS84Constants; %Loads global constants from external m-file 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% TLE Inputs (Example) 
% ecc            = 0.6887925; %Eccentricity 
% incl_deg       = 63.5982;   %Inclination (deg) 
% raan_deg       = 126.1576;  %Right ascension of the ascending node (deg) 
% omega_deg      = 276.0005;  %Argument of perigee (deg) 
% MeanAnom_deg   = 122.0897;  %Mean anomaly (deg) 
% MeanMotion_rev = 2.00582243; %Mean motion (rev/day) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Unit Conversion 
incl       = deg2rad(incl_deg);               %(rad) 
raan       = deg2rad(raan_deg);               %(rad) 
omega      = deg2rad(omega_deg);              %(rad) 
MeanAnom   = deg2rad(MeanAnom_deg);           %(rad) 
MeanMotion = MeanMotion_rev*(2*pi)*(1/86400); %(rad/s)    
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Secondary Orbital Elements 
sma    = (MU/(MeanMotion^2))^(1/3); %Semi-major axis (km) 
  
[E,nu] = KeplerAnomalies(MeanAnom,ecc);  
nu_deg = rad2deg(nu);               %True anomaly (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Position and Velocity Vectors 
[r,V] = COE2RV(MU,sma,ecc,incl,raan,omega,nu,1); 
  
PositionVec = r'; %Position vector (km) 
VelocityVec = V'; %Velocity vector (km/s) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Semi-Major Axis Radii 
[Radii,Altitude] = SMARadii(sma,ecc); 
h_perig = Altitude.h_perig; %Perigee altitude (km) 
h_apog  = Altitude.h_apog;  %Apogee altitude (km) 
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Appendix H. MATLAB® Code for Design of Experiments Support Utilities 
 
 
 

Table H.1. m-File Classification for Design of Experiments Support Utilities 
 

Filename File Type Description 

DOE_BankAngle Script Pareto optimization with variable 𝜎  
DOE_MainEffectsPlot Function Plots main effects  

DOE_MainEffectsPlotting Script Plots main effects 
DOEAnalysis Script Primary driver of DOE simulations 

ParetoBoundary_5Factors Script Pareto optimization with 5 factors 
ParetoBoundary_6Factors Script Pareto optimization with 6 factors 
ParetoBoundary_InitAlt Script Pareto optimization for ℎ𝑖 analysis 

ParetoDOE Script Augmented Pareto front analysis 
paretofront Function Determines Pareto front points 

 
 

DOE_BankAngle.m 
 
close all; clear all; clc; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 8;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_dV   = 0;        %Constraint for minimum delta-V (km/s) 
obj_x    = 7;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 6;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_729_80_100;  %Bank angle range: [-100, -80] 
load DOEMatrix_729_50_80;   %Bank angle range: [ -80, -50] 
load DOEMatrix_729_20_50;   %Bank angle range: [ -50, -20] 
load DOEMatrix_729_0_20;    %Bank angle range: [   0, -20] 
load DOEMatrix_729_100_120; %Bank angle range: [-120,-100] 
  
%% Matrix of Experiments and Observations 
%Bank Angle Campaign #1 
IN_1    = DOEMatrix_729_80_100(:,1:end); 
split_1 = length(IN_1(:,1)); 
total_1 = length(IN_1(:,1)); %Length of input matrix (number of rows) 
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%Bank Angle Campaign #2 
IN_2    = DOEMatrix_729_50_80(:,1:end); 
split_2 = length(IN_2(:,1)); 
total_2 = length(IN_2(:,1)); %Length of input matrix (number of rows) 
  
%Bank Angle Campaign #3 
IN_3    = DOEMatrix_729_20_50(:,1:end); 
split_3 = length(IN_3(:,1)); 
total_3 = length(IN_3(:,1)); %Length of input matrix (number of rows) 
  
%Bank Angle Campaign #4 
IN_4    = DOEMatrix_729_0_20(:,1:end); 
split_4 = length(IN_4(:,1)); 
total_4 = length(IN_4(:,1)); %Length of input matrix (number of rows) 
  
%Bank Angle Campaign #5 
IN_5    = DOEMatrix_729_100_120(:,1:end); 
split_5 = length(IN_5(:,1)); 
total_5 = length(IN_5(:,1)); %Length of input matrix (number of rows) 
  
%% Creation of Reduced Factor and Observation Matrices 
%Bank Angle Campaign #1 
for ii = 1:size(IN_1,1) 
    x_star_1(ii,:) = IN_1(ii,1:nvars);              %Factors  
    J_1(ii,:)      = IN_1(ii,nvars+1:size(IN_1,2)); %Observations 
end 
  
%Bank Angle Campaign #2 
for jj = 1:size(IN_2,1) 
    x_star_2(jj,:) = IN_2(jj,1:nvars);              %Factors  
    J_2(jj,:)      = IN_2(jj,nvars+1:size(IN_2,2)); %Observations 
end 
  
%Bank Angle Campaign #3 
for kk = 1:size(IN_3,1) 
    x_star_3(kk,:) = IN_3(kk,1:nvars);              %Factors  
    J_3(kk,:)      = IN_3(kk,nvars+1:size(IN_3,2)); %Observations 
end 
  
%Bank Angle Campaign #4 
for kk = 1:size(IN_4,1) 
    x_star_4(kk,:) = IN_4(kk,1:nvars);              %Factors  
    J_4(kk,:)      = IN_4(kk,nvars+1:size(IN_4,2)); %Observations 
end 
  
%Bank Angle Campaign #5 
for kk = 1:size(IN_5,1) 
    x_star_5(kk,:) = IN_5(kk,1:nvars);              %Factors  
    J_5(kk,:)      = IN_5(kk,nvars+1:size(IN_5,2)); %Observations 
end 
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%% Determination of Observations which Satisfy Constraints 
%Bank Angle Campaign #1 
I_1 =  find(J_1(1:split_1,obj_x) >= min_incl & ... 
            J_1(1:split_1,obj_y) >= min_dV); 
Z_1 = (find(J_1(split_1+1:total_1,obj_x) >= min_incl & ... 
            J_1(split_1+1:total_1,obj_y) >= min_dV)+split_1); 
J_filt_1  = J_1(I_1,:); 
J_filt1_1 = J_1(Z_1,:); 
  
%Bank Angle Campaign #2 
I_2 =  find(J_2(1:split_2,obj_x) >= min_incl & ... 
            J_2(1:split_2,obj_y) >= min_dV); 
Z_2 = (find(J_2(split_2+1:total_2,obj_x) >= min_incl & ... 
            J_2(split_2+1:total_2,obj_y) >= min_dV)+split_2); 
J_filt_2  = J_2(I_2,:); 
J_filt1_2 = J_2(Z_2,:); 
  
%Bank Angle Campaign #3 
I_3 =  find(J_3(1:split_3,obj_x) >= min_incl & ... 
            J_3(1:split_3,obj_y) >= min_dV); 
Z_3 = (find(J_3(split_3+1:total_3,obj_x) >= min_incl & ... 
            J_3(split_3+1:total_3,obj_y) >= min_dV)+split_3); 
J_filt_3  = J_3(I_3,:); 
J_filt1_3 = J_3(Z_3,:); 
  
%Bank Angle Campaign #4 
I_4 =  find(J_4(1:split_4,obj_x) >= min_incl & ... 
            J_4(1:split_4,obj_y) >= min_dV); 
Z_4 = (find(J_4(split_4+1:total_4,obj_x) >= min_incl & ... 
            J_4(split_4+1:total_4,obj_y) >= min_dV)+split_4); 
J_filt_4  = J_4(I_4,:); 
J_filt1_4 = J_4(Z_4,:); 
  
%Bank Angle Campaign #5 
I_5 =  find(J_5(1:split_5,obj_x) >= min_incl & ... 
            J_5(1:split_5,obj_y) >= min_dV); 
Z_5 = (find(J_5(split_5+1:total_5,obj_x) >= min_incl & ... 
            J_5(split_5+1:total_5,obj_y) >= min_dV)+split_5); 
J_filt_5  = J_5(I_5,:); 
J_filt1_5 = J_5(Z_5,:); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Factors Associated with Observations which Satisfy Constraints 
%Bank Angle Campaign #1 
x_star_filt_1 = x_star_1(I_1,:); 
x_star_filt1_1 = x_star_1(Z_1,:); 
  
%Bank Angle Campaign #2 
x_star_filt_2 = x_star_2(I_2,:); 
x_star_filt1_2 = x_star_2(Z_2,:); 
  
%Bank Angle Campaign #3 
x_star_filt_3 = x_star_3(I_3,:); 
x_star_filt1_3 = x_star_3(Z_3,:); 
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%Bank Angle Campaign #4 
x_star_filt_4 = x_star_4(I_4,:); 
x_star_filt1_4 = x_star_4(Z_4,:); 
  
%Bank Angle Campaign #5 
x_star_filt_5  = x_star_5(I_5,:); 
x_star_filt1_5 = x_star_5(Z_5,:); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Plotting of Design Space  
% subplot(1,2,1); 
figure; %Bank Angle Campaign #5 
scatter((J_filt_5(:,obj_x)-InitIncl)',J_filt_5(:,obj_y)./BaselineCost', ... 
        
'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','c','Marker','o'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s');  
  
hold on; %Bank Angle Campaign #1 
scatter((J_filt_1(:,obj_x)-InitIncl)',J_filt_1(:,obj_y)./BaselineCost', ... 
        
'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','b','Marker','o'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s');  
  
hold on; %Bank Angle Campaign #2 
scatter((J_filt_2(:,obj_x)-InitIncl)',J_filt_2(:,obj_y)./BaselineCost', ... 
        
'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','g','Marker','o'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s'); 
  
hold on; %Bank Angle Campaign #3 
scatter((J_filt_3(:,obj_x)-InitIncl)',J_filt_3(:,obj_y)./BaselineCost', ... 
        
'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','r','Marker','o'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s'); 
  
hold on; %Bank Angle Campaign #4 
scatter((J_filt_4(:,obj_x)-InitIncl)',J_filt_4(:,obj_y)./BaselineCost', ... 
        
'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','m','Marker','o'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s'); 
hold on; 
  
legend('\it\sigma\rm = [-120,-100] deg', ... 
       '\it\sigma\rm = [-100, -80] deg', ... 
       '\it\sigma\rm = [ -80, -50] deg',  ... 
       '\it\sigma\rm = [ -50, -20] deg',  ... 
       '\it\sigma\rm = [ -20,   0] deg','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt_1; J_filt1_1; ... 
                   J_filt_2; J_filt1_2; ... 
                   J_filt_3; J_filt1_3; ... 
                   J_filt_4; J_filt1_4; ... 
                   J_filt_5; J_filt1_5]; 
 
x_star_filt_tot = [x_star_filt_1; x_star_filt1_1; ... 
                   x_star_filt_2; x_star_filt1_2; ... 
                   x_star_filt_3; x_star_filt1_3; ... 
                   x_star_filt_4; x_star_filt1_4; ... 
                   x_star_filt_5; x_star_filt1_5]; 
 
K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
 
%Plotting of Pareto front 
hold on; 
scatter((J_filt_tot(K,obj_x) - InitIncl)',        ... 
         J_filt_tot(K,obj_y)./BaselineCost','y',  ... 
        'SizeData',10^2,'Marker','o', ... 
        'MarkerEdgeColor','k','LineWidth',1.5,'HandleVisibility','off');  
  
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted1 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto_xJ = [x_sorted1,J_sorted1]; 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
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DOE_MainEffectsPlot.m 
 
function [figh,axesh] = DOE_MainEffectsPlot(y,group,varargin) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Use: [figh,axesh] = DOE_MainEffectsPlot(y,group,varargin) 
% 
% Displays main effects plots for the group means of matrix Y with groups  
% defined by entries in the cell array GROUP. Y is a numeric matrix or  
% vector. If Y is a matrix, the rows represent different observations and  
% the columns represent replications of each observation.   
% 
% Author/Date    : The MathWorks, Inc./2006-2010        
% Modified by    : Bettinger, Robert AFIT/ENY/2013        
% 
% Example: 
%   Display main effects plots for car weight with two grouping variables, 
%   model year and number of cylinders: 
%       load carsmall; 
%       maineffectsplot(Weight,{Model_Year,Cylinders}, ... 
%                              'varnames',{'Model Year', '# of Cylinders'}) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
if nargin <2 
    error(message('stats:maineffectsplot:FewInput')) 
end 
  
%Parse parameter/value pairs 
args     = {'varnames','statistics','parent'}; 
defaults = {'','mean',[]}; 
[eid emsg varnames,statistics,parent] =  ... 
    internal.stats.getargs(args,defaults,varargin{:}); 
if ~isempty(eid) 
    error(sprintf('stats:maineffectsplot:%s',eid),emsg); 
end 
if ~iscell(varnames) && ~ischar(varnames) 
    error(message('stats:maineffectsplot:BadVarnames')); 
end 
if (~(ischar(varnames) || iscellstr(varnames))) 
    error(message('stats:maineffectsplot:BadVarnames')); 
end  
needvarnames = isempty(varnames);   
 
%Character matrix grouping variable names are converted into cell array 
if ischar(varnames) && ~needvarnames  
    varnames = cellstr(varnames); 
end 
  
if ~ischar(statistics)||(~strcmp(statistics,'mean') ... 
                      && ~strcmp(statistics,'std')) 
    error(message('stats:maineffectsplot:BadStatistics')); 
end 
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plotstddev = strcmp(statistics,'std');   
if plotstddev && size(y,2)==1 
    error(message('stats:maineffectsplot:BadYstatistics')) 
end 
  
% Convert the GROUP to cell arrays 
if      isnumeric(group) %Numerical arrays 
    group = num2cell(group,1); 
elseif  ischar(group)    %Character matrix 
    group = {cellstr(group)}; 
elseif ~iscell(group) 
    group = {group};     %Possible categorical variable 
end 
  
group = group(:); 
ng = length(group);      %Number of grouping factors 
 
%Convert numeric cells or character matrix to string cell array 
for i = 1:ng 
    if ischar(group{i}) 
        group{i} = cellstr(group{i}); 
    end 
end 
  
%Grouping variable should have the same number of items as Y 
if  any(cellfun(@length,group)~=size(y,1)) 
    error(message('stats:maineffectsplot:BadGroup')) 
end 
  
%Generate default varnames 
if  needvarnames 
    varnames = strcat({'X'},num2str((1:ng)','%d')); 
end 
  
%The length of varnames should be the same as the number of groups 
if ng ~= length(varnames) 
    error(message('stats:maineffectsplot:MismatchVarnameGroup')) 
end 
  
if plotstddev 
    y = nanstd(y,0,2); 
end 
  
if size(y,2) ~= 1  
    y = nanmean(y,2); 
end 
  
if feature('HGUsingMATLABClasses') 
    H = hg2.SceneNode.empty; 
else 
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    H = zeros(ng,1); 
end 
  
if isempty(parent) 
    parent = clf; 
end 
  
ylim = zeros(ng,2); 
 
for i = 1:ng 
    [maineffect, gname] = grpstats(y,group{i},{'mean','gname'}); 
    maineffect = nanmean(maineffect,2); 
    H(i) = subplot(1,ng,i,'parent',parent); 
    plot(H(i),1:length(maineffect),maineffect,'.') 
    set(H(i),'xtick',1:length(maineffect)) 
    set(H(i),'xticklabel',gname) 
    xlabel(H(i),varnames{i}) 
    axis(H(i),'tight'); 
    xlim(H(i),[0.5, length(maineffect)+.5]); 
    ylim(i,:) = get(H(i),'ylim'); 
    xlim([0.5, length(maineffect)+.5]); 
end 
  
%Re-scale y-axis limit and leave gaps between data and axes 
ylimmin = min(ylim(:,1)); ylimmax = max(ylim(:,2)); 
df = .05*(ylimmax-ylimmin); 
set(H,'YLim',[ylimmin-df ylimmax+df]); 
set(H(2:end),'yticklabel',''); 
 
if plotstddev 
    ylabel(H(1),'standard deviation') 
else 
    ylabel(H(1), 'mean') 
end 
  
if nargout>0 
    figh  = parent; 
end 
  
if nargout>1 
    axesh  = H; 
end 
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DOE_MainEffectsPlotting.m 
 
clear all; clc; close all; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Loads Experiments and Observations 
%TAV mass (kg) 
load MainEffect_3125mass; 
%Planform area (m^2) 
load MainEffect_3125PA; 
%Drag coefficient 
load MainEffect_3125Cd;  
%Lift coefficient 
load MainEffect_3125Cl;  
%Perigee altitude (km) 
load MainEffect_3125Perig;  
%Bank angle (deg) 
load MainEffect_729Bank; 
  
InitIncl    = 37.843;        %Initial inclination (deg) 
Mass_Range  = [0:1:8000]';   %TAV mass range (kg) 
PA_Range    = [0:0.1:30]';   %Planform area range (m^2) 
Cd_Range    = [0:0.05:3.0]'; %Drag coefficient range 
Cl_Range    = [0:0.05:3.0]'; %Lift coefficient range 
Perig_Range = [60:0.1:120]'; %Perigee altitude range (km) 
Bank_Range  = [-120:0.1:0]'; %Bank angle range (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% TAV Mass (kg) v. Maximum Inclination Change (deg)  
subplot(2,3,1); 
%Main effect for experiment campaign 
plot(MainEffect_3125mass_x,(MainEffect_3125mass_y - InitIncl),'bo'); 
  
%Polynomial fit for experiment campaign  
[fit_3125mass,S_3125mass]     = polyfit(MainEffect_3125mass_x, ... 
                                     (MainEffect_3125mass_y - InitIncl),2); 
[f_3125mass,  delta_3125mass] = polyconf(fit_3125mass, ... 
                                       Mass_Range,S_3125mass,  ... 
                                      'simopt','on','predopt','curve'); 
hold on;  
h1 = plot(Mass_Range,f_3125mass,'-b'); 
  
% %Plotting of 95% confidence bounds 
% hold on; plot(Mass_Range,f_3125mass + delta_3125mass,':b'); 
% hold on; plot(Mass_Range,f_3125mass - delta_3125mass,':b'); 
  
xlim([2000 6000]);  
ylim([0 1]); 
xlabel('TAV Mass, kg'); 
ylabel('Maximum Inclination Change (Mean Response)'); 
legend(h1,{'Polynomial Fit, Degree: 2'},'location','NorthEast'); 
  
 
 



www.manaraa.com

340 

 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planform Area (m^2) v. Maximum Inclination Change (deg)  
subplot(2,3,2); 
%Main effect for experiment campaign 
plot(MainEffect_3125PA_x,(MainEffect_3125PA_y - InitIncl),'bo');         
  
%Polynomial fit for experiment campaign  
[fit_3125PA,S_3125PA]     = polyfit(MainEffect_3125PA_x, ... 
                                 (MainEffect_3125PA_y - InitIncl),1); 
[f_3125PA,  delta_3125PA] = polyconf(fit_3125PA, ... 
                                   PA_Range,S_3125PA,    ... 
                                  'simopt','on','predopt','curve'); 
hold on;  
h2 = plot(PA_Range,f_3125PA,'-b'); 
  
% %Plotting of 95% confidence bounds 
% hold on; plot(PA_Range,f_3125PA + delta_3125PA,':b'); 
% hold on; plot(PA_Range,f_3125PA - delta_3125PA,':b'); 
  
xlim([15 22]);  
ylim([0 1]); 
xlabel('Planform Area, m^2'); 
ylabel('Maximum Inclination Change (Mean Response)'); 
legend(h2,{'Polynomial Fit, Degree: 1'},'location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Drag Coefficient v. Maximum Inclination Change (deg)  
subplot(2,3,3); 
%Main effect for experiment campaign 
plot(MainEffect_3125Cd_x,(MainEffect_3125Cd_y - InitIncl),'bo'); 
  
%Polynomial fit for experiment campaign  
[fit_3125Cd,S_3125Cd]     = polyfit(MainEffect_3125Cd_x, ... 
                                 (MainEffect_3125Cd_y - InitIncl),3); 
[f_3125Cd,  delta_3125Cd] = polyconf(fit_3125Cd,         ... 
                                   Cd_Range,S_3125Cd, ... 
                                  'simopt','on','predopt','curve'); 
hold on;  
h3 = plot(Cd_Range,f_3125Cd,'-b'); 
  
% %Plotting of 95% confidence bounds 
% hold on; plot(Cd_Range,f_3125Cd + delta_3125Cd,':b'); 
% hold on; plot(Cd_Range,f_3125Cd - delta_3125Cd,':b'); 
  
xlim([0.5 2.2]);  
ylim([0 1]); 
xlabel('Drag Coefficient'); 
ylabel('Maximum Inclination Change (Mean Response)'); 
legend(h3,{'Polynomial Fit, Degree: 3'},'location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Lift Coefficient v. Maximum Inclination Change (deg)    
subplot(2,3,4); 
%Main effect for experiment campaign 
plot(MainEffect_3125Cl_x,(MainEffect_3125Cl_y - InitIncl),'bo'); 
  
%Polynomial fit for experiment campaign  
[fit_3125Cl,S_3125Cl]     = polyfit(MainEffect_3125Cl_x, ... 
                                 (MainEffect_3125Cl_y - InitIncl),2); 
[f_3125Cl,  delta_3125Cl] = polyconf(fit_3125Cl, ... 
                                   Cl_Range,S_3125Cl,    ... 
                                  'simopt','on','predopt','curve'); 
hold on;  
h4 = plot(Cl_Range,f_3125Cl,'-b'); 
  
% %Plotting of 95% confidence bounds 
% hold on; plot(Cl_Range,f_3125Cl + delta_3125Cl,':b'); 
% hold on; plot(Cl_Range,f_3125Cl - delta_3125Cl,':b'); 
  
xlim([0.5 3.0]);  
ylim([0 1]); 
xlabel('Lift Coefficient'); 
ylabel('Maximum Inclination Change (Mean Response)'); 
legend(h4,{'Polynomial Fit, Degree: 2'},'location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Perigee Altitude (km) v. Maximum Inclination Change (deg)    
subplot(2,3,5); 
%Main effect for experiment campaign 
plot(MainEffect_3125Perig_x,(MainEffect_3125Perig_y - InitIncl),'bo'); 
  
%Polynomial fit for experiment campaign  
[fit_3125Perig,S_3125Perig]     = polyfit(MainEffect_3125Perig_x, ... 
                                       (MainEffect_3125Perig_y - 
InitIncl),3); 
[f_3125Perig,  delta_3125Perig] = polyconf(fit_3125Perig,         ... 
                                         Perig_Range,S_3125Perig, ... 
                                        'simopt','on','predopt','curve'); 
hold on;  
h5 = plot(Perig_Range,f_3125Perig,'-b'); 
  
% %Plotting of 95% confidence bounds 
% hold on; plot(Perig_Range,f_3125Perig + delta_3125Perig,':b'); 
% hold on; plot(Perig_Range,f_3125Perig - delta_3125Perig,':b'); 
  
xlim([79 110]);  
xlabel('Perigee Altitude, km'); 
ylabel('Maximum Inclination Change (Mean Response)'); 
legend(h5,{'Polynomial Fit, Degree: 3'},'location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Bank Angle (deg) v. Maximum Inclination Change (deg)    
% subplot(2,3,6); 
% %Main effect for experiment campaign 
% plot(MainEffect_3125Bank_x,(MainEffect_3125Bank_y - InitIncl),'bo'); 
%  
% %Polynomial fit for experiment campaign  
% [fit_3125Bank,S_3125Bank]     = polyfit(MainEffect_3125Bank_x, ... 
%                                      (MainEffect_3125Bank_y - InitIncl),4); 
% [f_3125Bank,  delta_3125Bank] = polyconf(fit_3125Bank, ... 
%                                        Bank_Range,S_3125Bank,  ... 
%                                       'simopt','on','predopt','curve'); 
% hold on;  
% h6 = plot(Bank_Range,f_3125Bank,'-b'); 
%  
% % %Plotting of 95% confidence bounds 
% % hold on; plot(Bank_Range,f_3125Bank + delta_3125Bank,':b'); 
% % hold on; plot(Bank_Range,f_3125Bank - delta_3125Bank,':b'); 
%  
% xlim([-120 0]);  
% % ylim([-1 10]); 
% xlabel('Bank Angle, deg'); 
% ylabel('Maximum Inclination Change (Mean Response)'); 
% legend(h6,{'Polynomial Fit, Degree: 4'},'location','NorthEast'); 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
 

 

DOEAnalysis.m 
 
clear all; clc; close all; 
  
Factor_Choice = 2; 
%1 = 5-factor experiments with constant Bank Angle 
%2 = 6-factor experiments with variable Bank Angle 
  
ReCirc_Choice = 1;  
%1 = Re-circularization at Skip Apogee 
%2 = Re-circularization via Hohmann Transfer at 500 km if Apogee < 500 km 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Loads Orthogonal Matrix of Experiments 
DOEMatrix = ... 
[2000   18.5    0.5 3.0 86.75   1000    -90]; 
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%Factor design values 
if     Factor_Choice == 1 %Constant bank angle 
    Factor_mass    = DOEMatrix(:,1); %Mass (kg) 
    Factor_S       = DOEMatrix(:,2); %Planform area (m^2) 
    Factor_Cd      = DOEMatrix(:,3); %Drag coefficient 
    Factor_Cl      = DOEMatrix(:,4); %Lift coefficient 
    Factor_Perig   = DOEMatrix(:,5); %Perigee altitude (km) 
    Factor_InitAlt = DOEMatrix(:,6); %Initial altitude (km) 
    bank_Skip      = -90;            %Skip maneuver bank angle (deg) 
  
elseif Factor_Choice == 2 %Variable bank angle 
    Factor_mass    = DOEMatrix(:,1); %Mass (kg) 
    Factor_S       = DOEMatrix(:,2); %Planform area (m^2) 
    Factor_Cd      = DOEMatrix(:,3); %Drag coefficient 
    Factor_Cl      = DOEMatrix(:,4); %Lift coefficient 
    Factor_Perig   = DOEMatrix(:,5); %Perigee altitude (km) 
    Factor_InitAlt = DOEMatrix(:,6); %Initial altitude (km) 
    Factor_Bank    = DOEMatrix(:,7); %Bank angle (deg) 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Orbit Conditions 
Vehicle_Choice = 99;     %TAV selection 
Target_Choice  = 2;      %Target selection 
lon_Ref        = 0;      %Initial longitude (deg) 
PSI_Ref        = 37.843; %Heading angle (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Execution of Experiments 
mm = 0; %Initializes loop index at zero 
nn = 1; %Initializes vector concatenation counter at one 
  
if     ReCirc_Choice == 1 %Re-circularization at Skip Apogee 
  
for mm = 1:length(DOEMatrix(:,1)) 
    %Analysis function for experiments 
    if     Factor_Choice == 1 %Constant bank angle 
    [Trajectory_Analysis(nn,1:7),  MaxIncl(nn,1),               ... 
     Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ... 
     BankManeuvers_fxnDOE(Vehicle_Choice,Target_Choice,         ... 
                          lon_Ref,PSI_Ref,bank_Skip,            ... 
                          Factor_mass(mm,1), Factor_S(mm,1),    ... 
                          Factor_Cd(mm,1),   Factor_Cl(mm,1),   ... 
                          Factor_Perig(mm,1),Factor_InitAlt(mm,1)); 
                        
    elseif Factor_Choice == 2 %Variable bank angle                 
    [Trajectory_Analysis(nn,1:7),  MaxIncl(nn,1),               ... 
     Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ... 
     BankManeuvers_fxnDOE(Vehicle_Choice,Target_Choice,         ... 
                          lon_Ref,PSI_Ref,Factor_Bank(mm,1),    ... 
                          Factor_mass(mm,1), Factor_S(mm,1),    ... 
                          Factor_Cd(mm,1),   Factor_Cl(mm,1),   ... 
                          Factor_Perig(mm,1),Factor_InitAlt(mm,1));  
    end 
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    fprintf('Experiment #%d Completed\n',mm); 
    mm = mm + 1; %Update to index counter 
    nn = nn + 1; %Update to solution matrix concatenation counter 
end     
  
elseif ReCirc_Choice == 2 %Re-circularization with Hohmann Transfer 
    for mm = 1:length(DOEMatrix(:,1)) 
        %Analysis function for experiments 
        if     Factor_Choice == 1 %Constant bank angle 
            [Trajectory_Analysis(nn,1:7),  MaxIncl(nn,1),               ... 
             Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ... 
             BankManeuvers_fxnDOE_Hohmann(Vehicle_Choice,Target_Choice, ... 
                                  lon_Ref,PSI_Ref,bank_Skip,            ... 
                                  Factor_mass(mm,1), Factor_S(mm,1),    ... 
                                  Factor_Cd(mm,1),   Factor_Cl(mm,1),   ... 
                                  Factor_Perig(mm,1),Factor_InitAlt(mm,1)); 
             
             
        elseif Factor_Choice == 2 %Variable bank angle 
            [Trajectory_Analysis(nn,1:7),  MaxIncl(nn,1),               ... 
             Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ... 
             BankManeuvers_fxnDOE_Hohmann(Vehicle_Choice,Target_Choice, ... 
                                  lon_Ref,PSI_Ref,Factor_Bank(mm,1),    ... 
                                  Factor_mass(mm,1), Factor_S(mm,1),    ... 
                                  Factor_Cd(mm,1),   Factor_Cl(mm,1),   ... 
                                  Factor_Perig(mm,1),Factor_InitAlt(mm,1)); 
        end 
     
    fprintf('Experiment #%d Completed\n',mm); 
    mm = mm + 1; %Update to index counter 
    nn = nn + 1; %Update to solution matrix concatenation counter 
    end   
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% DOE Trajectory Solutions 
%Columns # 1- 6: m|S|Cd|Cl|h_Perig (Commanded)|h_Init (DOE Factors) 
%Columns # 7-13: Bank Angle|h_Perig (Simulated)|h_Prop|h_Prop(end)| ... 
%                TimeMaxIncl|dV_Maneuver|dV_SkipTotal 
%Columns #14-14: Maximum Inclination  
%Columns #15-20: TangDecelG_Max|TangDecelG_Min|NormDecelG_Max| ... 
%                NormDecelG_Min|MagDecelG_Max|MagDecelG_Min 
%Columns #21-25: Qw_Max|Qs_Max|Qdot_Max|QHavey_Max|QGalman_Max 
                
DOEResults = [DOEMatrix,Trajectory_Analysis,MaxIncl, ... 
              Deceleration_Analysis,HeatFlux_Analysis]; 
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ParetoBoundary_5Factors.m 
 
close all; clear all; clc; 
  
Pareto_Choice = 3; 
%1 = MAX Delta-Inclination, MIN Delta-V 
%2 = MAX Delta-Inclination, MAX Re-Circularization Altitude 
%3 = MIN Delta-V,           MAX Re-Circularization Altitude 
  
Pareto_Intersect_Choice = 1; 
%1 = Identifies, plots, and saves common Pareto optimal points 
%2 = Converse of Choice #1 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if     Pareto_Choice == 1 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 6;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_dV   = 0;        %Constraint for minimum delta-V (km/s) 
obj_x    = 9;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 8;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_3125_5_79;  
%Matrix of experiments and observations 
IN    = DOEMatrix_3125_5_79(:,1:end); 
split = length(IN(:,1)); 
total = length(IN(:,1)); %Length of input matrix (number of rows) 
  
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
  
%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_incl & ... 
          J(1:split,obj_y)       >= min_dV); 
Z = (find(J(split+1:total,obj_x) >= min_incl & ... 
          J(split+1:total,obj_y) >= min_dV)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt  = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
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%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s'); 
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
scatter((J_filt_tot(K,obj_x) - InitIncl)',                 ... 
         J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
        'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
        'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');    
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted1 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto_xJ = [x_sorted1,J_sorted1]; 
  
%Saves Pareto points to .MAT file 
savefile = 'ParetoPoints_3125.mat'; 
save(savefile,'x_sorted1','J_sorted1'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto  = x_sorted1(:,2); %Mass (kg) 
S_Pareto     = x_sorted1(:,3); %Planform area (m^2) 
Cd_Pareto    = x_sorted1(:,4); %Drag coefficient 
Cl_Pareto    = x_sorted1(:,5); %Lift coefficient 
Perig_Pareto = x_sorted1(:,6); %Perigee altitude (km) 
BC_Pareto    = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted1(:,4); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted1(:,8); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted1(:,9); %Maximum inclination (deg) 
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dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Mass (kg) v. Maximum Inclination (deg) 
subplot(2,3,2); box on; grid off; 
plot(dIncl_Pareto,mass_Pareto,'o','MarkerFaceColor','r', ... 
                              'MarkerEdgeColor','k','LineWidth',1); 
  
% %Polynomial fit 
% [fit_mass,S_mass]     = polyfit(dIncl_Pareto,mass_Pareto,4); 
% [f_mass,  delta_mass] = polyconf(fit_mass,dIncl_Range,S_mass, ... 
%                                 'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_mass,'-b'); 
% hold on; plot(dIncl_Range,f_mass + delta_mass,':b'); 
% hold on; plot(dIncl_Range,f_mass - delta_mass,':b'); 
  
ylim([1000 8000]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('TAV Mass, kg'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthEast'); 
legend('Pareto Optimal Points','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Planform Area (m^2) v. Maximum Inclination (deg) 
subplot(2,3,3); box on; grid off; 
plot(dIncl_Pareto,S_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_PA,S_PA]     = polyfit(dIncl_Pareto,S_Pareto,4); 
% [f_PA,  delta_PA] = polyconf(fit_PA,dIncl_Range,S_PA, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_PA,'-b'); 
% hold on; plot(dIncl_Range,f_PA + delta_PA,':b'); 
% hold on; plot(dIncl_Range,f_PA - delta_PA,':b'); 
  
ylim([10 25]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Planform Area, m^2'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','SouthEast'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Drag Coefficient v. Maximum Inclination (deg) 
subplot(2,3,4); box on; grid off; 
plot(dIncl_Pareto,Cd_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Cd,S_Cd]     = polyfit(dIncl_Pareto,Cd_Pareto,4); 
% [f_Cd,  delta_Cd] = polyconf(fit_Cd,dIncl_Range,S_Cd, ... 
%                             'simopt','on','predopt','curve'); 
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% hold on; plot(dIncl_Range,f_Cd,'-b'); 
% hold on; plot(dIncl_Range,f_Cd + delta_Cd,':b'); 
% hold on; plot(dIncl_Range,f_Cd - delta_Cd,':b'); 
  
ylim([0.0 3.0]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Drag Coefficient'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthEast'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Lift Coefficient v. Maximum Inclination (deg) 
subplot(2,3,5); box on; grid off; 
plot(dIncl_Pareto,Cl_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Cl,S_Cl]     = polyfit(dIncl_Pareto,Cl_Pareto,4); 
% [f_Cl,  delta_Cl] = polyconf(fit_Cl,dIncl_Range,S_Cl, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_Cl,'-b'); 
% hold on; plot(dIncl_Range,f_Cl + delta_Cl,':b'); 
% hold on; plot(dIncl_Range,f_Cl - delta_Cl,':b'); 
  
ylim([0.0 4.0]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Lift Coefficient'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','SouthEast'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Perigee Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,6); box on; grid off; 
plot(dIncl_Pareto,Perig_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Perig,S_Perig]     = polyfit(dIncl_Pareto,Perig_Pareto,4); 
% [f_Perig,  delta_Perig] = polyconf(fit_Perig,dIncl_Range,S_Perig, ... 
%                                   'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_Perig,'-b'); 
% hold on; plot(dIncl_Range,f_Perig + delta_Perig,':b'); 
% hold on; plot(dIncl_Range,f_Perig - delta_Perig,':b'); 
  
ylim([75 115]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Perigee Altitude, km'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','SouthWest'); 
legend('Boundary Data','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg) 
% figure; box on; grid off; 
% plot(dIncl_Pareto,BC_Pareto,'r.'); 
%  
% %Polynomial fit 
% [fit_BC,S_BC]     = polyfit(dIncl_Pareto,BC_Pareto,4); 
% [f_BC,  delta_BC] = polyconf(fit_BC,dIncl_Range,S_BC, ... 
%                                   'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_BC,'-b'); 
% hold on; plot(dIncl_Range,f_BC + delta_BC,':b'); 
% hold on; plot(dIncl_Range,f_BC - delta_BC,':b'); 
%  
% % ylim([-0.1 0.1]); 
% xlabel('Maximum Inclination Change, deg'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
elseif Pareto_Choice == 2 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MAX Re-Circ. Altitude 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 6;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_alt  = 130;      %Constraint for re-circularization altitude (km) 
obj_x    = 9;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 4;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_3125_5_79;  
 
%Matrix of experiments and observations 
IN    = DOEMatrix_3125_5_79(:,1:end); 
split = length(IN); 
total = length(IN); %Length of input matrix (number of rows) 
  
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
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%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_incl & ... 
          J(1:split,obj_y)       >= min_alt); 
Z = (find(J(split+1:total,obj_x) >= min_incl & ... 
          J(split+1:total,obj_y) >= min_alt)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
  
 
%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Re-Circularization Altitude, km');  
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([-J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
scatter((J_filt_tot(K,obj_x) - InitIncl)',                 ... 
         J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
        'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
        'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');    
  
if Pareto_Intersect_Choice == 1 
    %Loads and plots Pareto points from {max(delta-i),min(delta-V)} analysis 
    load ParetoPoints_3125.mat; 
    Pareto1 = [x_sorted1,J_sorted1]; 
    hold on; plot((J_sorted1(:,9) - InitIncl), ... 
                   J_sorted1(:,4),'gs','LineWidth',2); 
end 
     
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted2 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted2 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto2   = [x_sorted2,J_sorted2]; 
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if Pareto_Intersect_Choice == 1 
    %Common Pareto points between  
    %{max(delta-i),min(delta-V)} and {max(delta-i),max(h_recirc)} 
    Pareto_Intersect_12 = intersect(Pareto1,Pareto2,'rows'); 
     
    %Saves common Pareto points to .MAT file 
    savefile = 'Pareto_Intersect_12.mat'; 
    save(savefile,'Pareto_Intersect_12'); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto  = x_sorted2(:,2); %Mass (kg) 
S_Pareto     = x_sorted2(:,3); %Planform area (m^2) 
Cd_Pareto    = x_sorted2(:,4); %Drag coefficient 
Cl_Pareto    = x_sorted2(:,5); %Lift coefficient 
Perig_Pareto = x_sorted2(:,6); %Perigee altitude (km) 
BC_Pareto    = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted2(:,4); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted2(:,8); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted2(:,9); %Maximum inclination (deg) 
dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Mass (kg) v. Maximum Inclination (deg) 
subplot(2,3,2); box on; grid off; 
plot(dIncl_Pareto,mass_Pareto,'o','MarkerFaceColor','r', ... 
                              'MarkerEdgeColor','k','LineWidth',1); 
% %Polynomial fit 
% [fit_mass,S_mass]     = polyfit(dIncl_Pareto,mass_Pareto,4); 
% [f_mass,  delta_mass] = polyconf(fit_mass,dIncl_Range,S_mass, ... 
%                                 'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_mass,'-b'); 
% hold on; plot(dIncl_Range,f_mass + delta_mass,':b'); 
% hold on; plot(dIncl_Range,f_mass - delta_mass,':b'); 
  
ylim([1000 8000]); 
xlabel('Maximum Inclination Change, deg)'); 
ylabel('TAV Mass, kg'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthWest'); 
legend('Pareto Optimal Points','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Planform Area (m^2) v. Maximum Inclination (deg) 
subplot(2,3,3); box on; grid off; 
plot(dIncl_Pareto,S_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_PA,S_PA]     = polyfit(dIncl_Pareto,S_Pareto,4); 
% [f_PA,  delta_PA] = polyconf(fit_PA,dIncl_Range,S_PA, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_PA,'-b'); 
% hold on; plot(dIncl_Range,f_PA + delta_PA,':b'); 
% hold on; plot(dIncl_Range,f_PA - delta_PA,':b'); 
  
ylim([10 25]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Planform Area, m^2'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthWest'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Drag Coefficient v. Maximum Inclination (deg) 
subplot(2,3,4); box on; grid off; 
plot(dIncl_Pareto,Cd_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Cd,S_Cd]     = polyfit(dIncl_Pareto,Cd_Pareto,1); 
% [f_Cd,  delta_Cd] = polyconf(fit_Cd,dIncl_Range,S_Cd, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_Cd,'-b'); 
% hold on; plot(dIncl_Range,f_Cd + delta_Cd,':b'); 
% hold on; plot(dIncl_Range,f_Cd - delta_Cd,':b'); 
  
ylim([0.0 3.0]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Drag Coefficient'); 
% legend('Pareto Data','Polynomial Fit, Degree: 1', ... 
%        '95% Confidence Bounds','location','NorthEast'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Lift Coefficient v. Maximum Inclination (deg) 
subplot(2,3,5); box on; grid off; 
plot(dIncl_Pareto,Cl_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Cl,S_Cl]     = polyfit(dIncl_Pareto,Cl_Pareto,4); 
% [f_Cl,  delta_Cl] = polyconf(fit_Cl,dIncl_Range,S_Cl, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_Cl,'-b'); 
% hold on; plot(dIncl_Range,f_Cl + delta_Cl,':b'); 
% hold on; plot(dIncl_Range,f_Cl - delta_Cl,':b'); 
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ylim([0.0 4.0]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Lift Coefficient'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','SouthEast'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Perigee Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,6); box on; grid off; 
plot(dIncl_Pareto,Perig_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Perig,S_Perig]     = polyfit(dIncl_Pareto,Perig_Pareto,4); 
% [f_Perig,  delta_Perig] = polyconf(fit_Perig,dIncl_Range,S_Perig, ... 
%                                   'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_Perig,'-b'); 
% hold on; plot(dIncl_Range,f_Perig + delta_Perig,':b'); 
% hold on; plot(dIncl_Range,f_Perig - delta_Perig,':b'); 
  
ylim([75 115]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Perigee Altitude, km'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','SouthWest'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg) 
% figure; box on; grid off; 
% plot(dIncl_Pareto,BC_Pareto,'r.'); 
%  
% %Polynomial fit 
% [fit_BC,S_BC]     = polyfit(dIncl_Pareto,BC_Pareto,4); 
% [f_BC,  delta_BC] = polyconf(fit_BC,dIncl_Range,S_BC, ... 
%                                   'simopt','on','predopt','curve'); 
% hold on; plot(dIncl_Range,f_BC,'-b'); 
% hold on; plot(dIncl_Range,f_BC + delta_BC,':b'); 
% hold on; plot(dIncl_Range,f_BC - delta_BC,':b'); 
%  
% % ylim([-0.1 0.1]); 
% xlabel('Maximum Inclination Change, deg'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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elseif Pareto_Choice == 3 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MIN Delta-V, MAX Re-Circularization Altitude 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843; %Initial inclination (deg) 
nvars    = 6;      %Number of columns for experiment number and factors 
min_dV   = 0;      %Constraint for minimum inclination (deg) 
min_alt  = 130;    %Constraint for re-circularization altitude (km) 
obj_x    = 8;      %Column number of x-axis objective (from reduced matrix)  
obj_y    = 4;      %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1;  %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_3125_5_79;  
%Matrix of experiments and observations 
IN    = DOEMatrix_3125_5_79(:,1:end); 
split = length(IN); 
total = length(IN); %Length of input matrix (number of rows) 
  
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
  
%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_dV & ... 
          J(1:split,obj_y)       >= min_alt); 
Z = (find(J(split+1:total,obj_x) >= min_dV & ... 
          J(split+1:total,obj_y) >= min_alt)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
  
%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x))',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Re-Circularization Altitude, km');  
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
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%Plotting of Pareto front 
hold on; 
scatter((J_filt_tot(K,obj_x))',                            ... 
         J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
        'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
        'MarkerEdgeColor','k','LineWidth',0.5,'HandleVisibility','off');   
     
if Pareto_Intersect_Choice == 1 
    %Loads/plots common Pareto points between {max(delta-i),min(delta-V)}  
    %and {max(delta-i),max(h_recirc)}  
    load Pareto_Intersect_12.mat; 
    hold on; plot(Pareto_Intersect_12(:,14), ... 
                  Pareto_Intersect_12(:,10),'gs','LineWidth',2); 
end 
     
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted3 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted3 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto3   = [x_sorted3,J_sorted3]; 
  
if Pareto_Intersect_Choice == 1 
   
  %Common Pareto points between {max(delta-i),min(delta-V)}, 
    %{max(delta-i),max(h_recirc)}, and {min(delta-V),max(h_recirc)} 
    Pareto_Intersect_123 = intersect(Pareto_Intersect_12,Pareto3,'rows'); 
     
    %Saves common Pareto points to .MAT file 
    savefile = 'Pareto_Intersect_123.mat'; 
    save(savefile,'Pareto_Intersect_123'); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto  = x_sorted3(:,2); %Mass (kg) 
S_Pareto     = x_sorted3(:,3); %Planform area (m^2) 
Cd_Pareto    = x_sorted3(:,4); %Drag coefficient 
Cl_Pareto    = x_sorted3(:,5); %Lift coefficient 
Perig_Pareto = x_sorted3(:,6); %Perigee altitude (km) 
BC_Pareto    = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted3(:,4); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted3(:,8); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted3(:,9); %Maximum inclination (deg) 



www.manaraa.com

356 

dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
dV_Range         = [0:0.0001:0.5]; %Delta-V range (km/s) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Mass (kg) v. Total Delta-V (km/s) 
subplot(2,3,2); box on; grid off; 
plot(dIncl_Pareto,mass_Pareto,'o','MarkerFaceColor','r', ... 
                              'MarkerEdgeColor','k','LineWidth',1); 
  
% %Polynomial fit 
% [fit_mass,S_mass]     = polyfit(dV_Total_Pareto,mass_Pareto,4); 
% [f_mass,  delta_mass] = polyconf(fit_mass,dV_Range,S_mass, ... 
%                                 'simopt','on','predopt','curve'); 
% hold on; plot(dV_Range,f_mass,'-b'); 
% hold on; plot(dV_Range,f_mass + delta_mass,':b'); 
% hold on; plot(dV_Range,f_mass - delta_mass,':b'); 
  
ylim([1000 8000]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('TAV Mass, kg'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthWest'); 
legend('Pareto Optimal Points','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Planform Area (m^2) v. Total Delta-V (km/s) 
subplot(2,3,3); box on; grid off; 
plot(dV_Total_Pareto,S_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_PA,S_PA]     = polyfit(dV_Total_Pareto,S_Pareto,4); 
% [f_PA,  delta_PA] = polyconf(fit_PA,dV_Range,S_PA, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dV_Range,f_PA,'-b'); 
% hold on; plot(dV_Range,f_PA + delta_PA,':b'); 
% hold on; plot(dV_Range,f_PA - delta_PA,':b'); 
  
ylim([10 25]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Planform Area, m^2'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','SouthWest'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Drag Coefficient v. Total Delta-V (km/s) 
subplot(2,3,4); box on; grid off; 
plot(dV_Total_Pareto,Cd_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Cd,S_Cd]     = polyfit(dV_Total_Pareto,Cd_Pareto,4); 
% [f_Cd,  delta_Cd] = polyconf(fit_Cd,dV_Range,S_Cd, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dV_Range,f_Cd,'-b'); 
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% hold on; plot(dV_Range,f_Cd + delta_Cd,':b'); 
% hold on; plot(dV_Range,f_Cd - delta_Cd,':b'); 
  
ylim([0.0 3.0]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Drag Coefficient'); 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthEast'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Lift Coefficient v. Total Delta-V (km/s) 
subplot(2,3,5); box on; grid off; 
plot(dV_Total_Pareto,Cl_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Cl,S_Cl]     = polyfit(dV_Total_Pareto,Cl_Pareto,4); 
% [f_Cl,  delta_Cl] = polyconf(fit_Cl,dV_Range,S_Cl, ... 
%                             'simopt','on','predopt','curve'); 
% hold on; plot(dV_Range,f_Cl,'-b'); 
% hold on; plot(dV_Range,f_Cl + delta_Cl,':b'); 
% hold on; plot(dV_Range,f_Cl - delta_Cl,':b'); 
  
ylim([0.0 4.0]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Lift Coefficient'); 
 
% legend('Pareto Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','SouthEast'); 
legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%% Perigee Altitude (km) v. Total Delta-V (km/s) 
subplot(2,3,6); box on; grid off; 
plot(dV_Total_Pareto,Perig_Pareto,'r.'); 
  
% %Polynomial fit 
% [fit_Perig,S_Perig]     = polyfit(dV_Total_Pareto,Perig_Pareto,2); 
% [f_Perig,  delta_Perig] = polyconf(fit_Perig,dV_Range,S_Perig, ... 
%                                   'simopt','on','predopt','curve'); 
% hold on; plot(dV_Range,f_Perig,'-b'); 
% hold on; plot(dV_Range,f_Perig + delta_Perig,':b'); 
% hold on; plot(dV_Range,f_Perig - delta_Perig,':b'); 
  
ylim([75 115]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Perigee Altitude, km'); 
 
% legend('Pareto Data','Polynomial Fit, Degree: 2', ... 
%        '95% Confidence Bounds','location','SouthEast'); 
legend('Boundary Data','location','NorthEast'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Ballistic Coefficient (m^2/kg) v. Total Delta-V (km/s) 
% figure; box on; grid off; 
% plot(dV_Total_Pareto,BC_Pareto,'r.'); 
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%  
% %Polynomial fit 
% [fit_BC,S_BC]     = polyfit(dV_Total_Pareto,BC_Pareto,4); 
% [f_BC,  delta_BC] = polyconf(fit_BC,dV_Range,S_BC, ... 
%                                   'simopt','on','predopt','curve'); 
% hold on; plot(dV_Range,f_BC,'-b'); 
% hold on; plot(dV_Range,f_BC + delta_BC,':b'); 
% hold on; plot(dV_Range,f_BC - delta_BC,':b'); 
%  
% % ylim([-0.1 0.1]); 
% xlabel('Total \it\DeltaV\rm, km/s'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','Polynomial Fit, Degree: 4', ... 
%        '95% Confidence Bounds','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
end 
 
 

ParetoBoundary_6Factors.m 
 
close all; clear all; clc; 
  
Pareto_Choice = 1; 
%1 = MAX Delta-Inclination, MIN Delta-V 
%2 = MAX Delta-Inclination, MAX Re-Circularization Altitude 
%3 = MIN Delta-V,           MAX Re-Circularization Altitude 
  
Pareto_Intersect_Choice = 2; 
%1 = Identifies, plots, and saves common Pareto optimal points 
%2 = Converse of Choice #1 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if     Pareto_Choice == 1 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 8;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_dV   = 0;     %Constraint for minimum delta-V (km/s) 
obj_x    = 7;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 6;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
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%Loads experiments and observations 
load DOEMatrix_729_0_120; 
  
%Matrix of experiments and observations 
IN    = DOEMatrix_729_0_120(:,1:end); 
split = length(IN(:,1)); 
total = length(IN(:,1)); %Length of input matrix (number of rows) 
  
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
  
%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_incl & ... 
          J(1:split,obj_y)       >= min_dV); 
Z = (find(J(split+1:total,obj_x) >= min_incl & ... 
          J(split+1:total,obj_y) >= min_dV)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
  
%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s'); 
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
p = scatter((J_filt_tot(K,obj_x) - InitIncl)',                 ... 
             J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
            'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
            'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');  
legend(p,{'Pareto Optimal Points'},'location','NorthEast'); 
     
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 



www.manaraa.com

360 

 
 
J_sorted1 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto_xJ = [x_sorted1,J_sorted1]; 
  
%Saves Pareto points to .MAT file 
savefile = 'ParetoPoints_3125.mat'; 
save(savefile,'x_sorted1','J_sorted1'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto    = x_sorted1(:,2); %Mass (kg) 
S_Pareto       = x_sorted1(:,3); %Planform area (m^2) 
Cd_Pareto      = x_sorted1(:,4); %Drag coefficient 
Cl_Pareto      = x_sorted1(:,5); %Lift coefficient 
Perig_Pareto   = x_sorted1(:,6); %Perigee altitude (km) 
InitAlt_Pareto = x_sorted1(:,7); %Initial altitude (km) 
Bank_Pareto    = x_sorted1(:,8); %Bank angle (deg) 
BC_Pareto      = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted1(:,2); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted1(:,6); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted1(:,7); %Maximum inclination (deg) 
dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Mass (kg) v. Maximum Inclination (deg) 
subplot(2,3,2); box on; grid off; 
plot(dIncl_Pareto,mass_Pareto,'r.'); 
ylim([1000 8000]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('TAV Mass, kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planform Area (m^2) v. Maximum Inclination (deg) 
subplot(2,3,3); box on; grid off; 
plot(dIncl_Pareto,S_Pareto,'r.'); 
ylim([10 25]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Planform Area, m^2'); 
% legend('Boundary Data','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Aerodynamic Coefficients v. Maximum Inclination (deg) 
subplot(2,3,4); box on; grid off; 
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto,dIncl_Pareto,Cl_Pareto,'plot');       
xlabel('Maximum Inclination Change, deg');  
set(Cd1,'linestyle','none','Marker','.');  
set(Cl2,'linestyle','none','Marker','.'); 
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]); 
set(Cd1,'color','green'); set(Cl2,'color','blue'); 
set(AX,{'ycolor'},{'k';'k'}); 
set(get(AX(1),'Ylabel'),'String','Drag Coefficient'); 
set(get(AX(2),'Ylabel'),'String','Lift Coefficient'); 
legend('Drag Coefficient','Lift Coefficient','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Perigee Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,5); box on; grid off; 
plot(dIncl_Pareto,Perig_Pareto,'r.'); 
ylim([75 115]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Perigee Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Bank Angle (deg) v. Maximum Inclination (deg) 
subplot(2,3,6); box on; grid off; 
plot(dIncl_Pareto,Bank_Pareto,'r.'); 
ylim([-120 0]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Bank Angle, deg'); 
% legend('Boundary Data','location','NorthEast'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg) 
% figure; box on; grid off; 
% plot(dIncl_Pareto,BC_Pareto,'r.'); 
% ylim([-0.1 0.1]); 
% xlabel('Maximum Inclination Change, deg'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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elseif Pareto_Choice == 2 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MAX Re-Circ. Altitude 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 8;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_alt  = 130;      %Constraint for re-circularization altitude (km) 
obj_x    = 7;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 2;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_729_0_120; 
  
%Matrix of experiments and observations 
IN    = DOEMatrix_729_0_120(:,1:end); 
split = length(IN); 
total = length(IN); %Length of input matrix (number of rows) 
  
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
  
%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_incl & ... 
          J(1:split,obj_y)       >= min_alt); 
Z = (find(J(split+1:total,obj_x) >= min_incl & ... 
          J(split+1:total,obj_y) >= min_alt)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
  
 
%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Re-Circularization Altitude, km');  
hold on; box on; grid off; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([-J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
p = scatter((J_filt_tot(K,obj_x) - InitIncl)',                 ... 
             J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
            'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
            'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');    
  
legend(p,{'Pareto Optimal Points'},'location','NorthEast');         
         
if Pareto_Intersect_Choice == 1 
    %Loads and plots Pareto points from {max(delta-i),min(delta-V)} analysis 
    load ParetoPoints_3125.mat; 
    Pareto1 = [x_sorted1,J_sorted1]; 
    hold on; plot((J_sorted1(:,7) - InitIncl), ... 
                   J_sorted1(:,2),'go','LineWidth',2); 
end 
     
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted2 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted2 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto2   = [x_sorted2,J_sorted2]; 
  
 
if Pareto_Intersect_Choice == 1 
    %Common Pareto points between  
    %{max(delta-i),min(delta-V)} and {max(delta-i),max(h_recirc)} 
    Pareto_Intersect_12 = intersect(Pareto1,Pareto2,'rows'); 
     
    %Saves common Pareto points to .MAT file 
    savefile = 'Pareto_Intersect_12.mat'; 
    save(savefile,'Pareto_Intersect_12'); 
end 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto    = x_sorted2(:,2); %Mass (kg) 
S_Pareto       = x_sorted2(:,3); %Planform area (m^2) 
Cd_Pareto      = x_sorted2(:,4); %Drag coefficient 
Cl_Pareto      = x_sorted2(:,5); %Lift coefficient 
Perig_Pareto   = x_sorted2(:,6); %Perigee altitude (km) 
InitAlt_Pareto = x_sorted2(:,7); %Initial altitude (km) 
Bank_Pareto    = x_sorted2(:,8); %Bank angle (deg) 
BC_Pareto      = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted2(:,2); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted2(:,6); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted2(:,7); %Maximum inclination (deg) 
dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Mass (kg) v. Maximum Inclination (deg) 
subplot(2,3,2); box on; grid off; 
plot(dIncl_Pareto,mass_Pareto,'r.'); 
ylim([1000 8000]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('TAV Mass, kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planform Area (m^2) v. Maximum Inclination (deg) 
subplot(2,3,3); box on; grid off; 
plot(dIncl_Pareto,S_Pareto,'r.'); 
ylim([10 25]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Planform Area, m^2'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Aerodynamic Coefficients v. Maximum Inclination (deg) 
subplot(2,3,4); box on; grid off; 
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto, ... 
                      dIncl_Pareto,Cl_Pareto,'plot');       
xlabel('Maximum Inclination Change, deg');  
set(Cd1,'linestyle','none','Marker','.');  
set(Cl2,'linestyle','none','Marker','.'); 
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]); 
set(Cd1,'color','green'); set(Cl2,'color','blue'); 
set(AX,{'ycolor'},{'k';'k'}); 
set(get(AX(1),'Ylabel'),'String','Drag Coefficient'); 
set(get(AX(2),'Ylabel'),'String','Lift Coefficient'); 
legend('Drag Coefficient','Lift Coefficient','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Perigee Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,5); box on; grid off; 
plot(dIncl_Pareto,Perig_Pareto,'r.'); 
ylim([75 115]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Perigee Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Bank Angle (deg) v. Maximum Inclination (deg) 
subplot(2,3,6); box on; grid off; 
plot(dIncl_Pareto,Bank_Pareto,'r.'); 
ylim([-120 0]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Bank Angle, deg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg) 
% figure; box on; grid off; 
% plot(dIncl_Pareto,BC_Pareto,'r.'); 
% % ylim([-0.1 0.1]); 
% xlabel('Maximum Inclination Change, deg'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
elseif Pareto_Choice == 3 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MIN Delta-V, MAX Re-Circularization Altitude 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843; %Initial inclination (deg) 
nvars    = 8;      %Number of columns for experiment number and factors 
min_dV   = 0;      %Constraint for minimum inclination (deg) 
min_alt  = 130;    %Constraint for re-circularization altitude (km) 
obj_x    = 6;      %Column number of x-axis objective (from reduced matrix)  
obj_y    = 2;      %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1;  %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_729_0_120; 
  
%Matrix of experiments and observations 
IN    = DOEMatrix_729_0_120(:,1:end); 
split = length(IN); 
total = length(IN); %Length of input matrix (number of rows) 
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%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
  
%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_dV & ... 
          J(1:split,obj_y)       >= min_alt); 
Z = (find(J(split+1:total,obj_x) >= min_dV & ... 
          J(split+1:total,obj_y) >= min_alt)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
  
%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x))',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Re-Circularization Altitude, km');  
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
p = scatter((J_filt_tot(K,obj_x))',                 ... 
             J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
            'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
            'MarkerEdgeColor','k','LineWidth',0.1,'HandleVisibility','off');  
         
legend(p,{'Pareto Optimal Points'},'location','NorthWest');         
     
if Pareto_Intersect_Choice == 1 
    %Loads/plots common Pareto points between {max(delta-i),min(delta-V)}  
    %and {max(delta-i),max(h_recirc)}  
    load Pareto_Intersect_12.mat; 
    hold on; p = plot(Pareto_Intersect_12(:,14), ... 
                  Pareto_Intersect_12(:,10),'go','LineWidth',2); 
end 
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R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted3 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted3 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto3   = [x_sorted3,J_sorted3]; 
  
if Pareto_Intersect_Choice == 1 
    %Common Pareto points between {max(delta-i),min(delta-V)}, 
    %{max(delta-i),max(h_recirc)}, and {min(delta-V),max(h_recirc)} 
    Pareto_Intersect_123 = intersect(Pareto_Intersect_12,Pareto3,'rows'); 
    %Saves common Pareto points to .MAT file 
    savefile = 'Pareto_Intersect_123.mat'; 
    save(savefile,'Pareto_Intersect_123'); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto    = x_sorted3(:,2); %Mass (kg) 
S_Pareto       = x_sorted3(:,3); %Planform area (m^2) 
Cd_Pareto      = x_sorted3(:,4); %Drag coefficient 
Cl_Pareto      = x_sorted3(:,5); %Lift coefficient 
Perig_Pareto   = x_sorted3(:,6); %Perigee altitude (km) 
InitAlt_Pareto = x_sorted3(:,7); %Initial altitude (km) 
Bank_Pareto    = x_sorted3(:,8); %Bank angle (deg) 
BC_Pareto      = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted3(:,2); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted3(:,6); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted3(:,7); %Maximum inclination (deg) 
dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Mass (kg) v. Total Delta-V (km/s) 
subplot(2,3,2); box on; grid off; 
plot(dV_Total_Pareto,mass_Pareto,'r.'); 
ylim([1000 8000]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('TAV Mass, kg'); 
% legend('Boundary Data','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planform Area (m^2) v. Total Delta-V (km/s) 
subplot(2,3,3); box on; grid off; 
plot(dV_Total_Pareto,S_Pareto,'r.'); 
ylim([10 25]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Planform Area, m^2'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Aerodynamic Coefficients v. Total Delta-V (km/s) 
subplot(2,3,4); box on; grid off; 
[AX,Cd1,Cl2] = plotyy(dV_Total_Pareto,Cd_Pareto, ... 
                      dV_Total_Pareto,Cl_Pareto,'plot');       
xlabel('Total \it\DeltaV\rm, km/s');  
set(Cd1,'linestyle','none','Marker','.');  
set(Cl2,'linestyle','none','Marker','.'); 
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]); 
set(Cd1,'color','green'); set(Cl2,'color','blue'); 
set(AX,{'ycolor'},{'k';'k'}); 
set(get(AX(1),'Ylabel'),'String','Drag Coefficient'); 
set(get(AX(2),'Ylabel'),'String','Lift Coefficient'); 
legend('Drag Coefficient','Lift Coefficient','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Perigee Altitude (km) v. Total Delta-V (km/s) 
subplot(2,3,5); box on; grid off; 
plot(dV_Total_Pareto,Perig_Pareto,'r.'); 
ylim([75 115]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Perigee Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Bank Angle (deg) v. Total Delta-V (km/s) 
subplot(2,3,6); box on; grid off; 
plot(dV_Total_Pareto,Bank_Pareto,'r.'); 
ylim([-120 0]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Bank Angle, deg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
end 
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ParetoBoundary_InitAlt.m 
 
close all; clear all; clc; 
  
Pareto_Choice = 1; 
%1 = MAX Delta-Inclination, MIN Delta-V 
%2 = MAX Delta-Inclination, MAX Re-Circularization Altitude 
%3 = MIN Delta-V,           MAX Re-Circularization Altitude 
  
Pareto_Intersect_Choice = 2; 
%1 = Identifies, plots, and saves common Pareto optimal points 
%2 = Converse of Choice #1 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if     Pareto_Choice == 1 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 6;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_dV   = 0;        %Constraint for minimum delta-V (km/s) 
obj_x    = 9;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 1;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_3125_300_1000; 
  
%Matrix of experiments and observations 
IN    = DOEMatrix_3125_300_1000(:,1:end); 
split = length(IN(:,1)); 
total = length(IN(:,1)); %Length of input matrix (number of rows) 
  
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
  
%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_incl & ... 
          J(1:split,obj_y)       >= min_dV); 
Z = (find(J(split+1:total,obj_x) >= min_incl & ... 
          J(split+1:total,obj_y) >= min_dV)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
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%Plotting of design space  
subplot(2,3,1);   
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
ylim([100 1100]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Initial Altitude, km'); 
% ylabel('Total \it\DeltaV\rm, km/s');  
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
% p = scatter((J_filt_tot(K,obj_x) - InitIncl)',                 ... 
%              J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
%             'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
%             'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');    
% legend(p,{'Pareto Optimal Points'},'location','SouthEast');         
         
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted1 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto_xJ = [x_sorted1,J_sorted1]; 
  
%Saves Pareto points to .MAT file 
savefile = 'ParetoPoints_3125.mat'; 
save(savefile,'x_sorted1','J_sorted1'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto    = x_sorted1(:,2); %Mass (kg) 
S_Pareto       = x_sorted1(:,3); %Planform area (m^2) 
Cd_Pareto      = x_sorted1(:,4); %Drag coefficient 
Cl_Pareto      = x_sorted1(:,5); %Lift coefficient 
Perig_Pareto   = x_sorted1(:,6); %Perigee altitude (km) 
InitAlt_Pareto = x_sorted1(:,7); %Initial altitude (km) 
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Bank_Pareto    = x_sorted1(:,8); %Bank angle (deg) 
BC_Pareto      = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted1(:,2); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted1(:,6); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted1(:,7); %Maximum inclination (deg) 
dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Mass (kg) v. Maximum Inclination (deg) 
subplot(2,3,2); box on; grid off; 
plot(dIncl_Pareto,mass_Pareto,'r.'); 
ylim([1000 8000]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('TAV Mass, kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planform Area (m^2) v. Maximum Inclination (deg) 
subplot(2,3,3); box on; grid off; 
plot(dIncl_Pareto,S_Pareto,'r.'); 
ylim([10 25]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Planform Area, m^2'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Aerodynamic Coefficients v. Maximum Inclination (deg) 
subplot(2,3,4); box on; grid off; 
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto, ... 
                      dIncl_Pareto,Cl_Pareto,'plot');       
xlabel('Maximum Inclination Change, deg');  
set(Cd1,'linestyle','none','Marker','.');  
set(Cl2,'linestyle','none','Marker','.'); 
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]); 
set(Cd1,'color','green'); set(Cl2,'color','blue'); 
set(AX,{'ycolor'},{'k';'k'}); 
set(get(AX(1),'Ylabel'),'String','Drag Coefficient'); 
set(get(AX(2),'Ylabel'),'String','Lift Coefficient'); 
legend('Drag Coefficient','Lift Coefficient','location','NorthEast'); 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Perigee Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,5); box on; grid off; 
plot(dIncl_Pareto,Perig_Pareto,'r.'); 
ylim([75 115]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Perigee Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,6); box on; grid off; 
plot(dIncl_Pareto,InitAlt_Pareto,'r.'); 
ylim([100 1100]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Initial Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg) 
% figure; box on; grid off; 
% plot(dIncl_Pareto,BC_Pareto,'r.'); 
% ylim([-0.1 0.1]); 
% xlabel('Maximum Inclination Change, deg'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
elseif Pareto_Choice == 2 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MAX Re-Circ. Altitude 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 8;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_alt  = 130;      %Constraint for re-circularization altitude (km) 
obj_x    = 7;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 2;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_3125_300_1000; 
  
%Matrix of experiments and observations 
IN    = DOEMatrix_3125_300_1000(:,1:end); 
split = length(IN); 
total = length(IN); %Length of input matrix (number of rows) 
  
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
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%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_incl & ... 
          J(1:split,obj_y)       >= min_alt); 
Z = (find(J(split+1:total,obj_x) >= min_incl & ... 
          J(split+1:total,obj_y) >= min_alt)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
 
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
  
%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Re-Circularization Altitude, km');  
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([-J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
scatter((J_filt_tot(K,obj_x) - InitIncl)',                 ... 
         J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
        'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
        'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');    
  
if Pareto_Intersect_Choice == 1 
    %Loads and plots Pareto points from {max(delta-i),min(delta-V)} analysis 
    load ParetoPoints_3125.mat; 
    Pareto1 = [x_sorted1,J_sorted1]; 
    hold on; plot((J_sorted1(:,7) - InitIncl), ... 
                   J_sorted1(:,2),'go','LineWidth',2); 
end 
     
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted2 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
 
x_sorted2 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto2   = [x_sorted2,J_sorted2]; 
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if Pareto_Intersect_Choice == 1 
    %Common Pareto points between  
    %{max(delta-i),min(delta-V)} and {max(delta-i),max(h_recirc)} 
    Pareto_Intersect_12 = intersect(Pareto1,Pareto2,'rows'); 
     
    %Saves common Pareto points to .MAT file 
    savefile = 'Pareto_Intersect_12.mat'; 
    save(savefile,'Pareto_Intersect_12'); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto    = x_sorted2(:,2); %Mass (kg) 
S_Pareto       = x_sorted2(:,3); %Planform area (m^2) 
Cd_Pareto      = x_sorted2(:,4); %Drag coefficient 
Cl_Pareto      = x_sorted2(:,5); %Lift coefficient 
Perig_Pareto   = x_sorted2(:,6); %Perigee altitude (km) 
InitAlt_Pareto = x_sorted2(:,7); %Initial altitude (km) 
Bank_Pareto    = x_sorted2(:,8); %Bank angle (deg) 
BC_Pareto      = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted2(:,2); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted2(:,6); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted2(:,7); %Maximum inclination (deg) 
dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Mass (kg) v. Maximum Inclination (deg) 
subplot(2,3,2); box on; grid off; 
plot(dIncl_Pareto,mass_Pareto,'r.'); 
ylim([1000 8000]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('TAV Mass, kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planform Area (m^2) v. Maximum Inclination (deg) 
subplot(2,3,3); box on; grid off; 
plot(dIncl_Pareto,S_Pareto,'r.'); 
ylim([10 25]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Planform Area, m^2'); 
% legend('Boundary Data','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Aerodynamic Coefficients v. Maximum Inclination (deg) 
subplot(2,3,4); box on; grid off; 
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto, ... 
                      dIncl_Pareto,Cl_Pareto,'plot');       
xlabel('Maximum Inclination Change, deg');  
set(Cd1,'linestyle','none','Marker','.');  
set(Cl2,'linestyle','none','Marker','.'); 
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]); 
set(Cd1,'color','green'); set(Cl2,'color','blue'); 
set(AX,{'ycolor'},{'k';'k'}); 
set(get(AX(1),'Ylabel'),'String','Drag Coefficient'); 
set(get(AX(2),'Ylabel'),'String','Lift Coefficient'); 
legend('Drag Coefficient','Lift Coefficient','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Perigee Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,5); box on; grid off; 
plot(dIncl_Pareto,Perig_Pareto,'r.'); 
ylim([75 115]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Perigee Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Altitude (km) v. Maximum Inclination (deg) 
subplot(2,3,6); box on; grid off; 
plot(dIncl_Pareto,InitAlt_Pareto,'r.'); 
ylim([100 1100]); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Initial Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg) 
% figure; box on; grid off; 
% plot(dIncl_Pareto,BC_Pareto,'r.'); 
% % ylim([-0.1 0.1]); 
% xlabel('Maximum Inclination Change, deg'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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elseif Pareto_Choice == 3 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MIN Delta-V, MAX Re-Circularization Altitude 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843; %Initial inclination (deg) 
nvars    = 8;      %Number of columns for experiment number and factors 
min_dV   = 0;      %Constraint for minimum inclination (deg) 
min_alt  = 130;    %Constraint for re-circularization altitude (km) 
obj_x    = 6;      %Column number of x-axis objective (from reduced matrix)  
obj_y    = 2;      %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1;  %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_3125_300_1000; 
  
%Matrix of experiments and observations 
IN    = DOEMatrix_3125_300_1000(:,1:end); 
split = length(IN); 
total = length(IN); %Length of input matrix (number of rows) 
%Creation of reduced factor and observation matrices 
for i = 1:size(IN,1) 
    x_star(i,:) = IN(i,1:nvars);            %Factors (w/ experiment number) 
    J(i,:)      = IN(i,nvars+1:size(IN,2)); %Observations 
end 
  
%Determination of observations which satisfy constraints 
I =  find(J(1:split,obj_x)       >= min_dV & ... 
          J(1:split,obj_y)       >= min_alt); 
Z = (find(J(split+1:total,obj_x) >= min_dV & ... 
          J(split+1:total,obj_y) >= min_alt)+split); 
J_filt  = J(I,:); 
J_filt1 = J(Z,:); 
  
%Factors associated with observations which satisfy constraints 
x_star_filt = x_star(I,:); 
x_star_filt1 = x_star(Z,:); 
  
%Plotting of design space  
subplot(2,3,1); 
scatter((J_filt(:,obj_x))',J_filt(:,obj_y)./BaselineCost','b', ... 
        'SizeData',5^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Re-Circularization Altitude, km');  
hold on; box on; grid off; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt; J_filt1]; 
x_star_filt_tot = [x_star_filt; x_star_filt1]; 
  
K = find(paretofront([J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
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%Plotting of Pareto front 
hold on; 
scatter((J_filt_tot(K,obj_x))',                 ... 
         J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
        'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ... 
        'MarkerEdgeColor','k','LineWidth',0.5,'HandleVisibility','off');   
     
if Pareto_Intersect_Choice == 1 
    %Loads/plots common Pareto points between {max(delta-i),min(delta-V)}  
    %and {max(delta-i),max(h_recirc)}  
    load Pareto_Intersect_12.mat; 
    hold on; plot(Pareto_Intersect_12(:,14), ... 
                  Pareto_Intersect_12(:,10),'go','LineWidth',2); 
end 
     
R = find(K > size(J_filt,1)); 
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
[B IX]    = sort(J_pareto,1); 
J_sorted3 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted3 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto3   = [x_sorted3,J_sorted3]; 
 
if Pareto_Intersect_Choice == 1 
    %Common Pareto points between {max(delta-i),min(delta-V)}, 
    %{max(delta-i),max(h_recirc)}, and {min(delta-V),max(h_recirc)} 
    Pareto_Intersect_123 = intersect(Pareto_Intersect_12,Pareto3,'rows'); 
    %Saves common Pareto points to .MAT file 
    savefile = 'Pareto_Intersect_123.mat'; 
    save(savefile,'Pareto_Intersect_123'); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Factor Analysis of Pareto Front 
%Factors 
mass_Pareto    = x_sorted3(:,2); %Mass (kg) 
S_Pareto       = x_sorted3(:,3); %Planform area (m^2) 
Cd_Pareto      = x_sorted3(:,4); %Drag coefficient 
Cl_Pareto      = x_sorted3(:,5); %Lift coefficient 
Perig_Pareto   = x_sorted3(:,6); %Perigee altitude (km) 
InitAlt_Pareto = x_sorted3(:,7); %Initial altitude (km) 
Bank_Pareto    = x_sorted3(:,8); %Bank angle (deg) 
BC_Pareto      = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff. 
  
%Observations 
RecircAlt_Pareto = J_sorted3(:,2); %Re-circularization altitude (km) 
dV_Total_Pareto  = J_sorted3(:,6); %Total delta-V (km/s) 
MaxIncl_Pareto   = J_sorted3(:,7); %Maximum inclination (deg) 
dIncl_Pareto     = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg) 
dIncl_Range      = [0:0.1:16]';    %Delta-inclination angle range (deg) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Mass (kg) v. Total Delta-V (km/s) 
subplot(2,3,2); box on; grid off; 
plot(dV_Total_Pareto,mass_Pareto,'r.'); 
ylim([1000 8000]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('TAV Mass, kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Planform Area (m^2) v. Total Delta-V (km/s) 
subplot(2,3,3); box on; grid off; 
plot(dV_Total_Pareto,S_Pareto,'r.'); 
ylim([10 25]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Planform Area, m^2'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Aerodynamic Coefficients v. Total Delta-V (km/s) 
subplot(2,3,4); box on; grid off; 
[AX,Cd1,Cl2] = plotyy(dV_Total_Pareto,Cd_Pareto, ... 
                      dV_Total_Pareto,Cl_Pareto,'plot');       
xlabel('Total \it\DeltaV\rm, km/s');  
set(Cd1,'linestyle','none','Marker','.');  
set(Cl2,'linestyle','none','Marker','.'); 
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]); 
set(Cd1,'color','green'); set(Cl2,'color','blue'); 
set(AX,{'ycolor'},{'k';'k'}); 
set(get(AX(1),'Ylabel'),'String','Drag Coefficient'); 
set(get(AX(2),'Ylabel'),'String','Lift Coefficient'); 
legend('Drag Coefficient','Lift Coefficient','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Perigee Altitude (km) v. Total Delta-V (km/s) 
subplot(2,3,5); box on; grid off; 
plot(dV_Total_Pareto,Perig_Pareto,'r.'); 
ylim([75 115]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Perigee Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Altitude (km) v. Total Delta-V (km/s) 
subplot(2,3,6); box on; grid off; 
plot(dV_Total_Pareto,InitAlt_Pareto,'r.'); 
ylim([100 1100]); 
xlabel('Total \it\DeltaV\rm, km/s'); 
ylabel('Initial Altitude, km'); 
% legend('Boundary Data','location','NorthEast'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
%% Ballistic Coefficient (m^2/kg) v. Total Delta-V (km/s) 
% figure; box on; grid off; 
% plot(dV_Total_Pareto,BC_Pareto,'r.'); 
% % ylim([-0.1 0.1]); 
% xlabel('Total \it\DeltaV\rm, km/s'); 
% ylabel('Ballistic Coefficient, m^2/kg'); 
% legend('Boundary Data','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
end 
 

 
ParetoDOE.m 

 
close all; clear all; clc; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Initial Conditions for Pareto Analysis 
InitIncl = 37.843;   %Initial inclination (deg) 
nvars    = 6;        %Number of columns for experiment number and factors 
min_incl = InitIncl; %Constraint for minimum inclination (deg) 
min_dV   = 0;        %Constraint for minimum delta-V (km/s) 
obj_x    = 9;     %Column number of x-axis objective (from reduced matrix)  
obj_y    = 8;     %Column number of y-axis objective (from reduced matrix) 
BaselineCost = 1; %Value to normalize y-axis objective 
  
%Loads experiments and observations 
load DOEMatrix_3125_5_79;    %Initial DOE Matrix 
load ParetoMatrix_3125_5_79; %Pareto Front DOE Matrix 
load DOEOutliers_3125_5_79;  %Outlier DOE Matrix 
  
%% Matrix of Experiments and Observations 
%Initial DOE Matrix 
IN_1    = DOEMatrix_3125_5_79(:,1:end); 
split_1 = length(IN_1(:,1)); 
total_1 = length(IN_1(:,1)); %Length of input matrix (number of rows) 
  
%Pareto Front DOE Matrix 
IN_2    = ParetoMatrix_3125_5_79(:,1:end); 
split_2 = length(IN_2(:,1)); 
total_2 = length(IN_2(:,1)); %Length of input matrix (number of rows) 
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%Outlier DOE Matrix 
IN_3    = DOEOutliers_3125_5_79(:,1:end); 
split_3 = length(IN_3(:,1)); 
total_3 = length(IN_3(:,1)); %Length of input matrix (number of rows) 
  
%% Creation of Reduced Factor and Observation Matrices 
%Initial DOE Matrix 
for ii = 1:size(IN_1,1) 
    x_star_1(ii,:) = IN_1(ii,1:nvars);              %Factors  
    J_1(ii,:)      = IN_1(ii,nvars+1:size(IN_1,2)); %Observations 
end 
  
%Pareto Front DOE Matrix 
for jj = 1:size(IN_2,1) 
    x_star_2(jj,:) = IN_2(jj,1:nvars);              %Factors  
    J_2(jj,:)      = IN_2(jj,nvars+1:size(IN_2,2)); %Observations 
end 
  
%Outlier DOE Matrix 
for kk = 1:size(IN_3,1) 
    x_star_3(kk,:) = IN_3(kk,1:nvars);              %Factors  
    J_3(kk,:)      = IN_3(kk,nvars+1:size(IN_3,2)); %Observations 
end 
  
%% Determination of Observations which Satisfy Constraints 
%Initial DOE Matrix 
I_1 =  find(J_1(1:split_1,obj_x) >= min_incl & ... 
            J_1(1:split_1,obj_y) >= min_dV); 
Z_1 = (find(J_1(split_1+1:total_1,obj_x) >= min_incl & ... 
            J_1(split_1+1:total_1,obj_y) >= min_dV)+split_1); 
J_filt_1  = J_1(I_1,:); 
J_filt1_1 = J_1(Z_1,:); 
  
%Pareto Front DOE Matrix 
I_2 =  find(J_2(1:split_2,obj_x) >= min_incl & ... 
            J_2(1:split_2,obj_y) >= min_dV); 
Z_2 = (find(J_2(split_2+1:total_2,obj_x) >= min_incl & ... 
            J_2(split_2+1:total_2,obj_y) >= min_dV)+split_2); 
J_filt_2  = J_2(I_2,:); 
J_filt1_2 = J_2(Z_2,:); 
  
%Outlier DOE Matrix 
I_3 =  find(J_3(1:split_3,obj_x) >= min_incl & ... 
            J_3(1:split_3,obj_y) >= min_dV); 
Z_3 = (find(J_3(split_3+1:total_3,obj_x) >= min_incl & ... 
            J_3(split_3+1:total_3,obj_y) >= min_dV)+split_3); 
J_filt_3  = J_3(I_3,:); 
J_filt1_3 = J_3(Z_3,:); 
  
%% Factors Associated with Observations which Satisfy Constraints 
%Initial DOE Matrix 
x_star_filt_1 = x_star_1(I_1,:); 
x_star_filt1_1 = x_star_1(Z_1,:); 
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%Pareto Front DOE Matrix 
x_star_filt_2 = x_star_2(I_2,:); 
x_star_filt1_2 = x_star_2(Z_2,:); 
  
%Outlier DOE Matrix 
x_star_filt_3  = x_star_3(I_3,:); 
x_star_filt1_3 = x_star_3(Z_3,:); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plotting of Design Space  
figure; %Initial DOE Matrix 
scatter((J_filt_1(:,obj_x)-InitIncl)',J_filt_1(:,obj_y)./ ... 
      BaselineCost','b','SizeData',6^2,'MarkerFaceColor','k','Marker','.'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s');  
  
hold on; %Pareto Front DOE Matrix 
scatter((J_filt_2(:,obj_x)-InitIncl)',J_filt_2(:,obj_y)./ ... 
      BaselineCost','g','SizeData',6^2.5,'MarkerFaceColor','k','Marker','x'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s'); 
hold on; 
  
hold on; %Outlier DOE Matrix 
scatter((J_filt_3(:,obj_x)-InitIncl)',J_filt_3(:,obj_y)./ ... 
      BaselineCost','r','SizeData',6^2,'MarkerFaceColor','w','Marker','o'); 
xlabel('Maximum Inclination Change, deg'); 
ylabel('Total \it\DeltaV\rm, km/s');  
hold on; box on; grid off; 
  
legend('Initial DOE Campaign','DOE for Pareto Front', ... 
       'DOE for Outlier Points','location','NorthEast'); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Data Filtering and Pareto Analysis  
J_filt_tot      = [J_filt_1; J_filt1_1; ... 
                   J_filt_2; J_filt1_2; ... 
                   J_filt_3; J_filt1_3]; 
% J_filt_tot      = [J_filt_1; J_filt1_1; ... 
%                    J_filt_2; J_filt1_2]; 
  
x_star_filt_tot = [x_star_filt_1; x_star_filt1_1; ... 
                   x_star_filt_2; x_star_filt1_2; ... 
                   x_star_filt_3; x_star_filt1_3]; 
% x_star_filt_tot = [x_star_filt_1; x_star_filt1_1; ... 
%                    x_star_filt_2; x_star_filt1_2];                
  
K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1); 
  
%Plotting of Pareto front 
hold on; 
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scatter((J_filt_tot(K,obj_x) - InitIncl)',                 ... 
         J_filt_tot(K,obj_y)./BaselineCost','y',           ... 
        'SizeData',10^2.5,'Marker','s', ... 
        'MarkerEdgeColor','k','LineWidth',1.5,'HandleVisibility','off');  
  
x_star_pareto = x_star_filt_tot(K,:); 
J_pareto  = J_filt_tot(K,:); 
 
 [B IX]    = sort(J_pareto,1); 
J_sorted1 = J_pareto([IX(:,obj_x)'],:);      %Observations for Pareto front 
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front 
Pareto_xJ = [x_sorted1,J_sorted1]; 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Miscellaneous Plotting Commands 
set(gcf,'Color','w'); %Sets overall figure background color to 'white'  
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window 
 

 
paretofront.m 

 
function [] = paretofront(varargin) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Use: front = paretofront(M) 
% 
% Returns the logical Pareto Front of a set of points.   
% 
% Author/Date    : Cao, Yi/Cranfield University/2007        
% Modified by    : Bettinger, Robert AFIT/ENY/2013        
% 
% Example:   
%   Find the Pareto Front of a set of 3D random points: 
%       X = rand(100,3); 
%       front = paretofront(X); 
%       hold on;  
%       plot3(X(:,1),X(:,2),X(:,3),'.'); 
%       plot3(X(front, 1) , X(front, 2) , X(front, 3) , 'r.'); 
%       hold off; grid on; 
%       view(-37.5, 30) 
%       xlabel('X_1'); ylabel('X_2'); zlabel('X_3');   
%       title('Pareto Front of a set of random points in 3D'); 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
error('mex file absent, type ''mex paretofront.c'' to compile'); 
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paretofront.c 
 
#include <math.h> 
#include "mex.h" 
  
/* 
    paretomember returns the logical Pareto membership of a set of points. 
  
    Synopsis       : front = paretofront(objMat) 
  
    Author/Date    : Cao, Yi/Cranfield University/2007 
     
    Modified by    : Bettinger, Robert AFIT/ENY/2013 
     
    mex paretofront.c    
*/ 
  
void paretofront(bool * front, double * M, unsigned int row, unsigned int 
col); 
  
void mexFunction( int nlhs, mxArray *plhs[] , int nrhs, const mxArray *prhs[] 
) 
{ 
    bool * front; 
    double * M; 
    unsigned int row, col; 
    const int  *dims; 
     
    if(nrhs == 0 || nlhs > 1) 
    { 
        printf("\nsynopsis:   front = paretofront(X)"); 
        plhs[0]    = mxCreateDoubleMatrix(0 , 0 ,  mxREAL); 
        return; 
    } 
     
    M = mxGetPr(prhs[0]); 
    dims = mxGetDimensions(prhs[0]); 
    row = dims[0]; 
    col = dims[1]; 
     
    /* ----- Output ----- */ 
  
    plhs[0]    = mxCreateLogicalMatrix (row , 1); 
    front = (bool *) mxGetPr(plhs[0]); 
     
     
    /* --- Main Call --- */ 
    paretofront(front,  M, row, col); 
} 
  
void paretofront(bool * front, double * M, unsigned int row, unsigned int 
col) 
{ 
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    unsigned int t,s,i,j,j1,j2; 
    bool *checklist, coldominatedflag; 
     
    checklist = (bool *)mxMalloc(row*sizeof(bool)); 
    for(t = 0; t<row; t++) checklist[t] = true; 
    for(s = 0; s<row; s++) { 
        t=s; 
        if (!checklist[t]) continue; 
        checklist[t]=false; 
        coldominatedflag=true; 
        for(i=t+1;i<row;i++) { 
            if (!checklist[i]) continue; 
            checklist[i]=false; 
            for (j=0,j1=i,j2=t;j<col;j++,j1+=row,j2+=row) { 
                if (M[j1] < M[j2]) { 
                    checklist[i]=true; 
                    break; 
                } 
            } 
            if (!checklist[i]) continue; 
            coldominatedflag=false; 
            for (j=0,j1=i,j2=t;j<col;j++,j1+=row,j2+=row) { 
                if (M[j1] > M[j2]) { 
                    coldominatedflag=true; 
                    break; 
                } 
            } 
            if (!coldominatedflag) {  //Swap active index continue checking 
                front[t]=false; 
                checklist[i]=false; 
                coldominatedflag=true; 
                t=i; 
            } 
        } 
        front[t]=coldominatedflag; 
        if (t>s) { 
            for (i=s+1; i<t; i++) { 
                if (!checklist[i]) continue; 
                checklist[i]=false; 
                for (j=0,j1=i,j2=t;j<col;j++,j1+=row,j2+=row) { 
                    if (M[j1] < M[j2]) { 
                        checklist[i]=true; 
                        break; 
                    } 
                } 
            } 
        } 
    } 
    mxFree(checklist);  
} 
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