
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

6-19-2014

The Prospect of Responsive Spacecraft Using
Aeroassisted, Trans-Atmospheric Maneuvers
Robert A. Bettinger

Follow this and additional works at: https://scholar.afit.edu/etd

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in
Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Bettinger, Robert A., "The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers" (2014). Theses and
Dissertations. 536.
https://scholar.afit.edu/etd/536

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/536?utm_source=scholar.afit.edu%2Fetd%2F536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

THE PROSPECT OF RESPONSIVE SPACECRAFT USING
AEROASSISTED, TRANS-ATMOSPHERIC MANEUVERS

DISSERTATION

Robert A. Bettinger, Captain, USAF

AFIT-ENY-DS-14-J-13

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

www.manaraa.com

The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the
United States Government. This material is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENY-DS-14-J-13

THE PROSPECT OF RESPONSIVE SPACECRAFT USING
AEROASSISTED, TRANS-ATMOSPHERIC MANEUVERS

DISSERTATION

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Robert A. Bettinger, BS, MA, MS

Captain, USAF

June 2014

DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED

www.manaraa.com

AFIT-ENY-DS-14-J-13

THE PROSPECT OF RESPONSIVE SPACECRAFT USING
AEROASSISTED, TRANS-ATMOSPHERIC MANEUVERS

Robert A. Bettinger, BS, MA, MS
Captain, USAF

Approved:

//signed//____________________________ 5 May 2014
Jonathan T. Black, Ph.D (Chair) Date

//signed//____________________________ 5 May 2014
Kerry D. Hicks, Ph.D (Member) Date

//signed//____________________________ 5 May 2014
Lt Col Ronald J. Simmons, Ph.D (Member) Date

//signed//____________________________ 5 May 2014
Lt Col John R. Dea, Ph.D (Member) Date

Accepted:

___________________________________ ____________
Adedeji B. Badiru, Ph.D Date
Dean, Graduate School of Engineering
and Management

www.manaraa.com

v

AFIT-ENY-DS-14-J-13

Abstract

Comprised of exo- and trans-atmospheric trajectory segments, atmospheric re-entry

represents a complex dynamical event which traditionally signals the mission end-of-life for low-

Earth orbit (LEO) spacecraft, both manned and unmanned. Transcending this paradigm,

atmospheric re-entry can be employed as a means of operational maneuver whereby the

aerodynamic forces of the upper atmosphere can be exploited to create an aeroassisted maneuver.

Utilizing a notional trans-atmospheric, lifting re-entry vehicle with 𝐿/𝐷 = 6, the first phase of

research demonstrates the terrestrial reachability potential for skip entry aeroassisted maneuvers.

By overflying a geographically diverse set of sample ground targets, comparative analysis

indicates a significant savings in ∆𝑉 expenditure for skip entry compared with planar phasing

and simple plane change exo-atmospheric maneuvers. In the second phase, the Design of

Experiments method of orthogonal arrays provides optimal vehicle and skip entry trajectory

designs by employing main effects and Pareto front analysis. Depending on the chosen re-

circularization altitude, the coupled optimal design can achieve an inclination change

of 19.91 deg with 50-85% less ∆𝑉 than a simple plane change. Finally, the third phase

introduces the descent-boost aeroassisted maneuver as an alternative to combined Hohmann and

bi-elliptic transfers in order to perform LEO injection. Compared with bi-elliptic transfers,

simulations demonstrate that a lifting re-entry vehicle with 𝐿/𝐷 = 6 performing a descent-boost

maneuver requires 6-12% less ∆𝑉 for injection into orbits lower than 650 km. In addition, the

third phase also introduces the “Maneuver Performance Number” as a dimensionless means of

comparative effectiveness analysis for both exo- and trans-atmospheric maneuvers.

www.manaraa.com

vi

Acknowledgments

I would like to acknowledge and express my sincere gratitude to my research advisor, Dr.

Jonathan Black, and the members of my Ph.D Committee – to include Dr. Kerry Hicks, Lt Col

Ronald Simmons, Lt Col John Dea, and Lt Col Jeremy Agte – for their invaluable academic

guidance and mentorship throughout the research process and composition of this dissertation. I

would also like to thank my family, specifically my wife and parents, for their steadfast

encouragement and unwavering support, without which my aspirations of attaining my doctorate

in Astronautical Engineering would not have come to fruition.

 Robert A. Bettinger

www.manaraa.com

vii

Table of Contents

Page

Abstract .. iv

Acknowledgements ..v

List of Figures ..x

List of Tables ...xv

List of Symbols ... xvii

I. Introduction ...1

General Issue ..1
Research Motivation ..2
Methodology ..4
Preview ..12

II. Literature Review ..13

Chapter Overview ..13
Types of Aeroassisted Maneuvers ...13
Aeroassisted Maneuver Performance ..14
The Atmospheric Flow Environment and TAV Aerodynamics ..19
The Atmospheric Flow Environment and Heat Flux ...22
Summary ..27

III. Methodology ...28

Chapter Overview ..28
Assumptions and Limitations ..28

Planetary Ellipticity ...28
Atmospheric Density and Dynamics ...30
TAV Mass Properties ...39
Total Force Properties ..40
Earth-Based Constants ...41

Trajectory Dynamics Model Development ..42
Trajectory Dynamics Model Flow Diagram ..45
Model Verification Assumptions ...46
Verification of Trajectory Dynamics Model..49
Verification of Deceleration Model ...60
Verification and Selection of Heat Flux Model ...62
Summary and Conclusion ..69

www.manaraa.com

viii

IV. Comparative Study of Phasing, Skip Entry, and Simple Plane Change Maneuvers70

Chapter Overview ..70
Introduction ..70
Methodology ..72

Simulation of Planar Phasing Maneuvers ..72
Simulation of Out-of-Plane Skip Entry Maneuvers ...83
Simulation of Simple Plane Change Maneuvers ...85

Results and Analysis ..85
Maneuver Performance Comparison for Select Ground Targets86
Analysis of Out-of-Plane Skip Entry Maneuvers ..92
Maneuver Performance Comparison for All Ground Targets ...95

Summary and Conclusion ..99

V. Design of Experiments Approach to Atmospheric Skip Entry Maneuver Optimization100

Chapter Overview ..100
Introduction ..100
Methods of Maneuver Optimization ..102
Methodology ..105
Results and Analysis ..108

Constant Bank Angle Analysis ..108
Variable Bank Angle Analysis...118
Single TAV Design Analysis ...122
TAV Design Application ...129

Summary and Conclusion ..133

VI. Low Earth Orbit (LEO) Injection and Reachability Utilizing Descent-Boost Maneuvers ..134

Chapter Overview ..134
Introduction ..134
Maneuver Performance (MP) Number ..135
Descent-Boost Maneuver Sensitivity Study ..138
Results and Analysis ..146

Circular Orbit Injection ..148
Molniya Orbit Injection ...156

Summary and Conclusion ..161

VII. Aeroassisted Maneuvers: Potential Air and Space Law Challenges163

Chapter Overview ..163
Introduction ..163
Applicability of Air and Space Law ..164

Spatialism and Aeroassisted Maneuver Altitude Delimitation ..165
Functionalism and TAV Classification ..168

Environmental Considerations ...170
Summary and Conclusion ..171

www.manaraa.com

ix

VIII. Conclusions and Recommendations ..173

Conclusions of Research ..173
Significance of Research..176
Recommendations for Future Research ...177

Appendix A: Exo-Atmospheric Maneuver Algorithms ...178

Appendix B: Geodesic Equation Formulation ...183

Appendix C: TLE Guide ..185

Appendix D: Lambert Algorithm...187

Appendix E: MATLAB® Code for Trajectory Dynamics Model ..192

Appendix F: MATLAB® Code for Maneuver Simulations ...209

Appendix G: MATLAB® Code for Support Functions and Utilities ...312

Appendix H: MATLAB® Code for Design of Experiments Support Utilities331

References ..385

Vita ..394

www.manaraa.com

x

List of Figures

Figure Page

1.1. Phasing Maneuver Diagrams: “Ascending” (left) and “Descending” (right)8

1.2. Simple Plane Change Diagram ..9

1.3. Hohmann Transfer Diagram ..9

1.4. Combined Hohmann Transfer Diagram ..10

1.5. Bi-Elliptic Transfer Diagram ...11

3.1. Comparison of Geocentric and Geodetic Latitude ..29

3.2. Radial Distance Deviation between Spherical and Oblate Spheroid Models30

3.3. Initial Comparison of Atmospheric Density Models with MSIS-E-90 and
 STK® Density Data for 01 January 2012 ..35

3.4. Comparison of MSIS-E-90 and STK® Density Data ..35

3.5. Comparison of Combined Atmospheric Density Model with MSIS-E-90 and
 STK® Density Data for 01 January 2012 ..37

3.6. Vehicle Reference Frame and Vector Definition for Sample TAV40

3.7. Trajectory Dynamics Model Flow Diagram ...46

3.8. Bank Angle History for Apollo 10 Command Module Capsule ...49

3.9. Comparison of Geocentric/Geodetic Latitude for Apollo 10
 (𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver) ..50

3.10. Comparison of Geodetic Altitude for Apollo 10
 (𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver) ...51

3.11. Comparison of Inertial Velocity for Apollo 10
 (𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver) ...51

3.12. Comparison of Geocentric/Geodetic Latitude for Apollo 10
 (𝐽2-Gravity Model, Modified Solver Parameters) ...52

www.manaraa.com

xi

3.13. Comparison of Geodetic Altitude for Apollo 10
 (𝐽2-Gravity Model, Modified Solver Parameters) ...53

3.14. Comparison of Inertial Velocity for Apollo 10
 (𝐽2-Gravity Model, Modified Solver Parameters) ...53

3.15. Comparison of Geocentric/Geodetic Latitude for Apollo 10
 (𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 𝑥 10−10,𝑁𝑚𝑎𝑥 = 0.1) ...55

3.16. Comparison of Geodetic Altitude for Apollo 10
 (𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 𝑥 10−10,𝑁𝑚𝑎𝑥 = 0.1) ...56

3.17. Comparison of Inertial Velocity for Apollo 10
 (𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 𝑥 10−10,𝑁𝑚𝑎𝑥 = 0.1) ...56

3.18. Comparison of Bank Angle Profile for Apollo 10
 (𝐶𝐿 = 0.40815,𝐶𝐷 = 1.2569,𝐸𝑟𝑒𝑙 = 1 𝑥 10−8,𝑁𝑚𝑎𝑥 = Default)57

3.19. Comparison of Bank Angle Profile for t = [160, 280] s
 (𝐶𝐿 = 0.40815,𝐶𝐷 = 1.2569,𝐸𝑟𝑒𝑙 = 1 𝑥 10−8,𝑁𝑚𝑎𝑥 = Default)58

3.20. Comparison of Geocentric/Geodetic Latitude for Apollo 10 with
 Non-Interpolation of Bank Angle Profile ...59

3.21. Comparison of Geodetic Altitude for Apollo 10 with Non-Interpolation of
 Bank Angle Profile ..59

3.22. Comparison of Inertial Velocity for Apollo 10 with Non-Interpolation of
 Bank Angle Profile ...60

3.23. Comparison of Deceleration for Apollo 10 with Spherical Gravity and
 Rotating Planetary Model ...61

3.24. Pressure Transducer and Calorimeter Locations on the Conical Section of
 Apollo Spacecraft 009...62

3.25. Wing Segment (WS) and Fuselage Section (FS) Locations used for
 STS-5 Heat Flux Analysis ..64

3.26. Re-Entry Trajectory for STS-5 ...64

3.27. Comparison of Stagnation Heat Flux Models with Flight Data from
 Sample NASA Vehicles ..68

4.1. Skip Entry Maneuver Diagram ..71

www.manaraa.com

xii

4.2. Heading Angle, Orbital Velocity with Respect to a Rotating Reference Frame75

4.3. Ground Track Trajectory of Reference Orbit (ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg)77

4.4. Latitude Crossings and Related Longitude Interpolation Solutions 77

4.5. Ground Track Trajectory of “Ascending” Phasing Maneuver Example79

4.6. Ground Track Trajectory of “Descending” Phasing Maneuver Example81

4.7. Maneuver Over-Flight Parameters for Moscow, Russia ...89

4.8. Maneuver Over-Flight Parameters for Gibraltar, United Kingdom90

4.9. Maneuver Over-Flight Parameters for Pontianak, Indonesia ..92

4.10. Over-Flight Detail of Ascending Node Out-of-Plane Skip Maneuver93

4.11. Over-Flight Detail of Descending Node Out-of-Plane Skip Maneuver................................94

5.1. Pareto Optimal Front for Campaign #3: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}110

5.2. Pareto Optimal Front for Campaign #3: {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}110

5.3. Pareto Optimal Front for Campaign #3: {min(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}111

5.4. Mapping of Pareto Optimal Set from ∆𝑉 vs. ∆𝑖 onto Secondary and
 Tertiary Objective Spaces ...112

5.5. Main Effect on Maximum Inclination Change for DOE Campaign #3 with
 (a) TAV Mass, (b) Planform Area, (c) Drag Coefficient, and (d) Lift Coefficient113

5.6. Main Effect on Perigee Altitude on Max. Inclination Change for DOE Campaign #3115

5.7. Augmented Pareto Optimal Front for DOE Campaign #3 ..116

5.8. Pareto Optimal Front for DOE Campaign #4: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}118

 5.9. Main Effect on Maximum Inclination Change for DOE Campaign #4 with
 (a) TAV Mass, (b) Planform Area, (c) Drag Coefficient, (d) Lift Coefficient120

5.10. Main Effect on Maximum Inclination Change for DOE Campaign #4 with
 (a) Perigee Altitude, and (b) Bank Angle ..121

5.11. Pareto Optimal Front for Single TAV Design: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}122

www.manaraa.com

xiii

5.12. Polynomial Fit for Single TAV Design with ∆𝑉 = 𝑓(𝜎) ...123

5.13. Residuals Plot of Polynomial Fit for Single TAV Design with ∆𝑉 = 𝑓(𝜎)124

5.14. Surface Fit for Single TAV Design with ∆𝑖 = 𝑓(𝜎,∆𝑉) ..125

5.15. Residuals Plot of Surface Fit for Single TAV Design with ∆𝑖 = 𝑓(𝜎,∆𝑉)126

5.16. Three-Dimensional Solution for Single TAV Design with
 𝜎 ∈ [−120,0] deg, ∆𝑉 = 𝑓(𝜎), and ∆𝑖 = 𝑓(𝜎,∆𝑉) ..127

5.17. Pareto Optimal Front for Single TAV Design: {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}128

5.18. Pareto Optimal Fronts for Single TAV Design with (a) Re-Circularization at
 Skip Apogee, (b) Re-Circularization at ℎ = 500 km via Hohmann Transfer129

5.19. Reference Orbit and Perturbed Orbit Ground Track Trajectories of
 Single TAV Design ...130

5.20. Altitude Profile for Perturbed Orbit of Single TAV Design ...131

6.1. Descent-Boost Maneuver Diagram ...135

6.2. Descent-Boost Apogee Altitude with Variable Initial Altitude and Boost Impulse139

6.3. Descent-Boost Maneuvers with Variable Initial Inclination, ℎ𝑖 = 2000 km,
 ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) ∆𝑉 vs. 𝛾𝑖, and (b) ∆𝑖 vs. 𝛾𝑖142

6.4. Descent-Boost Maneuvers with Variable Initial Inclination, ℎ𝑖 = 2000 km,
 ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) ℎ𝑎 vs. 𝛾𝑖, and (b) ℎ𝑝 vs. 𝛾𝑖143

6.5. Comparison of ∆𝑉 vs. Apogee Altitude Performance with Variable Initial Inclination,

 ℎ𝑖 = 2000 km, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Descent-Boost Maneuvers, and
 (b) Combined Hohmann Transfer Maneuvers ...144

6.6. Maneuver Performance (MP) Number Analysis for Descent-Boost Maneuvers with

Variable Initial Inclination,ℎ𝑖 = 2000 km, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg145

6.7. Maneuver Performance (MP) Number Analysis for Combined Hohmann Transfer

Maneuvers with Variable Initial Inclination and ℎ𝑖 = 2000 km145

6.8. Example Circular Orbit Injection via Descent-Boost Maneuver;
(a) Truncated Descent-Boost Trajectory with Target Altitude Crossings, and

 (b) Trajectory with Re-Circularization at min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� ...147

www.manaraa.com

xiv

6.9. Three-Dimensional View of Descent-Boost 500 km Circular Orbit Injection with
 𝛾𝑖 = −12.5°, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, ℎ𝑖 = 1000 km, ℎ𝑝 ≈ 76 km, 𝜎 = 0 deg148

6.10. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with Variable 𝛾𝑖,
 ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Descent-Boost Maneuver ∆𝑉, and
 (b) Bi-Elliptic Transfer ∆𝑉 ...153

6.11. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with Variable 𝛾𝑖,

∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg, and ℎ𝑖 = [1000, 1100, 1200] km154

6.12. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with

Variable 𝛾𝑖, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Time-of-Flight to Apogee, and
 (b) ℎ𝑎 vs. ℎ𝑖 for Descent-Boost Maneuvers (Quartic Model, 𝑅2 = 0.9989)155

6.13. Descent-Boost Maneuver with Molniya Orbit Injection with 𝛾𝑖 = −12.3°,
 ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, ℎ𝑖 = 1000 km, ℎ𝑝 ≈ 78 km, 𝜎 = 0 deg ...158

6.14. Three-Dimensional Polar View of Descent-Boost Molniya Orbit Injection159

6.15. Three-Dimensional Polar View of Descent-Boost Orbit Injection and
Molniya 3-42 Orbit Trajectories ...160

6.16. Detail of Close-Approach of Descent-Boost Orbit Injection and
 Molniya 3-42 Orbit Trajectories ...161

A.1. Phasing Maneuver Flowchart ...182

C.1. Element Mapping for Molniya 3-42 Example TLE ...186

www.manaraa.com

xv

List of Tables

Table Page

1.1. Apollo 10 Re-Entry Initial Conditions ..4

1.2. Apollo 10 Command Module Capsule Parameters ...5

1.3. Notional Trans-Atmospheric Vehicle (TAV) Parameters ...5

3.1. Atmospheric Density Model Parameters ...36

3.2. RMS Error for Combined Density Model Compared with MSIS-E-90 and
 STK® Density Data ...38

3.3. Earth-Based Constants ..41

3.4. RMS Errors for Modifications to Trajectory Dynamics Model ..48

3.5. RMS Error for Trajectory Dynamics Model Verification ...54

3.6. RMS Error for Alternate Aerodynamic Coefficients ..55

4.1. Geographical Coordinates of Sample Ground Targets of Interest ..73

4.2. Reference Orbit Initial States for Over-Flight Analysis ..73

4.3. Out-of-Plane Skip Maneuver Parameters for Moscow, Russia ...89

4.4. Simple Plane Change Maneuver Parameters (ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg)91

4.5. Skip Entry and Simple Plane Change Maneuver Comparison
 (ℎ𝑖 = 1000 km, 𝑖𝑖 = 60 deg) ...96

4.6. Skip Entry and Simple Plane Change Maneuver Comparison
 (ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg) ...98

5.1. Factors and Associated Level Bounds for TAV Design Parameters107

5.2. Factors and Associated Level Bounds for Supplementary DOE Campaigns116

5.3. Maneuver Parameters of Augmented Pareto Optimal Front ...117

5.4. Maneuver Parameters of Pareto Optimal Front for DOE Campaign #4119

www.manaraa.com

xvi

5.5. Optimal TAV Design and Trajectory ..121

5.6. Reference Orbit Initial States for Optimal Design Simulation ..129

5.7. Perturbed Orbit Initial States for Optimal Design Simulation ..130

5.8. Maneuver ∆𝑉 Comparison of Orbit Re-Circularization Cases ...132

6.1. MP Number Usage Examples with Exo-Atmospheric Maneuvers137

6.2. Reference Orbit Initial States for Descent-Boost Simulations ..138

6.3. Trajectory Parameters for Descent-Boost Maneuvers with
 Variable Boost ∆𝑉 at 𝜎 = 0 deg ..141

6.4. Comparison of Circular Orbit Injection Performance for Descent-Boost Maneuvers,
Combined Hohmann, and Bi-Elliptic Transfers ...149

6.5. Initial Flight-Path Angles and Associated Perigee Altitudes for
 Descent-Boost Maneuvers ..151

6.6. Sinusoid Models for Descent-Boost LEO Injection Maneuvers ...152

6.7. Comparison of Molniya Orbit Injection Performance for Descent-Boost Maneuver
(∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km s⁄ ,𝜎 = 0 deg), Bi-Elliptic, and Combined Hohmann Transfer..........157

8.1. Optimal TAV Design and Trajectory from DOE Analysis ...174

B.1. General TLE and Element Description ...185

E.1. m-File Classification for Trajectory Dynamics Model ...192

F.1. m-File Classification for Maneuver Simulations ..209

G.1. m-File Classification for Support Functions and Utilities ..312

H.1. m-File Classification for Design of Experiments Support Utilities331

www.manaraa.com

xvii

List of Symbols

The following list of symbols is alphabetical: Lowercase, then uppercase; Latin, then

Greek. Due to the magnitude of distances associated with astrodynamics and re-entry analysis,

all of the following symbols containing the base unit of measure of meters (m) are converted to

kilometers (km) for all subsequent analysis. For the symbols χ and ∆, the notation subscript (∙)

indicates an unspecified base unit of measure.

Latin Symbol Definition Base Unit of Measure

𝑎 Orbital semi-major axis m
𝑎𝑑𝑒𝑐𝑒𝑙 Total deceleration �m/s2�
𝑑 General distance m
𝑒 Orbital eccentricity unitless
𝑓 Planetary flattening parameter; focal length unitless; m
𝑔 Gravitational acceleration �m/s2�
ℎ Altitude m
𝑖 Inclination angle rad
𝑚 Vehicle mass kg
𝑛 Scalar quantity (e.g. number of points) unitless
ƥ Maneuver performance (MP) number unitless
𝑟 Geocentric radial distance m
𝑡 General time s

𝐶𝐷 Coefficient of drag unitless
𝐶𝐿 Coefficient of lift unitless
𝐷 Drag force kg ∙ m/s2
𝐸𝑟𝑒𝑙 Relative error tolerance unitless
𝐽𝑖 Zonal harmonic coefficient (Jeffrey constant) unitless
𝐿 Lift force kg ∙ m/s2
𝑁 Integration step size s
𝑃 Keplerian orbital period s
𝑃𝑛 Legendre polynomial, order 𝑛 unitless
�̇� Heat flux kW/m2

𝑅𝑀𝑆 Root mean square unitless
𝑆 Planform area m2
𝑇 Thrust force kg ∙ m/s2
𝑉 Velocity m/s

www.manaraa.com

xviii

Greek Symbol Definition Base Unit of Measure

𝛼 Atmospheric density parameter unitless
𝛽 Atmospheric scale height 1 m⁄
𝛾 Flight-path angle rad
𝜀 Specific mechanical energy m2/s2
𝜖 Planetary ellipticity unitless
𝜃 Longitude rad
𝜇 Gravitational parameter m3/s2
𝜌 Atmospheric density �kg/m3�
𝜎 Bank angle rad
𝜑 Co-latitude rad
𝜒 Universal variable (∙)
𝜓 Heading angle rad
𝜔(∙) Planetary rotation rate rad/s

∆ Change in value, i.e. ∆𝑉 (∙)
𝜙 Latitude (geocentric) rad

Symbol Scripting Definition

()𝑐 Conditions for circular orbit
()𝑒 Conditions at entry interface
()𝑓 Final conditions

 ()𝑔𝑑 Geodetic value
()𝑖 Initial conditions
()𝑗 General index
()𝑟 Component in radial direction
()𝑠 Stagnation value
()𝑣 Component in velocity direction
 ()𝑤 Conditions at vehicle surface (wall)

()𝐿 Component in lift direction
()𝑆𝐿 Conditions at sea-level

 ()𝜙 Component in transverse direction

()0 Conditions at a reference radius

 ()⊕ Conditions for the Earth
 ()∞ Free-stream conditions

()𝐼 Measured with respect to an inertial frame
()𝑅 Measured with respect to a rotating frame

www.manaraa.com

1

THE PROSPECT OF RESPONSIVE SPACECRAFT USING
AEROASSISTED, TRANS-ATMOSPHERIC MANEUVERS

I. Introduction

General Issue

Traditionally, orbital states and orbit geometry are modified via various maneuvers

performed in vacuo, such as simple plane changes, combined changes to inclination and/or right

ascension of the ascending node (RAAN), and coplanar/non-coplanar phasing. Based on a given

mission altitude and the desired change in orbital plane position, however, exo-atmospheric

maneuvers have the propensity of becoming prohibitively expensive in terms of ∆𝑉. While ∆𝑉

expenditure can be reduced by performing maneuvers at high altitudes or nodal crossings, such

options are precluded by mission taskings which seek to maximize inclination change, ∆𝑖, while

simultaneously minimizing the total maneuver ∆𝑉 within a specified time duration. Besides the

vacuum of space, the upper atmosphere offers an alternative maneuver environment which

primarily has been utilized for re-entry, an event that signals the mission end-of-life for low-

Earth orbit (LEO) spacecraft. Departing from this convention, atmospheric re-entry can be

employed as a means of operational maneuver whereby the aerodynamic drag of the upper

atmosphere is exploited by an entry vehicle to create an aeroassisted, trans-atmospheric

maneuver. For the purposes of this research, an entry vehicle represents a subset of spacecraft

known as trans-atmospheric vehicles (TAVs) that are designed to (1) conduct normal mission

functions within LEO, and, (2) operate at hypersonic velocities within the upper atmosphere

following a de-orbit maneuver by using lift to complete a specified aeroassisted maneuver and

fulfill a specified mission tasking.1

1 Daniel Gonzalez, Mel Eisman, Calvin Shipbaugh, Timothy Bonds, and Anh Tuan Le, Proceedings of the RAND

Project AIR FORCE Workshop on Transatmospheric Vehicles (Santa Monica, CA: RAND Corporation, 1997), 1.

www.manaraa.com

2

Research Motivation

The attainment of global reach is part of a wider responsive space initiative within the

U.S. Department of Defense and represents a shift from a solution-oriented to a capabilities-

oriented approach to space acquisition and space system design, in which the performance of a

new system is “intended to respond to new taskings within days, hours or minutes without

proscribing how it is done.”2 Not restricted to the vacuum environment of space, aeroassisted

maneuvers represent an alternative means of achieving global reach and feature the potentiality

of changing orbital states and geometry with a lower ∆𝑉 expenditure and shorter time-of-flight

than conventional exo-atmospheric maneuvers. For the present research, global reach is divided

into two categories: (1) Terrestrial reachability; and (2) LEO reachability. With the first

category, terrestrial reachability represents the ability of a TAV to overfly a specified ground

target within a fixed operations window by performing an aeroassisted maneuver to change orbit

inclination and/or semi-major axis. The second category, LEO reachability, extends the concept

of global reach to the LEO altitude regime and represents the ability of a TAV to execute a LEO

injection subsequent to an aeroassisted maneuver for the prospect of on-orbit inspection and

rendezvous.3

One method for determining the performance potential of aeroassisted maneuvers is

through the pursuance of a trajectory-centric analysis approach comprised of either a parametric

study or an optimization of the trajectory based on a specified performance index. For both

cases, the TAV design is known a priori and, in conjunction with the mission tasking, represent

the fundamental constraints on aeroassisted maneuver performance. As an alternative, the second

2 Robert D. Newberry, “Powered Spaceflight for Responsive Space Systems,” High Frontier 1 (2005): 46.
3 NASA defines the upper altitude limit of LEO as 2000 km; National Aeronautics and Space Administration,

“Process for Limiting Orbital Debris,” NASA STD 8719.14A (Washington, D.C.: National Aeronautics and Space
Administration, 2012), 23.

www.manaraa.com

3

method is optimization-centric and determines performance potential by optimizing the TAV

design simultaneously with the maneuver trajectory. Based on a specified set of performance

indices within the multiple-objective optimization problem (MOP), aeroassisted maneuver

performance becomes the objective space arising from an initial decision space containing not

only TAV and trajectory design parameters, but also constraints related to TAV capability, to

include available ∆𝑉, maximum deceleration g-loading, and maximum heat flux. Employing

these two methodologies, the terrestrial and LEO reachability aspects of global reach will be

explored by fulfilling the following research objectives:

• Develop and verify a model for utilizing aeroassisted, trans-atmospheric maneuvers to

achieve desired orbital state changes induced by aerodynamic effects. This model will

hereafter be referred to as the trajectory dynamics model.

• Based on a given TAV design commencing from LEO, determine the terrestrial

reachability performance of aeroassisted maneuvers, specifically skip entry, by

overflying a series of geographically-separated ground targets at high, medium, and low

latitudes. For comparison, planar phasing and simple plane change maneuvers will be

simulated as exo-atmospheric alternatives to the aeroassisted maneuvers.

• Employing the Design of Experiments method of orthogonal arrays, determine terrestrial

reachability by optimizing the TAV and aeroassisted maneuver designs based the MOP

of maximizing orbit inclination change while minimizing total maneuver ∆𝑉. Following

optimization, the performance of the TAV and aeroassisted maneuver designs will be

compared with that of an exo-atmospheric simple plane change.

• Explore the reachability potential of aeroassisted maneuvers as a means for LEO

injection and determine a cursory orbit injection envelope for a TAV commencing from

www.manaraa.com

4

LEO. Also, provide an assessment of the viability of aeroassisted maneuvers for orbit

injection when compared with exo-atmospheric maneuver alternatives, specifically

combined Hohmann and bi-elliptic transfers.

Methodology

The trajectory dynamics model produces solutions by integrating a set of six nonlinear,

ordinary differential equations of motion which govern the kinetics and kinematics of orbital

flight and atmospheric re-entry. As a means of model verification, the Apollo 10 re-entry initial

conditions will serve as inputs for the trajectory dynamics model so as to compare the resulting

trajectory solutions with the actual re-entry trajectory. In addition to the Apollo 10 capsule

parameters, the re-entry initial conditions – expressed as geodetic values with respect to an

inertial reference frame – are given in the following tables:

Table 1.1. Apollo 10 Re-Entry Initial Conditions4

State Value

Geodetic Altitude, ℎ𝑔𝑑𝑖 123.55077 km
Inertial Velocity, 𝑉𝑖

𝐼 11.06715 km/s
Longitude, 𝜃𝑖 174.24384 deg E

Geodetic Latitude, 𝜙𝑔𝑑𝑖 23.653003 deg S
Inertial Flight-Path Angle, 𝛾𝑖

𝐼 −6.6198381 deg
Inertial Heading Angle, 𝜓𝑖

𝐼 18.0683 deg

4 Kerry D. Hicks, Introduction to Astrodynamic Re-Entry, TR 09-03 (Wright-Patterson AFB, OH: Air Force Institute

of Technology, 2009), 377.

www.manaraa.com

5

Table 1.2. Apollo 10 Command Module Capsule Parameters5

Pre-Entry Mass, m 5498.22 kg
Planform Area, S 12.017 m2

Coefficient of Drag, 𝐶𝐷 0.40815
Coefficient of Lift, 𝐶𝐿 1.2569

Following the verification phase, the trajectory dynamics model is utilized to estimate the

terrestrial and LEO reachability envelopes for the skip entry and descent-boost types of

aeroassisted maneuvers based on a notional TAV as defined in Table 1.3. Similar to spacecraft

such as the X-37B Orbital Transfer Vehicle (OTV) in terms of dimensional area and mass, the

notional TAV features a theoretical hypersonic lift-to-drag ratio of 𝐿/𝐷 = 6 that serves to

illustrate the trans-atmospheric maneuvering capability of a vehicle with aerodynamic

characteristics approaching the maximum of Newtonian flow theory.6 By comparison, the

hypersonic lift-to-drag ratios of the Space Shuttle and X-33 single-stage-to-orbit concept vehicle

are 1.9 and 1.2, respectively.7

Table 1.3. Notional Trans-Atmospheric Vehicle (TAV) Parameters

Total Wet Mass, m 5000 kg
Planform Area, S 18 m2

Coefficient of Drag, 𝐶𝐷 0.5
Coefficient of Lift, 𝐶𝐿 3.0

5 Ibid., 379.
6 John D. Anderson Jr., Hypersonic and High-Temperature Gas Dynamics, Second Edition (Reston, VA: American

Institute of Aeronautics and Astronautics, Inc., 2006), 52.
7 Michael E. Tauber, “Maximum Lift/Drag Ratio of Flat Plates with Bluntness and Skin Friction at Hypersonic

Speeds,” NASA TM 88338 (Moffett Field, CA: AMES Research Center, 1986), 3; Kevin J. Murphy, Robert J.
Nowak, Richard A. Thompson, and Brian R. Hollis, “X-33 Hypersonic Aerodynamic Characteristics,” Journal of
Spacecraft and Rockets 38, no. 5 (2001): 674.

www.manaraa.com

6

As shown in Chapter V, terrestrial reachability is also determined by conducting main

effects and Pareto front analysis to solve the MOP of maximizing inclination change, ∆𝑖, while

simultaneously minimizing total ∆𝑉. Implementing the Design of Experiments method of

orthogonal arrays, the optimization decision space contains both TAV and trajectory design

parameters. Consequently, the notional TAV defined in Table 1.3 represents one combination of

vehicle design parameters to be simulated in order to solve the MOP.

 Whether skip entry or descent-boost in nature, the aeroassisted maneuvers each

commence from a circular reference orbit in the LEO altitude regime. Following a de-orbit burn

to transfer from the reference orbit into an elliptical trajectory, the TAV changes the orbital states

of inclination and semi-major axis by leveraging aerodynamic forces in the upper atmosphere.

The amount of change achievable for the orbital states is a direct function of the trans-

atmospheric trajectory perigee altitude as well as the aeroassisted maneuver mechanics,

specifically the TAV bank angle and initial velocity. In order to maximize aerodynamic force

and, therefore, the reachability potential of the aeroassisted maneuver, the TAV must penetrate

deep into the sensible atmosphere during perigee transit at a specified negative bank angle to

create a leftward turn based on the prograde motion of the initial reference orbit. While a

constant bank angle of 𝜎 = −90 deg is assumed in Chapter IV, the Design of Experiments

optimization approach in Chapter V utilizes both a constant and variable bank angle within the

orthogonal arrays of experiments. Detailed descriptions of skip entry and descent-boost

maneuvers are provided in Chapters IV and VI, respectively.

As a means of evaluating aeroassisted maneuver performance, the following types of

atmospheric maneuvers are simulated: (1) Phasing maneuver; (2) simple plane change; (3)

Hohmann transfer; (4) combined Hohmann transfer; and (5) bi-elliptic transfer. While other

www.manaraa.com

7

types of exo-atmospheric maneuver exist, to include planar non-tangential orbit transfers, one-

tangent burns, apsides rotations, and Lambert transfers, the present research is restricted to the

preceding list.8 For the first type of exo-atmospheric maneuver, a circular reference orbit in LEO

is simulated for a 24 hour-duration, with the resulting ground track trajectory crossings of the

ground target latitude identified and catalogued. If the latitude crossings are to the east of the

target, then an “ascending” planar phasing maneuver is formulated so as to create an elliptical,

perturbed orbit with both a period and semi-major axis greater than that of the reference orbit.

Flight along the “ascending” orbit allows for the Earth to rotate a greater angular distance during

the orbit period, thus permitting an over-flight of the target rather than a miss to the east as

originally calculated.

With latitude crossings to the west of the target, two options are available to shift the

ground track trajectory eastward in order to overfly the target. The first option, a “descending”

planar skip maneuver creates an elliptical perturbed orbit with both a period and semi-major axis

less than that of the reference orbit. By entering into the “descending” eccentric orbit, over-flight

of the target is achieved by traversing a greater angular distance during the orbit period, thus

decreasing the westward longitudinal difference to zero. The second option arises when the semi-

major axes calculated for a “descending” maneuver are less than the radius of the Earth as a

result of a large longitudinal difference between the latitude crossing and target. Although

patently infeasible, such cases can be transformed into “ascending” phasing maneuvers which

prevent planetary impact at the cost of an increased time-of-flight to target. Both the “ascending”

and “descending” phasing maneuvers are shown in Fig. 1.1.

8 David A. Vallado, Fundamentals of Astrodynamics and Applications, Third Edition (El Segundo, CA: Microcosm

Press, 2007), 324, 335, 464.

www.manaraa.com

8

Figure 1.1. Phasing Maneuver Diagrams: “Ascending” (left) and “Descending” (right)

 The archetypal out-of-plane exo-atmospheric maneuver, the simple plane change, only

creates a change in orbital inclination as ∆𝑉 is applied at a nodal crossing. By changing orbital

velocity from 𝑉𝑖 to 𝑉𝑓, an out-of-plane maneuver is executed which transfers the spacecraft from

Orbit (1) to Orbit (2) and thus creating the inclination change ∆𝑖 as shown in Fig. 1.2. A function

of orbital velocity, flight-path angle, and inclination change, an expression for the ∆𝑉 necessary

to perform a simple plane change is given by:9

 ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒 = 2𝑉𝑖 cos 𝛾 ∙ sin �1
2

|∆𝑖|� (4.7)

Known as the Hohmann transfer, the second type of maneuver represents one of the most basic

and efficient transfer options for altering the orbital semi-major axis. Depicted in Fig. 1.3, the

Hohmann transfer is coplanar by definition and consists of a spacecraft first performing a

9 Ibid., 345-346.

www.manaraa.com

9

tangential impulsive burn in circular parking orbit (A) to enter into an elliptical transfer orbit (1)

at periapsis. Once in the transfer orbit, the spacecraft does not thrust until apoapsis where another

∆𝑉 burn is performed to re-circularize at the desired mission orbit (B).10

Figure 1.2. Simple Plane Change Diagram

Figure 1.3. Hohmann Transfer Diagram

10 Robert A. Bettinger and Jonathan T. Black, “Mathematical Relation between the Hohmann Transfer and

Continuous-Low Thrust Maneuvers,” Acta Astronautica, 96 (2014): 42.

www.manaraa.com

10

For cases in which the parking and mission orbits are non-coplanar, the combined

Hohmann transfer in Fig. 1.4 is utilized to change both inclination and semi-major axis. In order

to minimize the total ∆𝑉, the inclination change is incorporated into the transfer burns at both

(A) and (B) based on the expressions ∆𝑖𝐴 = 𝑠∆𝑖 and ∆𝑖𝐵 = (1 − 𝑠)∆𝑖. One option of determining

the “best” amount of inclination change to perform at each burn consists of iterating the

transcendental equation given by Eq. (1.1):11

 sin(∆𝑖𝐴) = ∆𝑉𝐴𝑉𝐵𝑉1,𝐵 sin(∆𝑖𝐵)
∆𝑉𝐵𝑉𝐴𝑉1,𝐴

 (1.1)

where 𝑉𝐴 is the orbital velocity at parking orbit (A), 𝑉𝐵 is the orbital velocity at mission orbit (B),

𝑉1,𝐴 is the velocity at transfer orbit periapsis, and 𝑉1,𝐵 is the velocity at transfer orbit apoapsis. A

second option, which is used for descent-boost maneuver comparative analysis in Chapter VII,

involves an analytic approximation that estimates the “best” allocation of inclination change to

within about 0.5 deg is shown below, where 𝑅 = 𝑟𝑓 𝑟𝑖⁄ .12

 𝑠 ≈ 1
∆𝑖

tan−1 � sin(∆𝑖)
𝑅3 2⁄ +cos(∆𝑖)

� (1.2)

Figure 1.4. Combined Hohmann Transfer Diagram

11 Vallado, 354.
12 Ibid., 355.

www.manaraa.com

11

Finally, the bi-elliptic transfer in Fig. 1.5 is similar to the Hohmann transfer such that the

parking, mission, and transfer orbits are all coplanar. Although efficient in terms of ∆𝑉, the bi-

elliptic transfer features the longest time-of-flight as compared with the preceding maneuvers.

Rather than a direct elliptical transfer from the parking to the mission orbit, the bi-elliptic is

characterized two transfer ellipses. After performing a tangential impulsive burn at (A), the

spacecraft enters into an elliptical transfer orbit (1) until apoapsis at the intermediate orbit (B),

which for the example given in Fig. 1.5 is at an altitude greater than the mission orbit altitude. At

(B), a second impulsive burn is performed to enter into second elliptical transfer orbit (2) and

subsequent re-circularization at the mission orbit (C).

Figure 1.5. Bi-Elliptic Transfer Diagram

www.manaraa.com

12

Preview

With the research objectives defined and an outline of the analysis methodology provided

in Chapter I, Chapter II comprises a review of relevant literature pertaining to aeroassisted

maneuvers and the re-entry environment. An extension of Chapter II, a review of literature

related to both the Design of Experiments (DOE) method and alternative approaches to

maneuver optimization is given in Chapter V. In Chapter III, the first section explores the

simplifying assumptions pertaining to the atmospheric density and TAV models which underpin

the trajectory dynamics model. The second section provides a detailed presentation of the

equations of motion and the gravity model, as well as the verification of the trajectory dynamics,

deceleration, and heat flux models. Chapter IV presents a comparative study of ground target

over-flight performance for skip entry and exo-atmospheric phasing and simple plane change

maneuvers. In Chapter V, the DOE method of orthogonal arrays is employed to optimize both

TAV design and the trajectory of an atmospheric skip entry maneuver. Next, Chapter VI

examines the use of aeroassisted descent-boost maneuvers for LEO injection and reachability.

Chapter VII discusses potential air and space law challenges contemporarily associated with the

prospect of executing aeroassisted maneuvers, and, finally, Chapter VIII concludes with a

presentation of the significance of the present research as well as recommendations for future

research. Presented using the scholarly article format, Chapters IV-VII represent manuscripts

submitted to various aerospace engineering journal publications. In terms of ancillary material,

Appendix A outlines the algorithms for exo-atmospheric maneuver implementation, Appendix B

presents the direct formulation for geodesies on an ellipsoidal planetary model, Appendix C

provides a guide for extracting the six Keplerian orbital elements from a Two-Line Element

(TLE) set, and an algorithm for solving a Lambert transfer is given in Appendix D.

www.manaraa.com

13

II. Literature Review

Chapter Overview

The purpose of this chapter is to provide an overview of the relevant research pertaining

to aeroassisted, trans-atmospheric maneuvers and their utilization as an alternative to traditional

exo-atmospheric maneuvers. Besides analyzing the viability of leveraging aeroassisted

maneuvers as a means of altering the orbital elements of a given spacecraft in low-Earth orbit

(LEO), preceding studies have also focused on modeling spacecraft aerodynamics as well as the

flow and heating environment of the upper atmosphere.

Types of Aeroassisted Maneuvers

Fundamentally, three types of aeroassisted maneuvers can be identified, each

representing synergistic maneuvers since they utilize both atmospheric forces – in the form of

aerodynamic drag and lift – and propulsive forces. The first type, known as aerobang

maneuvers, consists of a trans-atmospheric flight trajectory augmented by continuous thrusting at

maximum throttle. Employed to not only vary the spacecraft’s angle-of-attack, maximum thrust

also limits the duration of atmospheric flight, thereby reducing total heating during re-entry. Due

to the higher velocity of the aerobang maneuver, however, the spacecraft potentially could

experience an increase in re-entry heat flux depending on the altitude of trans-atmospheric

flight.13 Similarly, the second type of maneuver, known as aerocruise, also utilizes propulsive

force during the trans-atmospheric trajectory, but at a throttle level sufficient to only counteract

aerodynamic drag. The third maneuver type, known as aeroglide, is analogous to a skip entry

maneuver. Relying primarily on aerodynamic forces, aeroglide maneuvers produce a gliding,

13 Richard E. Johnson, “Effects of Thrust Vector Control on the Performance of the Aerobang Orbital Plane Change

Maneuver” (MS Thesis, Department of Aeronautical and Astronautical Engineering, Naval Postgraduate School,
1993): 3-4.

www.manaraa.com

14

unpowered trajectory which only employs propulsive forces to de-orbit prior to and re-circularize

at the end of the maneuver.14 Despite experiencing greater total heating stemming from

prolonged flight through lower, denser regions of the atmosphere, aeroglide maneuvers are the

least expensive in terms of fuel consumption compared with the aerobang and aerocruise

alternatives. As measured by the change in orbit inclination per quantity of fuel expended,

aerocruise maneuvers have been shown to become increasingly efficient as the bank angle

increases during the trans-atmospheric trajectory.15

Primarily used for interplanetary trajectories, supplementary types of aeroassisted

maneuvers consist of aerobrake, aerocapture, and aerogravity assist. Described as purely

aerodynamic in nature, aerobrake maneuvers produce a reduction in eccentricity and semi-major

axis as a result of aerodynamic drag effects induced with successive perigee passages through the

upper atmosphere. Alternatively, aerocapture maneuvers exploit atmospheric drag to reduce

orbital energy thereby changing an orbit from hyperbolic to elliptic, while aerogravity assist

maneuvers modify the orbital elements of a hyperbolic trajectory by utilizing the combined

effects of aerodynamic, gravitational, and propulsive forces.16

Aeroassisted Maneuver Performance

Skip maneuvers simulated without heat flux path constraints for vehicles in LEO have

been demonstrated to have a similar propellant-efficiency with exo-atmospheric maneuvers for

changes in inclination less than 3 deg.17 For ∆𝑖 > 3 deg, the propellant expenditure of skip and

14 Ibid.
15 John C. Nicholson, “Numerical Optimization of Synergistic Maneuvers” (MS Thesis, Department of Aeronautical

and Astronautical Engineering, Naval Postgraduate School, 1994), 5.
16 Christopher L. Darby and Anil V. Rao, “Optimal Impulsive LEO to LEO Multiple-Pass Aeroassisted Orbital

Transfer for Small Spacecraft” (paper presented at the 20th AAS/AIAA Space Flight Mechanics Meeting, San
Diego, CA, 15-17 February 2010): 3.

17 Christopher L. Darby and Anil V. Rao, “Minimum-Fuel Low-Earth Orbit Aeroassisted Orbital Transfer of Small
Spacecraft,” Journal of Spacecraft and Rockets 48, no. 4 (2011): 621-622.

www.manaraa.com

15

simple plane change maneuvers begin to diverge, with simple plane change maneuvers requiring

87% more ∆𝑉 to execute a plane change of ∆𝑖 = 20 deg. As the inclination change increases

to 40 deg, the difference in propellant expenditure also increases with simple plane changes

requiring 175% more ∆𝑉 than skip entry.18 Although the minimum maneuver ∆𝑉 increases as

the number of atmospheric passes increase, skip entry remains more efficient than exo-

atmospheric maneuvers for ∆𝑖 ≥ 15 deg.19 Even with the imposition of a heat flux path

constraint, skip entry maneuvers remain more propellant efficient than exo-atmospheric

maneuvers for ∆𝑖 ≥ 15 deg despite increases in ∆𝑉 related to decreases in maximum heat flux.20

In their paper “Numerical Optimization Study of Multiple-Pass Aeroassisted Orbital

Transfer,” Rao, Tang, and Hallman studied the problem of a minimum-impulse multiple-pass

aeroassisted orbital transfer from geostationary orbit (GEO) to LEO with a large inclination

change, subject to constraints on heat flux, angle-of-attack, and transfer time.21 For their notional

TAV, the total aeroassisted inclination change approaches a limit of approximately 36.2 deg as

the number of atmospheric passes increases. In all test cases, the aeroassisted maneuver offered

“substantial savings” in ∆𝑉 when compared with the non-coplanar combined Hohmann and bi-

elliptic transfers.22 Similarly, Miele, Lee, and Mease in their paper “Optimal Trajectories for

LEO-to-LEO Aeroassisted Orbital Transfer” developed a series of optimal control orbit transfer

problems from which to compare the relative performance of aeroassisted maneuvers with that of

Hohmann-style, exo-atmospheric maneuvers. Through their analysis, Miele, Lee, and Mease

identified that aeroassisted maneuvers required less energy than the bi-elliptic transfer to

18 Ibid.
19 Darby and Rao, “Optimal Impulsive,” 45.
20 Ibid., 47.
21 Anil V. Rao, Sean Tang, and Wayne P. Hallman, “Numerical Optimization Study of Multiple-Pass Aeroassisted

Orbital Transfer,” Optimal Control Applications and Methods 23 (2002): 215.
22 Ibid., 228-230.

www.manaraa.com

16

minimize the energy required for orbital transfer, in addition to minimizing the “time integral of

the square of the path inclination,” or flight-path angle. For the problem of minimizing the peak

heating rate, however, the aeroassisted maneuvers required more energy than the bi-elliptic

transfer case.23

In addition to maneuver comparative analyses, a segment of current literature focuses on

the formulation of skip entry guidance algorithms. Specifically tailored for capsule-style entry

vehicles with a low lift-to-drag ratio, most of these algorithms provide control guidance during

the re-entry phase of a lunar-return trajectory. In their paper “Skip Entry Trajectory Planning and

Guidance,” Brunner and Lu developed an on-board, closed-loop numerical predictor-corrector

algorithm for re-entry trajectories featuring an initial skip entry flight segment.24 Employing full

three-degree-of-freedom dynamics, the algorithm not only computes the required bank angle to

achieve the desired final range condition, but also accounts for bank-angle reversals during re-

entry, and features lift and drag acceleration filters.25 Intended for use with the Orion capsule,

Putnam, Neave, and Barton in “PredGuid Entry Guidance for Orion Return from Low Earth

Orbit” formulated a numerical predictor-corrector algorithm that operates a non-spherical

planetary model with the inclusion of 𝐽2-perturbations, and can be used for both lunar and LEO

re-entry.26 As an alternative algorithm, Kluever in “Entry Guidance Using Analytical

Atmospheric Skip Trajectories” developed a guidance method that uses analytical trajectory

23 A. Miele, W. Y. Lee, and K. D. Mease, “Optimal Trajectories for LEO-to-LEO Aeroassisted Orbital Transfer,”

Acta Astronautica 18 (1988): 110, 115.
24 Christopher W. Brunner and Ping Lu, “Skip Entry Trajectory Planning and Guidance,” Journal of Guidance,

Control, and Dynamics 31, no. 5 (2008): 1210.
25 Ibid., 1218-1219.
26 Zachary R. Putnam, Matthew D. Neave, and Gregg H. Barton, “PredGuid Entry Guidance for Orion Return from

Low Earth Orbit” (Paper presented at the 2010 IEEE Aerospace Conference, Big Sky, Montana, 6-13 March
2010): 2, 6.

www.manaraa.com

17

solutions obtained from matched asymptotic expansions.27 Further information regarding the

mathematical foundation of Kluever’s algorithm is found in “Solution of the Exact Equations for

Three-Dimensional Atmospheric Entry Using Directly Matched Asymptotic Expansions” by

Busemann, Vinh, and Culp,28 as well as “Three-Dimensional Atmospheric Entry Problem Using

Method of Matched Asymptotic Expansions” by Naidu.29

Examining the relative performance of aerobang and aerocruise maneuvers in their paper

“Optimality of the Heating-Rate-Constrained Aerocruise Maneuver,” Ross and Nicholson

concluded that the aerobang maneuver is superior to both aerocruise and the exo-atmospheric

simple plane change. For the same propellant expenditure, the aerobang maneuver produced an

inclination change of approximately 17 deg, whereas the aerocruise and simple plane change

alternatives were lower at ∆𝑖 ≈ 15 deg and ∆𝑖 ≈ 11 deg, respectively.30 In his paper

“Combining Propulsive and Aerodynamic Maneuvers to Achieve Optimal Orbital Transfer,”

Hanson simulated the synergetic and purely aerodynamic forms of aeroassisted maneuvers and

compared the respective orbital transfer performance results with exo-atmospheric maneuvers.

Overall, Hanson identified that synergetic aeroassisted maneuvers required the lowest ∆𝑉

expenditure by leveraging both aerodynamic and propulsive forces.31 Finally, Ikawa and Rudiger

in “Synergetic Maneuvering of Winged Spacecraft for Orbital Plane Change” demonstrated that

27 C. A. Kluever, “Entry Guidance Using Analytical Atmospheric Skip Trajectories,” Journal of Guidance, Control,

and Dynamics 31, no. 5 (2008): 1531.
28 Adolf Busemann, Nguyen X. Vinh, and Robert D. Culp, “Solution of the Exact Equations for Three-Dimensional

Atmospheric Entry Using Directly Matched Asymptotic Expansions,” NASA CR-2643 (Washington, D.C.:
National Aeronautics and Space Administration, 1976): 1-33.

29 D. S. Naidu, “Three-Dimensional Atmospheric Entry Problem Using Method of Matched Asymptotic
Expansions,” IEEE Transactions on Aerospace and Electronic Systems 25, no. 5 (1989): 660-667.

30 I. Michael Ross and John C. Nicholson, “Optimality of the Heating-Rate-Constrained Aerocruise Maneuver,”
Journal of Spacecraft and Rockets 35, no. 3 (1998): 361-364.

31 John M. Hanson, “Combining Propulsive and Aerodynamic Maneuvers to Achieve Optimal Orbital Transfer,”
Journal of Guidance, Control, and Dynamics 12, no. 5 (1989): 732-738.

www.manaraa.com

18

spacecraft performing synergetic aeroassisted maneuvers during high-lift, high-drag flight

produce a greater change in inclination than those operating at the maximum lift-to-drag ratio.32

Performing purely exo-atmospheric maneuvers, Co analyzed the capability of achieving

global reach in three separate scenarios: (1) Walker constellation; (2) a single non-maneuvering

satellite; and (3) two maneuvering satellites (one with chemical propulsion and the other with

electric).33 In the third scenario, a notional satellite with electric propulsion starting from a

500 km-altitude retrograde orbit performed a series of continuous low-thrusting phasing

maneuvers in order to overfly a series of 10 sample ground targets during a 10.5-day campaign.

Illustrating the capability of global reach in minimum time, several sample ground targets were

overflown, to include Tokyo after an elapsed time of approximately 60 hr with a ∆𝑉 expenditure

of 0.095 km/s, and Moscow with a time-of-arrival of 140 hr and ∆𝑉 = 0.18 km/s.34 Overall, a

single electric propulsion satellite was demonstrated to perform a “worst case” of approximately

40 maximum-∆𝑉 maneuvers for a total ∆𝑉 of 6.5 km/s. In terms of global reach, it was shown

that even the “worst case” targets located furthest from the reference ground track trajectory

could be reached and overflown in 2.5 days. 35

Extending Co’s research, Dalton in his thesis entitled “Ground Target Over-Flight and

Orbital Maneuvering via Aeroassisted Maneuvers” demonstrated the global reach of aeroassisted

skip entry maneuvers by identifying terrestrial reachability envelopes for various initial

inclination, RAAN, and altitude conditions.36 Assuming both a spherical planetary and

32 H. Ikawa and T. F. Rudiger, “Synergetic Maneuvering of Winged Spacecraft for Orbital Plane Change” (Paper

presented at the AIAA 20th Aerospace Sciences Meeting, Orlando, FL, 11-14 January 1982): 1-10.
33 Thomas C. Co, “Operationally Responsive Spacecraft Using Electric Propulsion” (Ph.D Dissertation, School of

Engineering and Management, Air Force Institute of Technology (AU), 2012): 218.
34 Ibid., 187-188, 190.
35 Ibid., 226.
36 Devin K. Dalton, “Ground Target Over-Flight and Orbital Maneuvering via Aeroassisted Maneuvers” (MS

Thesis, School of Engineering and Management, Air Force Institute of Technology (AU), 2014): 77-81.

www.manaraa.com

19

gravitational model, Dalton also developed closed-form analytical equations for the computation

of ∆𝑉 and time-of-arrival for skip entry, phasing, and simple plane change maneuvers.37

The Atmospheric Flow Environment and TAV Aerodynamics

Underpinning all trajectory analyses and simulations of aeroassisted maneuvers is the

method by which the atmosphere is modeled. Due to the short time scales involved with

atmospheric entry scenarios, various atmospheric dynamics can be deemed negligible, primarily

geomagnetic-induced variations in density and temperature arising due to the solar cycle and

related space weather phenomena. As a result, a single atmospheric model can be devised that

depicts density as not only decaying exponentially as altitude increases, but also independent of

any effects due to time of day, season, or geographic location. Such a model, defined in

Vallado’s Fundamentals of Astrodynamics and Applications, was utilized by Gargasz in his

thesis “Optimal Spacecraft Attitude Control Using Aerodynamic Torques,” and Hajovsky in his

thesis “Satellite Formation Control Using Atmospheric Drag.”38

In addition to depicting the macroscopic atmospheric environment as a function of

altitude, aeroassisted maneuver simulations have also sought to garner increased model fidelity

by capturing the flow characteristics of the upper atmosphere and their relation to TAV

aerodynamics. In his study of the viability of achieving three-axis attitude control using only

aerodynamic torques, Gargasz divided interactions between the various atmospheric species and

a TAV into two categories: specular and diffuse collisions. Storch, in Aerodynamic Disturbances

on Spacecraft in Free-Molecular Flow, defines specular collisions as deterministic momentum

37 Ibid., 42, 60, 65, 67, 72.
38 Vallado, 562; Michael L. Gargasz, “Optimal Spacecraft Attitude Control Using Aerodynamic Torques” (MS

Thesis, School of Engineering and Management, Air Force Institute of Technology (AU), 2007); Blake B.
Hajovsky, “Satellite Formation Control Using Atmospheric Drag” (MS Thesis, School of Engineering and
Management, Air Force Institute of Technology (AU), 2007).

www.manaraa.com

20

transfer processes in which the angle of incidence equals the angle of reflection, with the incident

velocity, reflected velocity, and surface normal all representing coplanar quantities.39 For diffuse

collisions, the incident molecules are “trapped into the interstices” of the surface and lose all

knowledge of the incoming direction. Subsequently, the molecules are re-emitted from the

surface with a random distribution of speed and direction governed by the cosine distribution.40

Aside from collisions between atmospheric species and the TAV surface, King-Hele in

his book Satellite Orbits in an Atmosphere: Theory and Applications identifies a specific

example in which interactions with the atmospheric chemical environment directly effects TAV

aerodynamics. King-Hele states that while traversing an altitude of 200 − 300 km within the

atomic oxygen-rich thermosphere, a TAV acquires “at least a mono-layer” of atomic oxygen on

its surface either by mechanisms of chemisorption or physisorption. With this layer present on

the TAV surface, most air molecules will strike the atomic oxygen rather than the atoms of the

surface material.41 As a TAV increases altitude above the layer of atomic oxygen and enters the

exosphere, atmospheric species predominance shifts from oxygen to helium, and then to

hydrogen. King-Hele explains that the decreasing molecular weight of the atmospheric species

colliding with the mono-layer of atomic oxygen produces an increase in the TAV drag

coefficient from 2.2 to approximately 2.4.42

The flow environment for aeroassisted maneuvers can also be expressed in terms of flow

regime rather than momentum exchange. In his thesis “Investigation of Atmospheric Re-Entry

for the Space Maneuver Vehicle,” McNabb describes that for a given re-entry trajectory, a TAV

39 J. A. Storch, Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow (El Segundo, CA: The Aerospace

Corporation, 2002), 3.
40 Ibid.
41 Desmond King-Hele, Satellite Orbits in an Atmosphere: Theory and Applications (Glasgow, Scotland: Blackie

and Son Ltd., 1987), 23.
42 Ibid., 24.

www.manaraa.com

21

will operate in the rarefied (free molecular), transition (slip-flow), and continuum flow regimes

of the upper atmosphere. Defined by the Knudsen number (𝐾𝑛), or the ratio of the particle mean

free path to characteristic length of the TAV aerodynamic chord, McNabb identified rarefied

flow as 𝐾𝑛 > 10, transitional flow as 0.01 ≤ 𝐾𝑛 ≤ 10, and continuum flow as 𝐾𝑛 < 0.01.43

As the depth of atmospheric penetration increases during the execution of an aeroassisted

maneuver, the atmospheric density increases and, as a result, the flow regime transitions from

rarefied to continuum flow as altitude decreases.

With the flow characteristics established for flight in the upper atmosphere, the

aerodynamics of a TAV can be determined by either assuming or directly calculating values for

the drag and lift coefficients. Consulting a Douglas Aircraft Company technical report entitled

“Surface-Particle-Interaction Measurements using Paddlewheel Satellites,” Guettler in his thesis

“Satellite Attitude Control using Atmospheric Drag” assumes a constant value drag coefficient of

2.2 for his analysis regarding the employment of aerodynamic torques produced by deployable

drag panels as a primary source of satellite attitude control.44 A drag coefficient of 2.2 is also

given by Vallado, who states that such a value is derived by modeling a satellite operating within

the upper atmosphere as a flat plate.45 Although greater in magnitude than the value utilized by

Guettler, Hall assumed in his thesis “Orbit Maneuver for Responsive Coverage Using Electric

Propulsion” a drag coefficient of 3.0, which was posited as one of many “commonly achievable

design parameters based upon existing satellite designs.”46

43 Dennis J. McNabb, “Investigation of Atmospheric Re-Entry for the Space Maneuver Vehicle” (MS Thesis, School

of Engineering and Management, Air Force Institute of Technology (AU), 2004): 14-15.
44 David B. Guettler, “Satellite Attitude Control Using Atmospheric Drag” (MS Thesis, School of Engineering and

Management, Air Force Institute of Technology (AU), 2007): 24.
45 Vallado, 549.
46 Timothy S. Hall, “Orbit Maneuver for Responsive Coverage Using Electric Propulsion” (MS Thesis, School of

Engineering and Management, Air Force Institute of Technology (AU), 2010): 18.

www.manaraa.com

22

As for direct calculation, Nicholson computes values for the aerodynamic coefficients as

a function of angle-of-attack based on empirically-derived equations developed from linearly-

interpolated wind tunnel data from tests performed on the Entry Research Vehicle (ERV) within

the supersonic velocity range up to Mach 10. Debuted in the conference paper “Performance

Evaluation of an Entry Research Vehicle” by Powell, Naftel, and Cunningham, the ERV was a

lifting entry test platform designed to investigate maneuvers involving “long downrange, wide

cross-range, and synergistic plane changes.”47 Similarly, Parish in his thesis “Optimality of

Aeroassisted Orbital Plane Changes” also computes values for the aerodynamic coefficients from

interpolated transonic and supersonic wind tunnel data, but for the Maneuverable Re-Entry

Research Vehicle (MRRV) rather than the ERV. Over the angle-of-attack range of 0 deg

to 40 deg, the drag coefficient varies from 0.1 to approximately 1.2 for the ERV, while it varies

from 0.03 to approximately 0.6 for the MRRV.48 Overall, the preceding values for the vehicle

drag coefficient as depicted by Nicholson and Parish are consistent with the research of Rao,

Scherich, Cox, and Mosher who, in their conference paper “A Concept for Operationally

Responsive Space Mission Planning Using Aeroassisted Orbital Transfer,” utilized a drag

coefficient of approximately 0.49 in their study of an aerodynamically maneuverable TAV.49

The Atmospheric Flow Environment and Heat Flux

The maturation of ballistic missile technology during the mid-1950s precipitated the need

to not only characterize and model re-entry heat flux, but also devise methods by which to

mitigate heating effects and forestall mission failure during re-entry. With heat flux analysis on

47 Nicholson, 34-35, 144.
48 Ibid., 36; Michael S. Parish II, “Optimality of Aeroassisted Orbital Plane Changes” (MS Thesis, Department of

Aeronautical and Astronautical Engineering, Naval Postgraduate School, 1995): 11-12).
49 Anil V. Rao, Arthur E. Scherich, Skylar Cox, and Todd E. Mosher, “A Concept for Operationally Responsive

Space Mission Planning Using Aeroassisted Orbital Transfer” (paper presented at the 6th Responsive Space
Conference, Los Angeles, CA, 28 April – 1 May 2008): 3-5.

www.manaraa.com

23

slender-body ballistic warheads giving way to blunt-body capsules and proposed lifting entry

vehicles for manned spaceflight, several experimental techniques were developed to estimate

heat flux within the hypersonic flow environment of re-entry. Derived from measuring of heat

transfer rates in shock tubes under simulated hypersonic conditions, Detra, Kemp, and Riddell in

“Addendum to ‘Heat Transfer to Satellite Vehicles Re-Entering the Atmosphere’” presented a

revised empirical equation for stagnation heat flux on a blunt body:50

 �̇�𝑠 =
17,600
�𝑅𝑁

�
𝜌
𝜌𝑆𝐿

�
0.5
�
𝑉
𝑉𝑆𝐿

�
3.15

�
ℎ𝑠 − ℎ𝑤

ℎ𝑠 − (ℎ𝑤)300 K
� BTU (ft2 ∙ s)⁄ (2.1)

where ℎ𝑠 is the stagnation point enthalpy, ℎ𝑤 is the wall enthalpy, (ℎ𝑤)300 K is the wall enthalpy

evaluated at 300 K, 𝑅𝑁 is the vehicle nose radius, and 𝑉𝑆𝐿 = 26,000 ft/s, a pre-defined sea-level

orbital velocity. Identified as being “nearer the mean of the data” than a previous model iteration

derived by the same authors, the revised equation “agrees with calculated heat transfer results”

for altitude and velocity ranges of 0 ≤ ℎ ≤ 250,000 ft (0 ≤ ℎ ≤ 76.2 km) and 7,000 ≤ 𝑉 ≤

25,000 ft/s (2.1 ≤ 𝑉 ≤ 7.6 km/s), respectively, with an accuracy of ±10%.51

 Employing a similar empirical form as the Detra et al. model, Havey in his 1982 paper

“Entry Vehicle Performance in Low-Heat-Load-Trajectories” utilized an equation for stagnation

heat flux which accounted for the reduction in heating rate due to a non-zero wall temperature on

the vehicle surface:52

 �̇�𝑠 = 17,700 �
𝜌
𝑅𝑁
�
0.5
�
𝑉

104
�
3.07

�1 −
ℎ𝑤
ℎ𝑖
� BTU (ft2 ∙ s)⁄ (2.2)

where

50 R. W. Detra, N.H. Kemp, and F. R. Riddell, “Addendum to ‘Heat Transfer to Satellite Vehicles Re-Entering the

Atmosphere,’” Jet Propulsion 27 (1957): 1256.
51 Ibid., 1257.
52 Keith A. Havey Jr., “Entry Vehicle Performance in Low-Heat-Load Trajectories,” Journal of Spacecraft and

Rockets, 19 (1982): 507.

www.manaraa.com

24

 ℎ𝑤 = 0.24𝑇𝑤 ℎ𝑖 = 0.24𝑇∞ + 𝑉2

50,063

The wall temperature, 𝑇𝑤, is determined via the Stefan-Boltzmann Law:

 �̇� = 𝜀𝐾𝑆𝐵(𝑇𝑤4 − 𝑇∞4) (2.3)

where 𝐾𝑆𝐵 = 0.476 𝑥 10−12 BTU (s ∙ ft2 ∙ R4)⁄ and 𝜀 is the emissivity.

 For their research in the early 2000s, Rao and several co-authors used a condensed form

of the Detra et al. model with varying coefficients and units of measure. Removing the enthalpy-

differencing term, Rao, Tang, and Hallman utilized the following in their analysis comprising the

2002 paper “Numerical Optimization Study of Multiple-Pass Aeroassisted Orbital Transfer”:53

 �̇�𝑠 = 17,600 �
𝜌
𝜌𝑆𝐿

�
0.5
�
𝑉
𝑉𝑆𝐿

�
3.15

BTU (ft2 ∙ s)⁄ = 199,830 �
𝜌
𝜌𝑆𝐿

�
0.5
�
𝑉
𝑉𝑆𝐿

�
3.15

kW m2⁄ (2.4)

where 𝑉𝑆𝐿 a function of spherical planetary radius given by 𝑉𝑆𝐿 = �𝜇 𝑟⊕⁄ , rather than a pre-

defined value for the sea-level orbital velocity as with the Detra et al. model. Maintaining the

same equation structure in the 2008 paper “A Concept for Operationally Responsive Space

Mission Planning Using Aeroassisted Orbital Transfer,” Rao et al. modified the stagnation heat

flux coefficient to be 11.357 kW m2⁄ ≈ 1 BTU (ft2 ∙ s)⁄ .54 Similarly, Darby and Rao in the

2010 paper “Optimal Impulsive LEO to LEO Multiple-Pass Aeroassisted Orbital Transfer for

Small Spacecraft” again altered the equation coefficient. Not as drastic as the 2008 paper, the

final modification resulted in a 0.02% increase from 199,830 kW m2⁄ to 199,870 kW m2⁄ .55

53 Rao et al., “Numerical Optimization Study,” 219.
54 Rao et al., “A Concept for Operationally Responsive Space,” 4-5.
55 Darby and Rao, “Optimal Impulsive,” 41-42.

www.manaraa.com

25

 Consulting a 1958 General Electric internal study conducted by Brunner and Gallagher

entitled “Analysis of the Aerodynamic Heating of a Blunt Hypersonic Glide Vehicle,” Galman

presents stagnation heat flux models with zero wall temperature for three-dimensional laminar

flow around a sphere,

 �̇�𝑠 =
3.18
�𝑅𝑁

(𝜌0.5𝑉3.2 ∙ 10−9) (2.5)

as well as two-dimensional laminar flow normal to an infinitely-long cylinder:56

 �̇�𝑠 =
3.18

�2𝑅𝑁
(𝜌0.5𝑉3.2 ∙ 10−9) (2.6)

In his 1961 paper “Some Fundamental Considerations for Lifting Vehicles in Return from

Satellite Orbit,” Galman indicates that “good design practice” for lifting, winged-entry vehicles

is to use a large planform nose radius so as to “approach the more favorable” two-dimensional

flow model.57

 Apart from an increase in convective and, specifically, stagnation heat flux, a vehicle re-

entering a planetary atmosphere also encounters a likewise increase in radiative heat flux. For

Allen and Eggers in their 1958 paper “A Study of the Motion and Aerodynamic Heating of

Ballistic Missiles Entering the Earth’s Atmosphere at High Supersonic Speeds,” however, the

convective mode of heat flux was deemed to be the dominant form of energy transfer and all

radiative heat flux assumed to be negligible.58 Qualifying Allen and Eggers’ assertion, Moore in

his contribution to Loh’s 1968 work Entry and Planetary Entry Physics and Technology:

56 Barry A. Galman, “Some Fundamental Considerations for Lifting Vehicles in Return from Satellite Orbit,”

Planetary and Space Science, 4 (1961): 400.
57 Ibid.
58 H. J. Allen and A. J. Eggers, Jr., “A Study of the Motion and Aerodynamic Heating of Ballistic Missiles Entering

the Earth’s Atmosphere at High Supersonic Speeds,” NACA TR 1381 (Moffett Field, CA: AMES Aeronautical
Laboratory, 1958), 1129.

www.manaraa.com

26

Dynamics, Physics, Radiation, Heat Transfer, and Ablation states that radiative heat flux is a

“particularly sensitive function of flight velocity” and it “‘takes off’ at speeds just beyond

orbital.”59 As examples, Moore compares the stagnation and radiative heat flux of an

intercontinental ballistic missile (ICBM) entering the Earth’s atmosphere with that of a probe

entering the Martian atmosphere. With the former example, an ICBM velocity of approximately

20,000 ft s⁄ (6.1 km/s) produces a stagnation heat flux 2.5-3.0 times greater than the radiative

heat flux; for the latter example, the probe entry velocity of 40,000 ft s⁄ (12.2 km/s) yields a

radiative heat flux 10 times greater than the stagnation heat flux.60

Providing a more precise threshold for radiative heat flux dominance, Olfe in the 1968

book Radiation and Re-Entry states that as the re-entry velocity increases towards that of a

parabolic orbit (~11.19 km/s), the radiative heat flux “rapidly overtakes the aerodynamic heat

transfer” and can “appreciably affect the flow field.”61 Olfe also conveys that as the re-entry

velocity increase above the parabolic value, the radiative energy loss from the shock layer

“approaches the magnitude of the flow energy.”62 Although published earlier in 1961, Eggers’

and Wong’s paper “Motion and Heating of Lifting Vehicles during Atmosphere Entry” affirms

Olfe’s threshold and posits that the maximum radiative heat flux corresponds to a velocity of

approximately 36,000 ft s⁄ (11.0 km/s).63

59 F. K. Moore, “Entry Radiative Transfer,” in Re-Entry and Planetary Entry Physics and Technology: Dynamics,

Physics, Radiation, Heat Transfer, and Ablation, ed. W. H. T. Loh (New York, NY: Springer-Verlag New York
Inc., 1968), 343.

60 Ibid.
61 Daniel B. Olfe, “Radiation Gasdynamics,” in Radiation and Re-Entry, ed. S. S. Penner and Daniel B. Olfe (New

York, NY: Academic Press Inc., 1968), 271.
62 Ibid., 272.
63 A. J. Eggers Jr. and Thomas J. Wong, “Motion and Heating of Lifting Vehicles during Atmosphere Entry,”

American Rocket Society (ARS) Journal, 31 (1961): 1370.

www.manaraa.com

27

Summary

Upon review of the relevant research pertaining to aeroassisted maneuvers, it can be

asserted that despite complexities due to high temperature and varying density gas dynamics, the

upper atmosphere provides an advantageous environment within which maneuvers can be

executed to alter a TAV’s orbital states, such as inclination and semi-major axis. Whether

performed by small vehicles with an initial mass less than 1000 kg, or larger vehicles with an

initial mass greater than 5000 kg, preceding research indicates that aeroassisted maneuvers

generally require less ∆𝑉 than a purely propulsive maneuver conducted in the vacuum

environment to produce desired changes in orbital states and geometry. While the prospect of

responsive spacecraft and global reach has been demonstrated by a satellite with electric

propulsion performing exo-atmospheric maneuvers, the current literature is limited regarding the

reachability performance potential of aeroassisted maneuvers outside the realm of single- and

multi-objective comparative optimization problems. As a result, the present research serves to

augment the current literature though an application-based analysis of aeroassisted maneuver

performance for the intent of achieving not only terrestrial, but also LEO reachability for a TAV

initiating from the LEO altitude regime.

www.manaraa.com

28

III. Methodology

Chapter Overview

The purpose of this chapter is to provide an overview of the assumptions, limitations, and

algorithms underpinning the trajectory dynamics model, a simulation tool capable of modeling

both exo- and trans-atmospheric maneuvers. In addition to the verification of the trajectory

model by duplicating the Apollo 10 re-entry trajectory, models associated with simulating the

atmospheric density, gravitational potential, and re-entry heat flux is be discussed.

Assumptions and Limitations

Planetary Ellipticity

 Unlike the planet Venus which features a nearly spherical shape, Earth is a rotationally

symmetric ellipsoid that revolves about its minor axis. Also known as an oblate spheroid, the

Earth’s shape is characterized by a flattening at the poles, thus creating a polar (minor) axis

shorter in diameter than the equatorial (major) axis.64 Depicted in the following figure, the

ellipticity of the Earth presents two different means of expressing radial position: (1) Geocentric

latitude, 𝜙, which is measured with respect to the planetary center-of-mass; and (2) geodetic

latitude, 𝜙𝑔𝑑, which is offset from the planetary center-of-mass and measured with respect to the

TAV such that the position vector is perpendicular to a plane tangent to the planetary surface.

64 Vallado, 142.

www.manaraa.com

29

Figure 3.1. Comparison of Geocentric and Geodetic Latitude65

Since the equations of motion outlined later in this chapter are formulated in terms of the

geocentric representation, any simulation initial conditions featuring geodetic altitude and

latitude must be converted into geocentric values by employing analytical expressions obtained

from Long’s paper “General-Altitude Transformations between Geocentric and Geodetic

Coordinates.” Formulated as truncated series expansions in powers of the Earth’s flattening, 𝑓,

the following second-order equations are functions of geodetic altitude and latitude:66

 𝑟 = �ℎ𝑔𝑑 + 1� + �−
1
2
�1 − cos 2𝜙𝑔𝑑�� 𝑓 + ��

1
4�ℎ𝑔𝑑 + 1�

+
1

16
� �1 − cos 4𝜙𝑔𝑑�� 𝑓2 (3.1)

 𝜙 = 𝜙𝑔𝑑 + �
− sin 2𝜙𝑔𝑑
ℎ𝑔𝑑 + 1

�𝑓

+ �
− sin 2𝜙𝑔𝑑

2�ℎ𝑔𝑑 + 1�
2 + �

1

4�ℎ𝑔𝑑 + 1�
2 −

1
4�ℎ𝑔𝑑 + 1�

� sin 4𝜙𝑔𝑑� 𝑓2
(3.2)

65 Hicks, 382.
66 S.A.T. Long, “General-Altitude Transformations between Geocentric and Geodetic Coordinates,” Celestial

Mechanics 12 (1975): 228.

www.manaraa.com

30

When Eqs. (3.1) and (3.2) are evaluated with a geodetic altitude of ℎ𝑔𝑑 = 0.0 km for sea-

level and a geodetic latitude range of −90 deg ≤ 𝜙𝑔𝑑 ≤ 90 deg, the corresponding radial

distance from the planetary center of mass to sea-level for a given latitudinal position on the

oblate spheroid can be determined. Illustrated in Fig. 3.2, the oblate spheroid model creates a

radial difference of 21.385 km at the poles and 0.0 km at the equator when compared with an

equivalent spherical model. Due to this disparity in radial distance, the Earth planetary model

retains the characteristics of an oblate spheroid with an ellipticity of 𝜖 = 0.08181919.67

Figure 3.2. Radial Distance Deviation between Spherical and Oblate Spheroid Models

Atmospheric Density and Dynamics

 For most spacecraft, the nominal operating altitude is located above the upper limit of the

sensible atmosphere of approximately 120 km. Based on this demarcation, orbital perturbations

arising from atmospheric drag are only a concern for spacecraft in the lower reaches of LEO

67 Hicks, 382.

www.manaraa.com

31

below an altitude of 400 km. Even for these spacecraft, however, interaction with the rarefied

flow environment of the exosphere is contingent on the solar cycle and the expansion of the

atmosphere due to increased solar and resultant geomagnetic activity. Conversely, spacecraft

categorized as TAVs possess the ability to perform aeroassisted maneuvers and exploit

atmospheric drag to alter orbital elements such as inclination or right ascension of the ascending

node.

With aeroassisted, trans-atmospheric trajectories producing a perigee of less than 120 km,

a model of atmospheric density is required to simulate the spacecraft’s aerodynamic

characteristics, specifically the drag and lift force generated at a particular altitude. The simplest

model assumes that atmospheric density decreases exponentially with increasing altitude:68

 𝜌(𝑟) = 𝜌𝑆𝐿𝑒−𝛽�𝑟−𝑟⊕� (3.3)

where the scale height, 𝛽, is constant throughout the atmosphere. Formulated in terms of a

spherical planetary model, Eq. (3.3) determines the atmospheric density at a specific altitude

defined by a non-varying radius 𝑟⊕ from the planetary center of mass to the surface. For a

spherical planet, the altitude ℎ = 𝑟 − 𝑟⊕ is both geocentric and geodetic in nature, and is

measured along an imaginary vertical line perpendicular to the planetary surface and passing

through the TAV center-of-mass.69 When the planetary model is changed from spherical to

oblate spheroid, Eq. (3.3) then requires a geodetic altitude at which to calculate the atmospheric

density. In order to reflect this subtlety, the following represents the modified exponential

density model for an oblate spheroid model:

68 Ibid., 68.
69 Vladimir A. Chobotov, Orbital Mechanics, Third Edition (Reston, VA: American Institute of Aeronautics and

Astronautics, Inc., 2002), 72.

www.manaraa.com

32

 𝜌�ℎ𝑔𝑑� = 𝜌𝑆𝐿𝑒−𝛽�ℎ𝑔𝑑� (3.4)

Since geocentric radius represents a specified state within the equations of motion for

atmospheric re-entry rather than geodetic altitude, a conversion must be performed to derive the

geodetic altitude value in order to calculate the atmospheric density for a given geocentric radius.

Rather than calculating the geodetic altitude and associated geodetic latitude

simultaneously via an iterative algorithm as described in Hicks’ text Introduction to

Astrodynamic Re-Entry, analytical expressions can be implemented a posteriori from Long’s

aforementioned paper. Also formulated as truncated series expansions in powers of the Earth’s

flattening, 𝑓, the following second-order equations are functions of geocentric coordinates in

units of the Earth’s equatorial radius:70

 ℎ𝑔𝑑 = (𝑟 − 1) + �
1
2

(1 − cos 2𝜙)� 𝑓 + ��
1

4𝑟
−

1
16
� (1 − cos 4𝜙)� 𝑓2 (3.5)

 𝜙𝑔𝑑 = 𝜙 + �
sin 2𝜙
𝑟

� 𝑓 + ��
1
𝑟2
−

1
4𝑟
� sin 4𝜙� 𝑓2 (3.6)

 As an alternative to the exponential density model, Vinh, Busemann, and Culp in their

book Hypersonic and Planetary Entry Flight Mechanics provide an equation which accounts for

variation in both scale height and molecular scale temperature throughout the atmosphere.

Expressed in terms of geodetic altitude, the dual variation model is:71

 𝜌�ℎ𝑔𝑑� = 𝜌𝑖 ��1 + 𝛿𝑇𝑀 �
ℎ𝑔𝑑−ℎ𝑖
𝑟⊕

��
−1

� ∙ ��1 + 𝛿𝐻 �
ℎ𝑔𝑑−ℎ𝑖
𝑟⊕

��
−1

�

1
𝛼

 (3.7)

70 Long, 225-226, 228.
71 Nguyen X. Vinh, Adolf Busemann, and Robert D. Culp, Hypersonic and Planetary Entry Flight Mechanics (Ann

Arbor, MI: The University of Michigan Press, 1980), 9.

www.manaraa.com

33

where the subscript 𝑖 represents an index for the division of the atmosphere into seven sections

between 54 ≤ ℎ𝑔𝑑 ≤ 300 km, and 𝛿𝐻, 𝛿𝑇𝑀 are dimensionless parameters related to scale height

and molecular scale temperature, respectively, for the seven altitude-demarcated sections of the

atmosphere. In their discussion, Vinh et al. identify that the dual variation model can be

simplified by noting that 𝛿𝐻, 𝛿𝑇𝑀 are approximately equal throughout the seven sections and

thus reduce Eq. (3.7) into a single variation model, which only accounts for variation in scale

height:72

 𝜌�ℎ𝑔𝑑� = 𝜌𝑖 ��1 + 𝛿𝐻 �
ℎ𝑔𝑑−ℎ𝑖
𝑟⊕

��
−1

�

1+𝛼
𝛼

 (3.8)

 So as to evaluate the relative capability of the exponential, single, and dual variation

models to accurately estimate atmospheric density, the solutions of each were compared with

density results from the MSIS-E-90 density model within the altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km

for the sample dates 01 January 2000-2012. With the first iteration being developed in the late

1970s at the NASA/Goddard Space Flight Center, the mass spectrometer-incoherent scatter

(MSIS) series of atmospheric density models are empirical in nature and assimilate in situ mass

spectrometer measurements of temperature and composition, as well as “temperatures inferred

from incoherent scatter radar data.”73 Although other high fidelity atmospheric models exist,

Akins, Healy, Coffey, and Picone in their paper “Comparison of MSIS and Jacchia Atmospheric

Density Models for Orbit Determination and Propagation” indicate that the atmospheric physics

community has “validated the [MSIS] model” via direct measurement of density and has

72 Ibid.
73 National Research Council, Aeronautics and Space Engineering Board, Continuing Kepler’s Quest: Assessing Air

Force Space Command’s Astrodynamics Standards (Washington, D.C.: The National Academies Press, 2012), 23.

www.manaraa.com

34

demonstrated the superiority of the MSIS series over older models such as Jacchia-70.74 As a

result, the MSIS-derived density solutions are deemed admissible as “truth” data for comparative

and root-mean square (RMS) error analysis.

 In addition to the MSIS-E-90 data, an atmospheric density profile was obtained from the

AGI analysis module Astrogator within Systems Toolkit® (STK) and plotted against the

exponential and single variation density models. By default, Astrogator employs the US 1976

Standard Atmospheric Density Model and only provides density estimates along the trajectory

rather than a specified altitude regime. Due to the resolution of the following figures, the dual

variation curve is omitted since it nearly coincides with the single variation solution and any

differences between the two models are not readily discernible. Also, only the MSIS data for 01

January 2012 is plotted in order to provide a single example of the thirteen data sets obtained

from the MSIS model. All thirteen sets as well as the STK® density data are illustrated in Fig.

3.4. As seen in the Fig. 3.3, the exponential, single, and dual variation models are insufficient in

modeling the MSIS and STK® data over the entire altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km. For the

exponential model, the accuracy of density predictions is superior to the single and dual

variations models and features the least deviation with the MSIS and STK® data until an altitude

of approximately 84 km where solution divergence initiates. More limited, the single and dual

variation models are only applicable within the range 54 ≤ ℎ𝑔𝑑 ≤ 300 km and are thus unable to

provide density predictions for 75.4% of the altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km.

74 Keith Akins, Liam Healy, Shannon Coffey, and Mike Picone, “Comparison of MSIS and Jacchia Atmospheric

Density Models for Orbit Determination and Propagation” (paper presented at the 13th AAS/AIAA Space Flight
Mechanics Meeting, Ponce, Puerto Rico, 9-13 February 2003), 3.

www.manaraa.com

35

Figure 3.3. Initial Comparison of Atmospheric Density Models with
MSIS-E-90 and STK® Density Data for 01 January 2012

Figure 3.4. Comparison of MSIS-E-90 and STK® Density Data

www.manaraa.com

36

 Faced with the solution inadequacies of the exponential, single, and dual variation models

as individual equations, a piecewise-continuous function – or Combined Model – was developed,

and is:

 𝜌�ℎ𝑔𝑑� =

⎩
⎪
⎨

⎪
⎧ 𝜌𝑆𝐿𝑒−𝛽�ℎ𝑔𝑑� , ℎ𝑔𝑑 < 84 km

𝜌𝑖 ��1 + 𝛿𝐻 �
ℎ𝑔𝑑−ℎ𝑖
𝑟⊕

��
−1

�

1+𝛼
𝛼

 , 84 ≤ ℎ𝑔𝑑 ≤ 120 km

(4.50847623 x 107) ∙ �ℎ𝑔𝑑�
−7.44605852

 , 120 < ℎ𝑔𝑑 ≤ 1000 km

� (3.9)

For all altitudes above the 1000 km threshold, the density is assumed to be 0.0 kg m3⁄ .

Parameters given in the single variation segment of Eq. (3.9) are listed in the following table:

Table 3.1. Atmospheric Density Model Parameters

Altitude Section ℎ𝑖 ,𝑘𝑚 𝜌𝑖 ,𝑘𝑔 𝑚3⁄ 𝛼 𝛿𝐻

84 ≤ ℎ𝑔𝑑 ≤ 90 km 85 7.726 x 10−6 0.1545455 197.9740
91 ≤ ℎ𝑔𝑑 ≤ 106 km 99 4.504 x 10−7 0.1189286 128.4577

107 ≤ ℎ𝑔𝑑 ≤ 120 km 110 5.930 x 10−8 0.5925240 432.8484

While the first two equations represent the exponential and single variation models, the

third is a power model formulated through regression analysis of the MSIS and STK® data. Since

atmospheric density changes with not only date and local time, but also geographical location,

both the MSIS and STK® data sets were obtained for the date 01 January at 12:00:00.00

Universal Time for the latitude/longitude coordinates (𝜃,𝜙) = (0,0) deg. Unlike the MSIS data

which is defined for the year range 2000-2012, the STK® data only represents the year 2012 due

to a preliminary RMS error analysis conducted with the following expression:75

 𝑅𝑀𝑆𝑋 = �∑ ��𝑋(𝑡𝑖)�𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − �𝑋(𝑡𝑖)�𝑡𝑟𝑢𝑡ℎ�
2

𝑛
𝑖=1

𝑛
 (3.10)

75 Hicks, 394.

www.manaraa.com

37

with the “simulation” data representing the years 2000-2011 and the “truth” data the year 2012.

From this analysis, a deviation of approximately 2 x 10−16 kg m3⁄ was calculated between the

data for 2012 and the years 2000-2011, thus enabling the data for the years 2000-2011 to be

excluded from all subsequent comparative analysis.

 As shown in Fig. 3.5, the Combined Model maintains the least deviation with MSIS and

STK® data for the altitude range 0 ≤ ℎ𝑔𝑑 ≤ 1000 km. Quantified in terms of RMS error, the

Combined Model deviates from the MSIS data by approximately 1.2 x 10−2 kg m3⁄ and the

STK® data by 9.181 x 10−11 kg m3⁄ . Based its ability to predict atmospheric density from the

troposphere through to upper reaches of the xenosphere, the Combined Model is implemented as

the density model for all aeroassisted maneuver analysis.

Figure 3.5. Comparison of Combined Atmospheric Density Model with
MSIS-E-90 and STK® Density Data for 01 January 2012

www.manaraa.com

38

Table 3.2. RMS Error for Combined Density Model Compared with

MSIS-E-90 and STK® Density Data

Data Set 𝑛 RMS Error, 𝑘𝑔 𝑚3⁄

MSIS-E-90, 01 Jan 2000 1000 1.228 x 10−2
MSIS-E-90, 01 Jan 2001 1000 1.232 x 10−2
MSIS-E-90, 01 Jan 2002 1000 1.231 x 10−2
MSIS-E-90, 01 Jan 2003 1000 1.230 x 10−2
MSIS-E-90, 01 Jan 2004 1000 1.227 x 10−2
MSIS-E-90, 01 Jan 2005 1000 1.226 x 10−2
MSIS-E-90, 01 Jan 2006 1000 1.226 x 10−2
MSIS-E-90, 01 Jan 2007 1000 1.226 x 10−2
MSIS-E-90, 01 Jan 2008 1000 1.226 x 10−2
MSIS-E-90, 01 Jan 2009 1000 1.225 x 10−2
MSIS-E-90, 01 Jan 2010 1000 1.226 x 10−2
MSIS-E-90, 01 Jan 2011 1000 1.226 x 10−2
MSIS-E-90, 01 Jan 2012 1000 1.230 x 10−2

STK®, 01 Jan 2012 570 9.181 x 10−11

Besides variations in density with altitude, the atmosphere is also highly dynamic and

rotates, albeit with a lower angular velocity, concomitant to the planet. Vinh et al. state that the

maximum rotational velocity of the atmosphere at the equator is approximately six percent of the

circular orbit velocity at low altitude. Furthermore, the aerodynamic force due to atmospheric

rotation has a maximum of about 12% of the aerodynamic force arising due to the vehicle’s

velocity. Although dependent on not only vehicle velocity, but also latitude, and the inclination

of the trajectory to the equator, Vinh et al. conclude that the effects of atmospheric rotation are

“so slight” and that any errors introduced by estimating an entry vehicle’s drag and lift

coefficients exceeds the error caused by neglecting atmospheric rotation.76 Due to the

complexities of and inherent error associated with endeavoring to model independent rotation,

the atmosphere is the assumed to be rotating at the same angular velocity as the planetary model.

76 Vinh et al., Hypersonic and Planetary Entry Flight Mechanics, 3.

www.manaraa.com

39

TAV Mass Properties

As with any object, the mass of a TAV is distributed throughout the envelope of the

vehicle’s three-dimensional shape, with such a distribution expressed as a mass moment of

inertia calculated about the principal axes of the vehicle’s body-fixed coordinate frame.

Although a more accurate representation of the vehicle mass, the calculation of mass moment of

inertia values is contingent on the implicit assumption that the vehicle is a rigid body and,

therefore, does not deform nor change shape.77 As a simplifying alternative, the TAV is modeled

as a point mass with the total force, �⃗�, acting on the point mass at any instant in time expressed

by the following:78

 �⃗� = 𝑇�⃗ + 𝐴 + 𝑚�⃗� (3.10)

where 𝑇�⃗ is the thrust force, 𝐴 is the aerodynamic force comprised of drag and lift components,

and �⃗� is the gravitational force.

 In addition to the point mass simplification, the TAV is assumed to maintain a constant

mass, with propellant only being expended prior to and/or following a maneuver. Due to the

high-temperature molecular interactions between the vehicle surface and the various gaseous

species of the “chemically reacting boundary layer” during an aeroassisted maneuver, the

constant mass simplification is also maintained within the hypersonic re-entry flow environment

by assuming the employment of a non-ablative thermal control subsystem on the vehicle

surface.79

77 Anthony Bedford and Wallace Fowler, Engineering Mechanics: Dynamics, Fourth Edition (Upper Saddle River,

NJ: Pearson Prentice Hall, 2005), 280, 398.
78 Hicks, 37.
79 Anderson, 17.

www.manaraa.com

40

Total Force Properties

Defined in terms of the vehicle-pointing reference frame (OX2Y2Z2), with the origin

coincident with the point mass, the gravitational force acts along the radial position vector

originating from the planetary center of mass and is aligned with the 𝑥2-axis. Not aligned with

any specific axis within the vehicle-pointing system, however, the aerodynamic force can be

described in relation to the TAV’s velocity vector, with the lift and drag forces acting in

directions perpendicular to and opposite the velocity vector, respectively. While the gravitational

force is expressed in the vehicle-pointing system, both the aerodynamic and thrust forces can be

described by a coordinate reference system fixed to the TAV center of mass.80 The relationship

of the thrust force to a sample TAV’s aerodynamic lift, drag, and velocity vector is shown in the

following depiction of the North American-Rockwell Space Shuttle concept:

Figure 3.6. Vehicle Reference Frame and Vector Definition for Sample TAV81

80 Hicks, 29, 43-46.
81 Ibid., 47; T. A. Heppenheimer, The Space Shuttle Decision: NASA’s Search for a Reusable Space Vehicle

(Washington, D.C.: National Aeronautics and Space Administration, 1999), 333.

www.manaraa.com

41

When examined separately, the aerodynamic and thrust forces provide the impetus for

further simplifying assumptions. The aerodynamic force is a dynamic quantity during an

aeroassisted maneuver due to the geometry of the TAV relative to the hypersonic re-entry flow

environment, the viscous interactions between the rarefied gaseous species of the upper

atmosphere and the vehicle surface, and the decrease in air density resulting from increases in

temperature. In order to simplify these dynamical flow complexities, the drag and lift

coefficients are modeled as constant values. Produced by a notional TAV propulsion subsystem,

the thrust force is modeled as impulsive and capable of being applied instantaneously.

Earth-Based Constants

Various planetary and atmospheric parameters are modeled as constant values and are

outlined in Table 3.3:82

Table 3.3. Earth-Based Constants

Constant Value

Gravitational Parameter, 𝜇⊕ 398600.442 km3 s2⁄
Gravitational Acceleration at Sea-Level, 𝑔𝑆𝐿 9.798 m s2 ⁄

Planetary Radius, 𝑟⊕ 6378.137 km
Atmospheric Scale Height, 𝛽 0.14 km−1

Atmospheric Density at Sea-Level, 𝜌𝑆𝐿 1.225 kg m3⁄

82 Hicks, 381; Vallado, 138, 140.

www.manaraa.com

42

Trajectory Dynamics Model Development

Described by a system of six nonlinear differential equations, re-entry and aeroassisted

maneuvers are simulated by the following set of kinematic and dynamical equations:83

 �̇� = 𝑉𝑅 sin 𝛾
(3.11)

 �̇� =
𝑉 cos 𝛾 cos𝜓𝑅

𝑟 cos𝜙

(3.12)

 �̇� =
𝑉 cos 𝛾 sin𝜓𝑅

𝑟

(3.13)

�̇� =
𝑇
𝑚

(cos 𝜁 cos 𝜀) −
𝐷
𝑚
− 𝑔(𝑟) sin 𝛾 + 𝑟𝜔⊕

2 cos𝜙 (cos𝜙 sin 𝛾 − sin𝜙 sin𝜓 cos 𝛾)𝑅 (3.14)

 𝑉𝑅 �̇� = 𝑇
𝑚

(sin 𝜁 sin𝜎 + cos 𝜁 sin 𝜀 cos𝜎) + 𝐿
𝑚

cosσ − 𝑔(𝑟) cos 𝛾 + 𝑉2𝑅

𝑟
cos 𝛾 +

2 𝑉𝑅 𝜔⊕ cos𝜙 cos𝜓 + 𝑟𝜔⊕
2 cos𝜙 (cos𝜙 cos 𝛾 − sin𝜙 sin𝜓 sin 𝛾)

(3.15)

𝑉𝑅 �̇� =
1

𝑚 cos 𝛾
[𝑇(cos 𝜁 sin 𝜀 sin𝜎 − sin 𝜁 cos𝜎) + 𝐿 sin𝜎] −

𝑉2𝑅

𝑟
cos 𝛾 cos𝜓 tan𝜙

+ 2 𝑉𝑅 𝜔⊕(sin𝜓 cos𝜙 tan 𝛾 − sin𝜙) −
𝑟𝜔⊕

2

cos𝛾
sin𝜙 cos𝜙 cos𝜓

(3.16)

where the drag and lift forces are computed, respectively, by:

 𝐷 = 1
2
𝜌𝐶𝐷𝑆 𝑉2𝑅 𝐿 = 1

2
𝜌𝐶𝐿𝑆 𝑉2𝑅

Based on the assumption that the TAV is non-thrusting, the preceding equations of motion can

be simplified to the following with the thrust force, 𝑇, equal to zero:

 �̇� = 𝑉𝑅 sin 𝛾 (3.17)

 �̇� =
𝑉 cos 𝛾 cos𝜓𝑅

𝑟 cos𝜙
 (3.18)

 �̇� =
𝑉 cos 𝛾 sin𝜓𝑅

𝑟
 (3.19)

 �̇�𝑅 = −
𝐷
𝑚
− 𝑔(𝑟) sin 𝛾 + 𝑟𝜔⊕

2 cos𝜙 (cos𝜙 sin 𝛾 − sin𝜙 sin𝜓 cos 𝛾) (3.20)

83 Ibid., 42, 52.

www.manaraa.com

43

 𝑉𝑅 �̇� =
𝐿
𝑚

cos σ− 𝑔(𝑟) cos 𝛾 +
𝑉2𝑅

𝑟
cos 𝛾 + 2 𝑉𝑅 𝜔⊕ cos𝜙 cos𝜓 +

𝑟𝜔⊕
2 cos𝜙 (cos𝜙 cos 𝛾 − sin𝜙 sin𝜓 sin 𝛾)

(3.21)

 𝑉𝑅 �̇� =
𝐿 sin𝜎
𝑚 cos 𝛾

−
𝑉2𝑅

𝑟
cos 𝛾 cos𝜓 tan𝜙 + 2 𝑉𝑅 𝜔⊕(sin𝜓 cos𝜙 tan 𝛾 − sin𝜙)

−
𝑟𝜔⊕

2

cos𝛾
sin𝜙 cos𝜙 cos𝜓

(3.22)

In the Hicks formulation of the equations of motion, gravitational acceleration is defined

in terms of the TAV radial position from the center of a spherical, axisymmetric planet:

 𝑔(𝑟) = 𝑔𝑆𝐿 �
𝑟⊕
𝑟
�
2

=
𝜇
𝑟2

 (3.23)

Representing the spherical (Newtonian) gravity model, Eq. (3.23) neglects variations in the

Earth’s gravitational potential due to a non-uniform mass distribution and planetary ellipticity, or

oblateness. If the oblate spheroid assumption is implemented, then the trajectory dynamics model

will utilize the higher-order 𝐽2-gravity model which accounts for gravitational potential

variations due to ellipticity. In his book Atmospheric and Space Flight Dynamics, Tewari derives

vector-component expressions for the acceleration due to gravity of a non-spherical,

axisymmetric planet. As the foundation of his formulation, Tewari employs spherical harmonics

to model the variations in the Earth’s gravitational potential deemed negligible by the spherical

gravity model. Components of the following co-latitude (𝜑) dependent equations, the spherical

harmonics are given by the Earth-specific Jeffrey constants 𝐽2 = 0.00108263, 𝐽3 =

−0.00000254, 𝐽4 = −0.00000161, while the term 𝑃𝑛(cos𝜑) represents an 𝑛th-order Legendre

polynomial:84

84 Ashish Tewari, Atmospheric and Space Flight Dynamics (Boston, MA: Birkhäuser, 2007), 51-52.

www.manaraa.com

44

𝑔𝑟 =
𝜇
𝑟2
�1 − 3𝐽2 �

𝑟⊕
𝑟
�
2
𝑃2(cos𝜑) − 4𝐽3 �

𝑟⊕
𝑟
�
3
𝑃3(cos𝜑) − 5𝐽4 �

𝑟⊕
𝑟
�
4
𝑃4(cos𝜑)�

𝑔𝜑 =
3𝜇
𝑟2
�
𝑟⊕
𝑟
�
2

sin𝜑 cos𝜑 �𝐽2 +
1
2
𝐽3 �

𝑟⊕
𝑟
� sec𝜑 (5 cos2 𝜑 − 1) +

5
6
𝐽4 �

𝑟⊕
𝑟
�
2

(7 cos2 𝜑 − 1)�

Expanding the Legendre polynomials and replacing the co-latitude variables with that of

geocentric latitude via the co-function trigonometric identity, the preceding equations for the

radial and transverse components of gravitational acceleration become:

𝑔𝑟 =
𝜇
𝑟2
�1 − 3𝐽2 �

𝑟⊕
𝑟
�
2
∙ �

1
2

(3 sin2 𝜙 − 1)� − 4𝐽3 �
𝑟⊕
𝑟
�
3
∙ �

1
2

(5 sin3 𝜙 − 3 sin𝜙)�

− 5𝐽4 �
𝑟⊕
𝑟
�
4
∙ �

1
8

(35 sin4 𝜙 − 30 sin2 𝜙 + 3)��

(3.24)

 𝑔𝜙 =
3𝜇
𝑟2
�
𝑟⊕
𝑟
�
2

cos𝜙 sin𝜙 �𝐽2 +
1
2
𝐽3 �

𝑟⊕
𝑟
� csc𝜙 (5 sin2 𝜙 − 1)

+
5
6
𝐽4 �

𝑟⊕
𝑟
�
2

(7 sin2 𝜙 − 1)�

(3.25)

Evaluating Eq. (3.24) at an altitude of 1000 km over the equator gives a radial gravitational

acceleration of 7.33114498 m s2⁄ . By assuming that the contribution of both the 𝐽3 and 𝐽4

Jeffrey constants are negligible, however, the resulting gravitational acceleration decreases

to 7.33113256 m s2⁄ , which yields a deviation of 1.2420 x 10−5 m s2⁄ from the original value.

Based on the magnitude of this deviation, the negligibility assumption proffered for the 𝐽3 and 𝐽4

Jeffrey constants can be maintained, thus simplifying and transforming the 𝐽4-gravity model into

the 𝐽2-gravity model which only accounts for planetary oblateness:

 𝑔𝑟 =
𝜇
𝑟2
�1 − 3𝐽2 �

𝑟⊕
𝑟
�
2
∙ �

1
2

(3 sin2 𝜙 − 1)�� (3.26)

 𝑔𝜙 = 3𝜇
𝑟2
∙ 𝐽2 ∙ �

𝑟⊕
𝑟
�
2

cos𝜙 sin𝜙

(3.27)

A final simplification can be made by assuming that the contribution of the 𝐽2 Jeffrey constant is

negligible, thus creating the initial spherical gravity model given by Eq. (3.23).

www.manaraa.com

45

 In order to model 𝐽2-gravity effects, the equations of motion are modified so that the

gravitational acceleration consists of both radial (𝑔𝑟) and transverse �𝑔𝜙� components. Since

gravitational acceleration only appears as a parameter in the trajectory force equations, then only

the modified versions of Eqs. (3.14) - (3.15) are presented:85

 �̇� = −
𝐷
𝑚
− 𝑔𝑟 sin 𝛾𝑅 − 𝑔𝜙 sin 𝛾 cos 𝛾 + 𝑟𝜔⊕

2 cos𝜙 (cos𝜙 sin 𝛾 − sin𝜙 sin𝜓 cos 𝛾) (3.28)

 𝑉𝑅 �̇� =
𝐿
𝑚

cosσ − 𝑔𝑟 cos 𝛾 + 𝑔𝜙 sin2 𝛾 +
𝑉2𝑅

𝑟
cos 𝛾 + 2 𝑉𝑅 𝜔⊕ cos𝜙 cos𝜓 +

𝑟𝜔⊕
2 cos𝜙 (cos𝜙 cos 𝛾 − sin𝜙 sin𝜓 sin 𝛾)

(3.29)

 𝑉𝑅 �̇� =
𝐿 sin𝜎
𝑚 cos 𝛾

− 𝑔𝜙
cos𝜓
cos 𝛾

−
𝑉2𝑅

𝑟
cos 𝛾 cos𝜓 tan𝜙

+ 2 𝑉𝑅 𝜔⊕(sin𝜓 cos𝜙 tan 𝛾 − sin𝜙) −
𝑟𝜔⊕

2

cos𝛾
sin𝜙 cos𝜙 cos𝜓

(3.30)

Overall, the equations of motion employing the spherical gravity and 𝐽2-gravity models are given

by Eqs. (3.11) – (3.13) and Eqs. (3.28) – (3.30), respectively.

Trajectory Dynamics Model Flow Diagram

The trajectory dynamics model was constructed as a collection of modules comprising

the equations of motion, models for the atmosphere, gravity, and TAV, as well as the requisite

physical constants from Table 3.3. With this construct, the user is permitted to edit the

supporting modules pertaining to the dynamical, environmental, and vehicle models without

effecting the operation of the differential equation solver routine encapsulated in the core

program. A flow diagram of the trajectory dynamics model with all supporting modules is below.

85 Hicks, 413.

www.manaraa.com

46

Figure 3.7. Trajectory Dynamics Model Flow Diagram

Model Verification Assumptions

In addition to gravity, the trajectory dynamics model is also reliant on secondary

dynamics models related to the planetary atmosphere, planetary angular motion, and TAV

aerodynamics. For the purposes of model verification, however, the duplication of the Apollo 10

re-entry profile permits the relaxation of several aforementioned simulation assumptions with the

implementation of an exponential density and non-rotating planetary models. In his analysis of

the Apollo 10 re-entry in his book Introduction to Astrodynamic Re-Entry, Hicks sought to

improve his capsule re-entry simulation by replacing the “baseline” exponential density model

described by Eq. (3.3) with the 1962 Standard Atmosphere Model. A hypothetical vertical

distribution of atmospheric density, pressure, and temperature from sea-level to an altitude of

1000 km, the 1962 Standard Atmosphere Model is an ideal, steady-state representation of the

Earth’s atmosphere at a latitude of 45 deg N during “moderate solar activity.”86 Compared with

the exponential model, the implementation of the 1962 Standard Atmosphere Model revealed

86 Vallado, 565.

Trajectory
Dynamics

Model

Atmospheric
Model

Gravity
Model

Vehicle
Model

Equations of
Motion

Earth
Constants

www.manaraa.com

47

that the RMS error increased by 0.275%, 8.30%, and 2.34% for the geodetic altitude, inertial

velocity, and tangential deceleration solutions, respectively. Although changes to the

aerodynamic coefficients could potentially reduce the RMS error associated with the 1962

Standard Atmosphere Model, the implementation of the exponential density model is deemed

permissible for purposes of duplicating the Apollo 10 re-entry profile.87

Similarly, Hicks also sought to improve his simulation of the Apollo 10 re-entry by

including planetary rotation. Since the Apollo 10 initial states are expressed in the inertial frame,

a series of coordinate transformations were first completed to convert the states to a frame

relative to the rotating Earth. Following the integration of the equations of motion, the Apollo 10

states were then transformed back to the inertial frame.88 After simulating the Apollo 10 re-entry

with the planetary rotation rate both activated and deactivated, RMS error analysis indicated that

the inclusion of planetary rotation created the greatest improvement in accuracy for the inertial

velocity solution, while only a “marginal improvement” for geodetic altitude. The specific RMS

values for geodetic altitude, inertial velocity, and deceleration are listed in Table 3.4 for the

“baseline” case of deactivated planetary rotation as well as for the activated rotation case. When

compared with the RMS error for the baseline case, the RMS error for geodetic altitude and

velocity improved by 22.4% and 11.6%, respectively, while the RMS error increased by 1.96%

for tangential deceleration. With only minor improvements to the trajectory solutions arising

from the inclusion of the planetary rotation rate, the assumption of negligible planetary angular

motion is also deemed permissible, thus generating the secondary assumption that the initial

inertial entry velocity, flight-path angle, and heading angle for Apollo 10 are Earth-relative.89

87 Hicks, 409, 411.
88 Ibid., 393-394.
89 Ibid., 383.

www.manaraa.com

48

Finally, for the capsule aerodynamics model, Hicks chose to represent the drag and lift

coefficients for Apollo 10 as constants derived by averaging the preflight aerodynamic

coefficient estimates for the Apollo 11 Command Module capsule at Mach 10 and Mach 29.5.90

Alternatively, Hicks indicates that the aerodynamic coefficients can also be obtained by first

calculating the Mach number as a function of altitude and speed during the integration of the

equations of motion, and then continuously adjusting the coefficients by interpolating with the

Apollo 11 preflight estimates.91 After simulating both methods, RMS error analysis revealed that

the “baseline” case with constant aerodynamic coefficients produced less error than those

derived from the Mach-dependent functions and associated interpolation scheme. In terms of

geodetic altitude, the constant and function-derived aerodynamic coefficients produced a RMS

error of 3.63 km and 4.48 km, respectively. For inertial velocity, a greater deviation in RMS

error is illustrated, with 241 m/s for the constant values and 814 m/s for the function-derived

values.92 By producing less error than the function-derived aerodynamic coefficients, the

assumption of modeling the drag and lift coefficients as constant values is also deemed

permissible for the Apollo 10 capsule.

Table 3.4. RMS Errors for Modifications to Trajectory Dynamics Model93

RMS Error
Type Baseline

Modification to Dynamics

Gravity (𝐽2) Planetary
Rotation Atmosphere Aerodynamic

Coefficients

𝑅𝑀𝑆ℎ𝑔𝑑 3.63 km 3.57 km 3.21 km 3.64 km 4.48 km
𝑅𝑀𝑆 𝑉𝐼 241 m/s 253 m/s 187 m/s 261 m/s 814 m/s
𝑅𝑀𝑆𝑑𝑒𝑐𝑒𝑙 4.60 m s2⁄ 4.69 m s2⁄ 5.40 m s2⁄ 4.71 m s2⁄ 8.43 m s2⁄

90 Ibid., 379, 384.
91 Ibid., 384.
92 Ibid., 404.
93 Ibid., 415.

www.manaraa.com

49

Verification of Trajectory Dynamics Model

Due to the availability of data for both the re-entry initial conditions and trajectory, the

Apollo 10 re-entry was chosen as a preliminary means of verifying the trajectory dynamics

model described earlier in this chapter. As a method of integrating the equations of motion, a

fourth-order Runge-Kutta numerical integrator was employed with the Apollo 10 bank angle

history given in Fig. 3.8 as a control input, and the gravitational acceleration described by the 𝐽2-

gravity model.

Figure 3.8. Bank Angle History for Apollo 10 Command Module Capsule94

Based on the Apollo 10 re-entry solutions obtained from Hicks’ text, Fig. 3.9 illustrates

that despite initial alignment, the simulated geocentric and geodetic latitude solutions diverge

from the Apollo 10 trajectory at approximately 150 s after entry interface (EI), or passage

through the upper limit of the sensible atmosphere. Beyond a visual assessment, the divergence

exhibited by the simulated latitude solution from the Apollo 10 trajectory can be quantified in

94 Ibid., 378.

www.manaraa.com

50

terms of distance. Due to the ellipticity of the Earth, however, the distance between lines of

latitude increases towards the poles and, as a result, cannot be assumed constant. As a result, a

sample method for calculating the distance of 1 deg of latitude at specified geocentric latitudes

(in units of degrees) is given by the following trigonometric expression:95

 𝑑𝜙=1 deg = 111.13295 − 0.55982 cos(2𝜙) + 0.00117 cos(4𝜙) (3.31)

Employing Eq. (3.31), the approximate distance between the simulated terminal geocentric

latitude of 17.1 deg S and the actual value of 15.06 deg S is 221 km. Aside from latitude, an

examination of Figs. 3.10 and 3.11 indicate that while the geodetic altitude solution tracks closer

to the Apollo 10 trajectory, the inertial velocity solution diverges at 150 s after EI – the same

time as indicated by the latitude plot.

Figure 3.9. Comparison of Geocentric/Geodetic Latitude for Apollo 10
(𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver)

95 Larry McNish, “Latitude and Longitude,” RASC Calgary Centre, The Royal Astronomical Society of Canada, last

modified 11 November 2011, accessed 17 August 2012, http://calgary.rasc.ca/latlong.htm.

www.manaraa.com

51

Figure 3.10. Comparison of Geodetic Altitude for Apollo 10
(𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver)

Figure 3.11. Comparison of Inertial Velocity for Apollo 10
(𝐽2-Gravity Model, Fourth-Order Runge-Kutta Solver)

www.manaraa.com

52

For the preceding analysis, the fourth-order Runge-Kutta solver was run with a relative

error tolerance of 𝐸𝑟𝑒𝑙 = 1.0 x 10−8 and a default maximum step size of 55 s based on the

formula 𝑁𝑚𝑎𝑥 = �0.1 ∙ �𝑡0 − 𝑡𝑓��, where 𝑡0 = 0 s and 𝑡𝑓 = 550 s. After a limited sensitivity

analysis run to identify the impact of modifying these parameters on the trajectory solutions,

updated values for relative error tolerance and maximum step size were selected to be

1.0 x 10−10 and 0.1 s, respectively. Illustrated in Figs. 3.12–3.14, the modified parameters

improved the performance of the fourth-order Runge-Kutta solver for not only the latitude, but

also the geodetic altitude and inertial velocity solutions. Quantitatively, the improved solver

performance is expressed by RMS error and outlined in Table 3.5. Compared with the initial

simulation run, the reduction of both the relative error tolerance and maximum step size

produced a respective 69.11%, 70.80%, and 67.61% decrease in the RMS error for the latitude,

geodetic altitude, and inertial velocity solutions.

Figure 3.12. Comparison of Geocentric/Geodetic Latitude for Apollo 10
(𝐽2-Gravity Model, Modified Solver Parameters)

www.manaraa.com

53

Figure 3.13. Comparison of Geodetic Altitude for Apollo 10
(𝐽2-Gravity Model, Modified Solver Parameters)

Figure 3.14. Comparison of Inertial Velocity for Apollo 10
(𝐽2-Gravity Model, Modified Solver Parameters)

www.manaraa.com

54

Table 3.5. RMS Error for Trajectory Dynamics Model Verification

 Geocentric Latitude, 𝜙 Geodetic Altitude, ℎ𝑔𝑑 Velocity, 𝑉𝐼
Total Points, 𝑛 56 107 73

Initial Simulation 1.35 deg 9.59 km 1420 m s⁄
Modified Parameters 0.417 deg 2.80 km 460 m s⁄

Despite the improvement in RMS error, deviation between the Apollo 10 trajectory and

the solutions produced by the trajectory dynamics model persisted in subsequent simulations.

With the remaining error resulting from neither incorrect unit conversions nor the erroneous

transcription of the equations of motion into the computational software, the Apollo 10 capsule

aerodynamic coefficients were next examined and a solution sensitivity study performed.

Outlined in Table 3.6, the drag and lift coefficients for the Apollo 10 capsule were modified from

their original values of 𝐶𝐷 = 1.2569 and 𝐶𝐿 = 0.40815 and simulated with various

combinations of relative error tolerance and maximum step size. With the original aerodynamic

coefficients obtained by averaging the preflight estimates for the Apollo 11 capsule at Mach 10

and Mach 29.5, the modified values were selected from the aerodynamic coefficients

corresponding to the same Mach number range given by:96

1.2246 ≤ 𝐶𝐷 ≤ 1.2891

0.38773 ≤ 𝐶𝐿 ≤ 0.42856

Due to the complexities of increasing and/or decreasing the aerodynamics coefficients while

endeavoring to simultaneously minimize the RMS error for geocentric latitude, geodetic altitude,

and inertial velocity, the aerodynamic coefficients listed in Table 3.6 represent optimal estimates.

From the various cases analyzed, the alternate aerodynamic coefficients which yielded the lowest

RMS error for geocentric latitude, geodetic altitude, and inertial velocity are 𝐶𝐷 = 1.255 and

96 Hicks, 379, 384.

www.manaraa.com

55

𝐶𝐿 = 0.4225 for a relative error tolerance and maximum step size of 1.0 x 10−10 and 0.1 s,

respectively. Trajectory solutions corresponding to these aerodynamic coefficients are illustrated

in Figs. 3.15-3.17.

Table 3.6. RMS Error for Alternate Aerodynamic Coefficients

Rel. Error
Tol., 𝐸𝑟𝑒𝑙

Max. Step Size,
𝑁𝑚𝑎𝑥 𝐶𝐿 𝐶𝐷 Geocentric

Latitude, 𝜙
Geodetic

Altitude, ℎ𝑔𝑑 Velocity, 𝑉𝐼

1.0 x 10−10 0.1 s 0.40815 1.2569 0.417 deg 2.80 km 460 m s⁄
1.0 x 10−10 0.1 s 0.4225 1.255 0.0338 deg 1.11 km 105 m s⁄

1.0 x 10−10 0.5 s 0.4240 1.245 0.0406 deg 1.21 km 125 m s⁄

1.0 x 10−10 1.0 s 0.4260 1.251 0.0412 deg 1.23 km 123 m s⁄

1.0 x 10−8 0.1 s 0.4234 1.257 0.0381 deg 1.18 km 114 m s⁄

1.0 x 10−8 0.5 s 0.4240 1.258 0.0442 deg 1.27 km 127 m s⁄
1.0 x 10−8 1.0 s 0.4265 1.235 0.0405 deg 1.21 km 128 m s⁄

Figure 3.15. Comparison of Geocentric/Geodetic Latitude for Apollo 10
(𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 x 10−10,𝑁𝑚𝑎𝑥 = 0.1)

www.manaraa.com

56

Figure 3.16. Comparison of Geodetic Altitude for Apollo 10
(𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 x 10−10,𝑁𝑚𝑎𝑥 = 0.1)

Figure 3.17. Comparison of Inertial Velocity for Apollo 10
(𝐶𝐿 = 0.4225,𝐶𝐷 = 1.255,𝐸𝑟𝑒𝑙 = 1 x 10−10,𝑁𝑚𝑎𝑥 = 0.1)

www.manaraa.com

57

Although the modified aerodynamic coefficients yielded trajectory solutions with the

hitherto lowest RMS error during the model verification process, such results remain dissonant

with Hicks’ text since all Apollo 10 re-entry analysis was accurately performed with the original

values of 𝐶𝐷 = 1.2569 and 𝐶𝐿 = 0.40815. Consequently, the fourth-order Runge-Kutta solver

underpinning the trajectory dynamics model was re-examined for sources of possible error

beyond the relative error tolerance and maximum step size parameters. Shifting investigative

focus towards the solver inputs, it was determined that the solver was interpolating the control

input from the one-second incremented bank angle profile given in Fig. 3.8 while simulating the

capsule re-entry trajectory with non-integer time steps. Illustrated in Figs. 3.18 and 3.19, the

interpolated bank angle profile (shown in red) does not align with the original profile and thus

introduces erroneous bank angle values into the simulation.

Figure 3.18. Comparison of Bank Angle Profile for Apollo 10
(𝐶𝐿 = 0.40815,𝐶𝐷 = 1.2569,𝐸𝑟𝑒𝑙 = 1 x 10−8,𝑁𝑚𝑎𝑥 = Default)

www.manaraa.com

58

Figure 3.19. Comparison of Bank Angle Profile for 𝑡 = [160, 280] s
(𝐶𝐿 = 0.40815,𝐶𝐷 = 1.2569,𝐸𝑟𝑒𝑙 = 1 x 10−8,𝑁𝑚𝑎𝑥 = Default)

In order to prevent this interpolation, integer rounding code was introduced which forces

the time steps to align with the bank angle profile time history, thereby producing the correct

control input. When run with the original aerodynamic coefficients of 𝐶𝐷 = 1.2569 and 𝐶𝐿 =

0.40815, the trajectory dynamics model produced trajectory solutions with RMS errors

of 0.0447 deg, 0.8047 km, and 61.0 m/s for geocentric latitude, geodetic altitude, and inertial

velocity, respectively. Plots for trajectory solutions corresponding to the preceding RMS error

values are shown by Figs. 3.20 – 3.22.

www.manaraa.com

59

Figure 3.20. Comparison of Geocentric/Geodetic Latitude for Apollo 10 with
Non-Interpolation of Bank Angle Profile

Figure 3.21. Comparison of Geodetic Altitude for Apollo 10 with
Non-Interpolation of Bank Angle Profile

www.manaraa.com

60

Figure 3.22. Comparison of Inertial Velocity for Apollo 10 with
Non-Interpolation of Bank Angle Profile

Verification of Deceleration Model

 A model for re-entry deceleration is given by Hicks and provides dimensional values

according to:97

 (𝑎𝑑𝑒𝑐𝑒𝑙)𝑉 = − �̇�𝑅 =
𝐷
𝑚

+ 𝑔(𝑟) sin 𝛾 (3.32)

 (𝑎𝑑𝑒𝑐𝑒𝑙)𝐿 = −�̇� 𝑉𝑅 = −
𝐿
𝑚
− �

𝑉2𝑅

𝑟
− 𝑔(𝑟)� cos 𝛾 (3.33)

 𝑎𝑑𝑒𝑐𝑒𝑙 = ‖𝑎�𝑑𝑒𝑐𝑒𝑙‖ = �(𝑎𝑑𝑒𝑐𝑒𝑙)𝑉
2 + (𝑎𝑑𝑒𝑐𝑒𝑙)𝐿

2 (3.34)

 where (𝑎𝑑𝑒𝑐𝑒𝑙)𝑉 and (𝑎𝑑𝑒𝑐𝑒𝑙)𝐿 are the tangential (along the velocity vector) and normal (along

the lift vector) components of the deceleration vector, respectively. When divided by the

97 Hicks, 66.

www.manaraa.com

61

acceleration due to gravity at a specified reference altitude, 𝑔0, then the deceleration components

and overall magnitude calculated in Eqs. (3.32) – (3.34) become non-dimensional quantities.

 When simulating the Apollo 10 re-entry deceleration profile for a spherical gravity and

rotating planetary model, the preceding equations yield the non-dimensional solutions illustrated

in Fig. 3.23. Although over-estimating the local maxima of the Apollo 10 profile, the

deceleration model produces solutions which coincide with the general locations for the profile

maxima and minima over the specified time-of-flight. In terms of RMS error, the visual

assessment of the model’s graphical behavior translates into a 0.422 g-deviation of the

tangential component from the Apollo 10 profile, and 0.578 g for the deceleration magnitude.

Figure 3.23. Comparison of Deceleration for Apollo 10 with
Spherical Gravity and Rotating Planetary Models

www.manaraa.com

62

Verification and Selection of Heat Flux Model

 As with the verification of the trajectory dynamics model, measurements and simulation

solutions available from various NASA missions were utilized to verify the efficacy of the

stagnation heat flux models presented in Chapter II. Once verified, an appropriate model was

selected and applied to all aeroassisted maneuver simulations. Although unavailable for the

Apollo 10 capsule, re-entry heat flux data was obtained for two sub-orbital Apollo command

module flights performed in February and August 1966.98 The vehicles employed for the tests,

identified as Apollo Spacecraft 009 and 011, were fitted with pressure transducers and surface-

mounted calorimeters according to Fig. 3.24.

Figure 3.24. Pressure Transducer and Calorimeter Locations on the
Conical Section of Apollo Spacecraft 00999

98 Dorothy B. Lee, John J. Bertin, and Winston D. Goodrich, “Heat-Transfer Rate and Pressure Measurements

Obtained during Apollo Orbital Entries,” NASA TN D-6028 (Washington, D.C.: National Aeronautics and Space
Administration, 1970), 1.

99 Ibid., 17.

www.manaraa.com

63

For Spacecraft 009, local pressure and heat flux measurements were obtained at free-stream

relative velocities between 12,000 ≤ 𝑉 ≤ 25,300 ft/s (3.7 ≤ 𝑉 ≤ 7.7 km/s); for Spacecraft

011, the velocity range was greater at 2,080 ≤ 𝑉 ≤ 27,300 ft/s (0.63 ≤ 𝑉 ≤ 8.3 km/s).100 At

an altitude and velocity of 45.7 km and 6.86 km/s at 64 s after EI, Spacecraft 009 achieved a

maximum measured heat flux of 210 kW m2⁄ at the calorimeter location identified by the circle

and arrow in Fig. 3.24. For the same calorimeter location, Spacecraft 011 achieved a maximum

heat flux of 94 kW m2⁄ at an altitude and velocity of approximately 64.0 km and 7.62 km/s at

170 s after EI.101 Since “no valid heat transfer data” was obtained on the blunt entry face of

either command module, no real depiction of the heat flux immediately behind the bow shock is

available.102 Consequently, the aforementioned heat flux measurements constitute the only

maximum values available for Spacecraft 009 and 011 in subsequent comparative analysis.

In addition to the Apollo sub-orbital flights, heat flux data also exists for the Space

Shuttle, specifically the STS-5 (Space Transport System) mission of 1982. Shown in Fig. 3.25,

thermocouples were affixed within sections of the fuselage and wings so as to enable the

measuring of total heat flux at varying locations relative to both the vehicle centerline and

hypersonic flow. Overall, the fuselage sidewalls, cargo bay doors, and the upper wing surfaces

are subject to lower heating rates, while the fuselage and wing lower surfaces are conversely

subject to higher heating rates.103

100 Ibid., 1.
101 Ibid., 21, 24, 52, 69.
102 Ibid., 1.
103 William L. Ko, Robert D. Quinn, and Leslie Gong, “Finite Element Re-Entry Heat Transfer Analysis of Space

Shuttle Orbiter,” NASA TP 2657 (Edwards, CA: NASA Dryden Flight Research Facility, 1986), 1.

www.manaraa.com

64

Figure 3.25. Wing Segment (WS) and Fuselage Section (FS) Locations
used for STS-5 Heat Flux Analysis104

Figure 3.26. Re-Entry Trajectory for STS-5105

104 Ibid., 16, 18.
105 Ibid., 16.

www.manaraa.com

65

As presented in their 1986 paper “Finite Element Re-Entry Heat Transfer Analysis of

Space Shuttle Orbiter,” Ko, Quinn, and Gong indicate that the maximum heat flux was measured

to be approximately 1400 kW m2⁄ and occurred on the lower surface of Bay 1 in WS328 (circle

and arrow in Fig. 3.25) at 600 s after EI.106 Based on the trajectory profile for STS-5 given in

Fig. 3.26, this time corresponds to an approximate altitude and velocity of 70 km and 7.0 km/s,

respectively. While also occurring on the lower surface of Bay 1 in WS328, the peak temperature

of 1910℉ was measured at a later elapsed time of 1000 s at a lower approximate altitude 55

km.107 The maximum heat flux and peak temperature are respectively denoted by the red and

green dashed lines in Fig. 3.26.

 A final source of heat flux data originates from a 2007 technical memorandum entitled

“Re-Entry Thermal Analysis of a Generic Crew Exploration Vehicle Structure.” In this paper,

Ko, Gong, and Quinn utilized an organic NASA Dryden aerodynamic heating software program

to calculate the heat flux encountered by the Crew Exploration Vehicle (CEV) when flying the

identical trajectory as Apollo Spacecraft 009 in 1966.108 Initially, the zero-tilt stagnation heat

flux was calculated and featured a maximum value of 818 kW m2⁄ at an altitude of 45.7 km and

an elapsed time of 1630 s. Utilizing the zero-tilt data, an amplification factor of 1.4 was applied

to simulate the migration of the stagnation point “toward the upper torodial shoulder” when the

CEV is at an 18 deg angle of tilt. Based on this modification, the maximum stagnation heat flux

increased to 1128 kW m2⁄ .109

106 Ibid., 32.
107 Leslie Gong, William L. Ko, Robert D. Quinn, and W. Lance Richards, “Comparison of Flight-Measured and

Calculated Temperatures on the Space Shuttle Orbiter,” NASA TM 88278 (Edwards, CA: NASA Dryden Flight
Research Facility, 1987), 36.

108 William L. Ko, Leslie Gong, and Robert D. Quinn, “Re-Entry Thermal Analysis of a Generic Crew Exploration
Vehicle Structure,” NASA TM 2007-214607 (Edwards, CA: NASA Dryden Flight Research Facility, 2007), 9.

109 Ibid., 9, 41-42.

www.manaraa.com

66

 Of the stagnation heat flux models presented in Chapter II, only four were selected for

comparison with the preceding flight data for Apollo, the Space Shuttle, and CEV: (1) Eq. (2.4)

from Darby and Rao (2010); (2) Eq. (2.4) from Rao et al. (2002); (3) Eq. (2.2) from Havey; and

(4) Eq. (2.6) from Galman. Excluded from consideration, the Detra et al. model given in Eq.

(2.1) requires presently unknown quantities for stagnation and wall enthalpies, while the form of

Eq. (2.4) presented in the Rao et al. paper “A Concept for Operationally Responsive Space

Mission Planning Using Aeroassisted Orbital Transfer” maintains a coefficient that is four orders

of magnitude smaller than both the 2002 and 2010 alternatives. When simulated by the preceding

models, the sample NASA vehicle trajectory states corresponding to maximum heat flux produce

the results illustrated in Fig. 3.27.

Depicted as a series of colored bars, the models show perceivable variation with the flight

data, presented by the cross-hatched bars. For the Apollo spacecraft 009, the models over-

estimate the heat flux by one order of magnitude, with the Darby and Rao, and Rao et al. variants

yield approximately 5200 kW m2⁄ , compared with that of 210 kW m2⁄ from the flight data.

Similarly, the models over-estimate the heat flux for the Apollo spacecraft 011, but by nearly

two orders of magnitude. While the variation with the CEV data is less than that of the Apollo

spacecraft, the models still over-estimate the heat flux by 536% compared with the zero-tilt CEV

and an associated data amplification factor of 1.0. Conversely, the models under-estimate the

heat flux for STS-5 with the Darby and Rao, and Rao et al. variants producing a value of

approximately 715 kW m2⁄ , 48.9% less than the measured 1400 kW m2⁄ .

Although patently inaccurate in their estimation the flight data maximum heat flux,

several factors must be considered when verifying the efficacy of the respective models. First,

the greatest variation between the model and flight data heat flux occurs when the latter

www.manaraa.com

67

corresponds to a blunt-body spacecraft like that of the capsule design for both the Apollo

command module and CEV. Second, the models only estimate stagnation heat flux and do not

account for radiative heat flux contributions to the total heat load. While the addition of a

radiative heat flux estimate would further increase the variation between the models and

Apollo/CEV flight data, it would decrease the variation with the STS-5 flight data and produce

an improved approximation of maximum heat flux. Third, the models were empirically

formulated primarily with heat flux measurements from experimental devices such as shock

tubes located at sea-level. Even though an expedient substitute for flight data, shock tubes and

similar devices fail to accurately simulate hypersonic flow effects stemming from not only

altitude and varying atmospheric density due to local solar conditions, but also the intermolecular

reaction and energy transfer properties of atmospheric atomic and molecular species local to the

spacecraft.

 Aside from their inherent inaccuracies, the models still provide a coarse approximation of

heat flux, with the least variation illustrated with flight data from STS-5, a winged-entry vehicle

similar to the example TAV utilized for this research. Overall, the Rao et al. 2002 model

(referred hereafter as Rao, 2002) will be implemented henceforth since it maintains a

comparatively small variation with the STS-5 example, as well as a traceable formulation lineage

to the experimental work of Detra et al.

www.manaraa.com

68

Figure 3.27. Comparison of Stagnation Heat Flux Models with
Flight Data from Sample NASA Vehicles

www.manaraa.com

69

Summary and Conclusion

Selected as a known example of atmospheric re-entry, the Apollo 10 trajectory was

duplicated by an independently-developed trajectory dynamics model, thereby verifying the

accuracy and efficacy of the model for the simulation of exo- and trans-atmospheric maneuvers.

Driven by a system of six differential equations of motion, the trajectory dynamics model is

comprised of environmental and planetary models for atmospheric density, gravitational

potential, and stagnation heat flux. Rather than utilizing a single model for atmospheric density,

a piecewise-continuous atmospheric density function has been developed which models the

MSIS-E-90 density profile by incorporating three separate altitude-delimited models. Based on

the simulation assumptions of spherical planetary geometry and negligible radiative heat flux

contributions during re-entry, the remaining components of the trajectory dynamics model are

represented by a spherical gravity model and an empirically-derived model for stagnation heat

flux.

www.manaraa.com

70

IV. Comparative Study of Phasing, Skip Entry, and Simple Plane Change Maneuvers

Chapter Overview

A suite of maneuvers comprising planar phasing, out-of-plane skip entry, and simple

plane changes are simulated for a notional trans-atmospheric, lifting re-entry vehicle with

𝐿/𝐷 = 6. By comparing the relative performance of each maneuver to overfly a geographically

diverse sample ground targets, it is demonstrated that skip entry maneuvers require a total ∆𝑉

less than 0.5 km/s. For select targets, simulation results demonstrate a significant savings in ∆𝑉

expenditure for skip entry compared with the simple plane change alternative. Overall, the

simulated skip entry maneuvers consistently provide responsive mission execution in terms of

ground target time-of-arrival, with maximum deceleration and stagnation heat flux less than

1.0 g and 1000 kW/m2, respectively.

Introduction

Defined as a special case of lifting entry, a skip entry maneuver is comprised of exo- and

trans-atmospheric trajectory segments as described by the example in Fig. 4.1. For the present

research, the sequence of maneuver events for skip entry commences with a de-orbit impulse

applied by the TAV at an initial circular orbit altitude, ℎ𝑖 (A). By decreasing orbital velocity, the

initial circular orbit – or reference orbit – is transformed into an elliptical orbit with apogee equal

to ℎ𝑖, and perigee corresponding to the desired depth of atmospheric penetration. Following (A),

orbital altitude decreases until perigee transit at (B), which occurs below the upper limit of the

sensible atmosphere at an altitude of approximately 120 km. During the trans-atmospheric

trajectory segment, the TAV generates and utilizes atmospheric lift to execute an out-of-plane

maneuver by banking left or right.

www.manaraa.com

71

 As the altitude of a skip entry trajectory decreases, the TAV encounters increasing

atmospheric density and, therefore, greater aerodynamic drag. In the absence of drag, the TAV

states at (A) would equal those at the end of the trans-atmospheric trajectory, or skip apogee (C).

By converting kinetic energy into heat, aerodynamic drag reduces both the altitude and velocity

of the TAV such that: (1) The skip apogee altitude is less than the initial altitude; and (2) the

velocity is less than the orbital velocity at skip apogee. Without performing a re-circularization

burn at skip apogee to establish a stable circular orbit, the TAV will re-enter the atmosphere and

continue on a phugoid trajectory of decreasing energy and altitude until planetary impact. With

the completion of the re-circularization impulse at (C), however, the TAV enters a new circular

orbit (D) which is then maintained until the next maneuver is performed, whether exo- or trans-

atmospheric in design.

Figure 4.1. Skip Entry Maneuver Diagram

www.manaraa.com

72

 Presented as an alternative to both skip entry and simple plane change maneuvers, planar

phasing maneuvers can fulfill a desired mission tasking by either increasing or decreasing the

semi-major axis of the reference orbit. With the former case, orbital velocity is increased to

create an elliptical orbit with perigee equal to ℎ𝑖; for the latter case, orbital velocity is decreased

to create an elliptical orbit with apogee equal to ℎ𝑖 and a perigee altitude greater than 120 km,

thus precluding any transit through the sensible atmosphere. Perigee placement near the sensible

atmosphere limit will, however, yield aerodynamic effects sufficient to degrade the phasing

maneuver trajectory if successive perigee transits are executed. Despite such potential effects, the

bank angle for all planar phasing maneuvers will remain at 𝜎 = 0 deg.

Methodology

 For the planar phasing and out-of-plane skip maneuvers, algorithms are developed to

achieve over-flight of a specified ground target by either increasing or decreasing the semi-major

axis of an initial reference orbit, or by banking a TAV within the sensible atmosphere to create a

plane change. As a means of evaluating the effectiveness of the phasing and skip maneuvers in

terms of ground target time-of-arrival and total ∆𝑉, an algorithm is also developed for simple

plane change maneuvers conducted in the vacuum environment.

Simulation of Planar Phasing Maneuvers

 As an alternative to the exo-atmospheric simple plane change, a TAV can perform either

a planar phasing or out-of-plane skip maneuver to fulfill a baseline example of a responsive

space mission: Overfly a specified ground target in minimum time. In order to demonstrate the

implementation of these maneuver cases, the sample ground target of Moscow was selected due

to its mid-latitude location in the Northern Hemisphere. The geographical coordinates for

www.manaraa.com

73

Moscow along with other sample ground targets utilized for subsequent comparative analyses of

maneuver performance are given in Table 4.1. To ensure coverage of all sample ground targets,

an initial inclination angle of 70 deg was chosen since it is greater than the latitude of Reykjavik,

the northernmost sample location. All remaining reference orbit states are outlined in Table 4.2.

Table 4.1. Geographical Coordinates of Sample Ground Targets of Interest

Ground Target Longitude Geodetic
Latitude

Reykjavik, Iceland 21.9333 deg E 64.1333 deg N
Moscow, Russia 37.6178 deg E 55.7517 deg N

Tokyo, Japan 139.767 deg E 35.6833 deg N
Gibraltar, United Kingdom 5.3530 deg W 36.1430 deg N

Pontianak, Indonesia 109.333 deg E 0.0000 deg N
Brasilia, Brazil 47.9196 deg W 15.7810 deg S

Buenos Aires, Argentina 58.3817 deg W 34.6036 deg S
Canberra, Australia 149.131 deg E 35.2828 deg S

Cape Town, South Africa 18.4244 deg E 33.9767 deg S

Table 4.2. Reference Orbit Initial States for Over-Flight Analysis

Eccentricity, 𝑒 0.0
Altitude, ℎ𝑖 1000 km

Longitude, 𝜃𝑖 0 deg
Latitude, 𝜙𝑖 0 deg

Inclination, 𝑖𝑖 70 deg
Flight-Path Angle, 𝛾𝑖 0 deg
Heading Angle, 𝜓𝑖 70 deg

Bank Angle, 𝜎𝑖 0 deg

 As a consequence of simulating trajectories with respect to a rotating planetary reference

frame, both the heading angle and orbital velocity need to be recomputed as relative quantities.

Defined by the initial reference orbit states, the initial guess for the relative orbital velocity, 𝑉𝑅 ,

is calculated by utilizing the 𝑉𝑅 �̇� trajectory force equation components as inputs to the quadratic

formula when �̇� = 0:

www.manaraa.com

74

 𝑉𝑛𝑅 = −𝑏±√𝑏2−4𝑎𝑐
2𝑎

 (4.1)

where the variables 𝑎, 𝑏, and 𝑐 are given by:

𝑎 =
1
𝑟

cos 𝛾 + �
𝜌𝐶𝐿𝑆
2𝑚

� cos𝜎

𝑏 = 2𝜔⊕ cos𝜙 cos𝜓

𝑐 = −𝑔(𝑟) cos 𝛾 + 𝑟𝜔⊕
2 cos𝜙 (cos𝜙 cos 𝛾 − sin𝜙 sin𝜓 sin 𝛾)

With the computed value for orbital velocity, the initial guess for the heading angle is determined

via the Law of Sines. When rotation is activated, the heading angle becomes a function of orbital

velocity relative to the rotating reference frame, 𝑉𝑅 . Based on the vector geometry of Fig. 4.2,

the Law of Sines is employed to produce:

 � 𝑉��⃗𝑅 �
sin(∆𝜙)

= �𝑉��⃗ 𝜙1�
sin(𝜓−∆𝜙)

= 86400 𝑉𝑅

sin(∆𝜙)
= 2𝜋 𝑟𝑖

sin(𝜓−∆𝜙)

When algebraically re-arranged, the preceding expression becomes:

 𝜓 = ∆𝜙 + sin−1 �2𝜋 𝑟𝑖 sin(∆𝜙)
86400 𝑉𝑅

� (4.2)

where 𝑉𝑅 is the orbital velocity calculated from Eq. (4.1). Placed in an iterative loop, Eqs. (4.1)

and (4.2) produce relative orbital state solutions when a specified error tolerance is surpassed

between the 𝑛 and (𝑛 − 1) steps of the relative heading angle solution algorithm.

www.manaraa.com

75

Figure 4.2. Heading Angle, Orbital Velocity with Respect to a Rotating Reference Frame

With the initial values for the relative heading angle and orbital velocity calculated for

the TAV, the reference orbit is then propagated for a simulation time of 24 hours. Comparing the

final value for semi-major axis with that of the initial state revealed an increase of 0.360836 m

and a likewise increase in eccentricity from 0.0 to 2.445 x 10−8. To ensure that all planar

phasing maneuvers commence from a circular reference orbit, the secant iteration method was

implemented rather than the traditional Newton-Raphson method. A one-dimension root-finding

routine, Newton-Raphson requires the evaluation of both the function 𝑓(𝑥) and derivative 𝑓′(𝑥)

at a point 𝑥. Overall, quadratic convergence is achieved by extrapolating the local derivative and

geometrically extending a tangent line formed at the current point 𝑥𝑛 until it crosses zero, where

the next guess 𝑥𝑛+1 is set equal to the functional value associated with the tangent line zero-

crossing, also known as the ordinate.110

For the problem of ensuring that the reference orbit is indeed circular, the heading angle

and orbital velocity states must be iteratively calculated so that the difference between the target

and post-simulation semi-major axis are within a specified error tolerance. Since functional

relationships and their associated derivatives are not readily available for these parameters, the

110 William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling, Numerical Recipes: The Art

of Scientific Computing (Cambridge, United Kingdom: Cambridge University Press, 1988), 254-255.

www.manaraa.com

76

Newton-Raphson method cannot be directly utilized without approximating the derivative 𝑓′(𝑥).

Alternatively, the derivative requirement can be bypassed by instead using a secant line passing

through two points on the curve to iteratively find the root. In terms of orbital velocity, 𝑉, and

semi-major axis, 𝑎, the secant method can be represented as:111

 𝑉𝑛+1 = 𝑉𝑛 + (𝑉𝑛−𝑉𝑛−1)(𝑎0−𝑎𝑛)

𝑎𝑛−𝑎𝑛−1
 (4.3)

where the index 0 represents the target condition for semi-major axis.

Following two iterations, the relative values for heading angle and orbital velocity

calculated were then used to re-propagate the reference orbit to create a trajectory with a semi-

major axis deviation of 0.1804 m – the result of accumulated numerical errors in the differential

equation solver. From the ground track trajectory produced by the propagated reference orbit, the

approximate locations where the trajectory crossed the line of latitude for the ground target were

identified and catalogued. Since the solver produces discrete solutions, the exact longitude

corresponding with each latitude crossing cannot be directly determined from the trajectory and,

therefore, must be interpolated. Selecting cubic spline rather than a linear interpolation scheme

due to the nonlinearities of the trajectory, the longitude of each crossing was calculated and then

differenced with the target longitude to produce a “delta”-longitude, or ∆𝜃. Figure 4.3 illustrates

the ground track trajectory of the propagated reference orbit with respect to the example target of

Moscow, while Fig. 4.4 depicts the latitude crossings, interpolation points, and resulting

longitude interpolation solutions.

111 James F. Epperson, An Introduction to Numerical Methods and Analysis (Hoboken, NJ: John Wiley & Sons, Inc.,

2007), 120-121.

www.manaraa.com

77

Figure 4.4. Latitude Crossings and Related Longitude Interpolation Solutions
(Trajectory Point: Open Circle; Interpolated Crossing: Square)

(ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg)

Figure 4.3. Ground Track Trajectory of Reference Orbit

www.manaraa.com

78

As examples, the sample latitude crossings of 97.96 deg E and 33.59 deg E from Fig. 4.4

will be used to create first an “ascending,” then a “descending” phasing maneuver, respectively.

For both cases, the type of phasing maneuver is dictated by the location at which the ground

track trajectory crosses the line of latitude of the target. With the first example crossing located

east of the target, indicated by the right arrow in Fig. 4.4, the TAV traveled too far during the

simulation time and overshot the target. As a result, the semi-major axis of the reference orbit

must increase to create an elliptical trajectory defined by a perigee location coinciding with the

reference altitude of 1000 km. By conducting a single impulsive, tangential burn the TAV will

enter the “ascending” eccentric orbit so as to decrease the angular distance traversed during the

orbit period, thus permitting an over-flight of the target rather than a miss to the east.

The amount by which the semi-major axis of the reference orbit must increase is dictated

by both the value of ∆𝜃 and the number of reference orbits required to produce the elapsed

simulation time corresponding to the latitude crossing. The number of reference orbits, 𝑛𝑟𝑒𝑓, is

calculated by dividing the latitude crossing time by the reference orbit period, and then

subsequently truncating the result to yield an integer value. Since the Earth rotates at an angular

rate of 15 deg per hour, a delta-period, or ∆ℙ, is calculated by dividing the longitudinal

difference, ∆𝜃, by the number of reference orbits and then converting into a time duration:

 ∆ℙ = �∆𝜃 𝑛𝑟𝑒𝑓⁄ �(hr 15 deg⁄)(3600 s/hr) (4.4)

With the latitude crossing located east of the target, the value for ∆ℙ must be added to the

reference orbit period to produce the “ascending” eccentric, or perturbed orbit period. For the

east latitude crossing case, the period of the perturbed orbit is 2.118 hr, which corresponds to an

“ascending” semi-major axis of 8372.10 km obtained from:

www.manaraa.com

79

 𝑎𝑝𝑒𝑟𝑡 = �𝜇 � ℙ
2𝜋
�
2
�
1
3
 (4.5)

Prior to the propagation of the perturbed orbit, the secant method was again utilized to

determine the requisite initial values for heading angle and orbital velocity for the “ascending”

maneuver relative to the rotating reference frame. Following the completion of the perturbed

orbit propagation – a time equal to the product of the perturbed orbit period and the number of

reference orbits – a second impulsive tangential burn is applied when the flight-path angle is

𝜙 = 0 deg so as to minimize the ∆𝑉 required for orbit re-circularization at the initial reference

orbit altitude. Figure 4.5 shows both the propagated perturbed and re-circularized orbits (dashed

line) in contrast to the initial reference orbit (solid line).

Figure 4.5. Ground Track Trajectory of “Ascending” Phasing Maneuver Example
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line)

www.manaraa.com

80

By conducting an “ascending” phasing maneuver, the TAV shifted the east-latitude

crossing westward and produced an ascending-node target over-flight with an elapsed time-of-

arrival of 23.59 hr from the simulation start time of 𝑡 = 0 at the initial latitude/longitude

coordinates (𝜃,𝜙) = (0,0) deg. The total ∆𝑉 for the phasing maneuver is 0.846 km s⁄ ,

comprising of 0.423 km s⁄ for both the de-orbit burn from the reference into the “ascending”

eccentric orbit trajectory and orbit re-circularization at the initial reference altitude.

 For the “descending” phasing maneuver case, latitude crossings located west of the target

indicate that the TAV traveled an insufficient distance during the simulation time and, therefore,

undershot the target. Rather than increasing the reference orbit semi-major axis as with the

“ascending” case, the “descending” case must instead decrease the semi-major axis to create an

elliptical trajectory defined by an apogee location coinciding with the reference altitude

of 1000 km. By conducting a single impulsive, tangential burn similar to the “ascending” case,

the TAV will enter the “descending” eccentric orbit to overfly the target by traversing a greater

angular distance during the orbit period, and thus decreasing the westward longitudinal

difference ∆𝜃 to zero. Based on the example latitude crossing of 33.59 deg E located west of

Moscow, the value for ∆ℙ calculated from Eq. (4.4) must be subtracted from the reference orbit

period to produce a “descending” eccentric orbit period of 1.685 hr which corresponds to a

semi-major axis of 7188.43 km. Figure 4.6 shows the propagated perturbed and re-circularized

orbits (dashed line) in contrast to the initial reference orbit (solid line).

www.manaraa.com

81

Through the execution of a “descending” phasing maneuver, the TAV shifted the west-latitude

crossing eastward and produced a descending-node target over-flight with a time-of-arrival

of 7.316 hr. The total ∆𝑉 for the phasing maneuver is 0.195 km s⁄ , to include 0.0974 km s⁄ for

the tangential burn to transition from the reference to the “descending” eccentric orbit trajectory

and 0.0974 km s⁄ for orbit re-circularization.

 As an alternative, a modified phasing maneuver is available which transforms

“descending” maneuvers into the “ascending” variant. In order to the eliminate the longitude

difference between a west crossing and the target, “descending” phasing maneuvers reduce the

semi-major axis of the reference orbit and thus increase orbital velocity. While theoretically

tenable, large values of ∆𝜃 generate practical problems since the maneuver semi-major axis

produces an impact scenario with the planetary surface. Rather than branding such west crossing

Figure 4.6. Ground Track Trajectory of “Descending” Phasing Maneuver Example
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line)

www.manaraa.com

82

cases as infeasible, they can be transformed into “ascending” phasing maneuvers by subtracting

the longitude difference ∆𝜃 from 360 deg to create an east crossing on the target line of latitude.

As a consequence of this longitudinal shift, the time of the new east crossing is determined by

first dividing the modified longitude difference (360 deg − ∆𝜃) by 360 deg per sidereal day,

and then adding the result to the time associated with the original west crossing. Once calculated,

the time of the new east crossing is divided by the reference orbit period to yield the requisite

number of reference orbits, 𝑛𝑟𝑒𝑓, to complete the maneuver and overfly the target. Subsequent

steps in the maneuver algorithm to include the calculation of ∆ℙ, the perturbed orbit period, and

the perturbed orbit semi-major axis, are identical to the conventional “ascending” case.

 For all phasing maneuvers analyzed, the time-of-arrival is derived from a determination

of miss distance between the ground track trajectory and the target coordinates. Although the

preceding discussion indicated that both the “ascending” and “descending” phasing maneuver

examples produced a target over-flight, a comparison of the respective ground track trajectories

with the target coordinates reveals a distance deviation and, therefore, not a true over-flight

despite the target remaining within the field of view of the TAV. Quantitatively, this deviation is

expressed by a miss distance of 10.23 km for the “ascending” and 0.68 km for the “descending”

example cases.

 Ideally, the minimum miss distance between the ground track trajectory and target can be

represented as a position vector originating from the target and orthogonally extending to the

trajectory. Since the ground track trajectory is comprised of a set of discrete points rather than a

continuous curve, the determination of the minimum miss distance can become computationally

expensive with the active searching of regions along the trajectory that potentially contain a

minimum, then the subsequent interpolation of these candidate regions to provide the points

www.manaraa.com

83

necessary to calculate the distance between the trajectory and target. As an alternative, the miss

distance is determined by first interpolating the coordinates at which the trajectory crossed the

lines of latitude and longitude pinpointing the target. Once identified, the distance between these

crossings and the target is then calculated with Eq. (4.6) and compared to determine the

minimum value.112 See Appendix B for geodesic distance on a non-spherical planetary model.

 𝑠 = 𝑟⊕ cos−1[sin𝜙1 sin𝜙2 + cos𝜙1 cos𝜙2 cos(𝜃1 − 𝜃2)] (4.6)

Simulation of Out-of-Plane Skip Entry Maneuvers

 Rather than executing a phasing maneuver, target over-flight can be achieved with out-

of-plane skip maneuvers that vary the trajectory perigee altitude and TAV bank angle instead of

the reference orbit semi-major axis. By decreasing the perigee altitude below the upper limit of

the sensible atmosphere, the TAV encounters increased collisions with atmospheric chemical

species as the rarefied, free-molecular flow of the exosphere shifts into the slip-flow, and

eventually the hypersonic continuum flow regime of the lower atmospheric layers.113 With

atmospheric density increasing as altitude decreases, the introduction of a non-zero bank angle

by the TAV creates an aerodynamic force that enables a change in velocity vector direction and,

therefore, the orientation of the orbital plane.

 While an optimum out-of-plane solution of minimum target time-of-arrival would

involve a simultaneous solution for perigee altitude and bank angle, an alternative method limits

the design space and reduces the number of dynamic variables to either: (1) Perigee altitude; or

(2) bank angle. If the former option is selected, then the values for both the perigee and skip

apogee altitudes are known a priori. Since an out-of-plane maneuver is conducted within the

112 Paul Longley, Michael F. Goodchild, David J. Maguire, and David W. Rhind, Geographic Information Systems

and Science (Hoboken, NJ: John Wiley & Sons, Inc., 2005), 117.
113 King-Hele, 26.

www.manaraa.com

84

sensible atmosphere, then aerodynamic drag effects produce a skip apogee lower than the

reference orbit altitude. The exact value of skip apogee represents an unknown quantity since the

magnitude of the bank angle remains to be optimized. By convention, a bank angle

approaching ±90 deg produces an apogee altitude closer to the upper limit of the sensible

atmosphere, whereas a bank angle approaching 0 deg yields an apogee altitude closer to that of

the reference orbit. Depending on the apogee altitude, the amount of ∆𝑉 expended for re-

circularization remains variable since the mission might necessitate a boost to a higher altitude if

the apogee altitude is too low due to considerations of either payload effectiveness and/or TAV

mission lifetime.

With the latter option, only the bank angle is known a priori and the perigee altitude

remains to be optimized. So as to create an approximate maximum aerodynamic force, the bank

angle is set to either ±90 deg depending on the location of target relative to the ground track

trajectory of the reference orbit. Of the two options available, the constant bank angle option was

selected and an iterative solution method implemented to optimize perigee altitude for all

subsequent analysis. Starting from the reference orbit states given in Table 4.2, the requisite

perigee altitude to produce an over-flight condition is determined by first identifying the

orientation of the closest approach of the reference orbit ground track trajectory to the target. If

south or east, then the bank angle is set to +90 deg for a right bank; −90 deg for a left bank if

north or west. If the calculated miss distance between the trajectory and target exceeds a

specified error tolerance, then the perigee altitude is either decremented to reduce the out-of-

plane shift of the trajectory, or, conversely, incremented to increase the trajectory shift. Once

over-flight is achieved within permissible miss distance tolerances, the time-of-arrival and total

∆𝑉 are then calculated according to the method described for the planar phasing maneuvers.

www.manaraa.com

85

Simulation of Simple Plane Change Maneuvers

 As a means of evaluating the effectiveness of planar phasing and out-of-plane skip

maneuvers, the respective time-of-arrival and total ∆𝑉 required for ground target over-flight is

compared with corresponding values calculated for a simple plane change. Similar to the skip

maneuvers, the amount of plane change required for target over-flight is determined by first

identifying whether the closest approach of the reference orbit ground trajectory is north or south

of the target. If the calculated miss distance between the trajectory and target exceeds a specified

error tolerance, then the initial inertial heading angle of the spacecraft is decremented if missing

to the north, and, conversely, incremented if missing to the south. Once the heading angle

required for target over-flight is obtained, then it is differenced with that of the reference orbit to

produce a “delta” value describing the amount of heading angle change required for the

maneuver (∆𝜓). A function of relative orbital velocity, flight-path angle, and inclination change,

an expression for the ∆𝑉 necessary to perform a simple plane change maneuver is given by:114

 ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒 = 2 𝑉𝑅 𝑖 cos 𝛾 ∙ sin �1
2

|∆𝑖|� (4.7)

Results and Analysis

 The ability for planar phasing and out-of-plane skip maneuvers to perform an over-flight

of a specified ground target in minimum time was analyzed for the locations given in Table 4.1.

While all sample ground targets were analyzed, planar phasing maneuvers were only

implemented for locations deemed representative of the high (Moscow), medium (Gibraltar), and

low-latitude (Pontianak) regions. Over-flights of the remaining ground targets were executed

utilizing only the skip entry and simple plane change maneuvers.

114 Vallado, 345-346.

www.manaraa.com

86

Maneuver Performance Comparison for Select Ground Targets

 For all sample ground targets, “ascending” and “descending” phasing maneuvers were

designed based on the location of the reference orbit relative to the ground target. Employing a

fourth-order Runge-Kutta solver, simulations of each phasing maneuver yielded over-flight data

featuring not only time-of-arrival and altitude-of-arrival, but also the ∆𝑉 required to enter the

perturbed orbit and subsequently re-circularize after completion of the required number of

reference orbits comprising the maneuver. Based on this data, a series of plots were created to

illustrate: (1) ∆𝑉 versus time-of-arrival; (2) ground resolution versus time-of-arrival; (3) altitude-

of-arrival versus time-of-arrival; and (4) number of reference orbits versus ∆𝑉. Illustrated in Fig.

4.7 for the ground target of Moscow, over-flights originating from a reference orbit altitude of

1000 km occur at an elapsed time of approximately 7.3, 23.6, and 31.3 hr for the planar phasing

maneuver cases. For each of these time-of-arrival bands, the solutions corresponding to high

values for ∆𝑉 indicate that large shifts in latitude are required to create an over-flight. Likewise,

the low ∆𝑉 solutions arise from small shifts in latitude necessary for target over-flight. In terms

of fuel expenditure, the phasing maneuver ∆𝑉 decreases as the number of reference orbits

increases depending on the semi-major axis of the perturbed orbit. Of the various phasing

maneuvers simulated, an “ascending” case with 13 reference orbits and an apogee altitude of

1219.15 km yielded the lowest ∆𝑉 at 0.107 km/s. Despite having the same number of reference

orbits, an example of an “ascending” case transformed from a “descending” maneuver produced

a higher apogee altitude at 4248.40 km and a greater ∆𝑉 of 1.268 km/s.

 As an alternative initial condition, the reference orbit and related phasing maneuvers

were also simulated from an initial altitude of 750 km. While sharing the same time-of-arrival

bands as the 1000 km altitude alternative, the 750 km altitude cases produced additional times-

www.manaraa.com

87

of-arrival at 8.16 and 17.8 hr. For both initial altitude cases, the TAV overflew Moscow at an

altitude equal to the initial condition, with the exception of an “ascending” case whose semi-

major axis was defined by an apogee and perigee of 12048.20 km and 750 km, respectively,

and an altitude-of-arrival of 1385.82 km. To ascertain maneuver effectiveness in terms of

altitude-of-arrival, the TAV flies a visible imager payload with dimensions of (𝑙,𝑤,ℎ) =

(2.10, 1.20, 2.80) m, an aperture diameter (𝐷) of 1.15 m, a focal length (𝑓) of 2.70 m, and

image wavelength of 1.0 µm. Using Eq. (4.8), the diffraction-limited ground resolution for each

maneuver is calculated with respect to the altitude-of-arrival over each sample ground target.115

 𝑋𝑣𝑖𝑠 = 2.44 ℎ𝜆𝐷−1 (4.8)

For the 1000 km initial altitude case, the ground resolution was 2.12 m, while the resolution

decreased to 1.59 m for the 750 km case.

In addition to planar phasing maneuvers, Fig. 4.7 also shows the over-flight parameters

for two out-of-plane skip maneuvers performed from an initial altitude of 1000 km. For an

initial inclination of 70 deg, only a single out-of-plane maneuver opportunity is available for the

target latitude crossing at 33.59 deg E. Banking at 𝜎 = −90 deg, this maneuver produced an

over-flight time-of-arrival of 7.361 hr with ∆𝑉 = 0.482 km/s. When the inertial inclination is

decreased to 60 deg, however, two out-of-plane maneuver opportunities become available. As

outlined in Table 4.3, the skip maneuvers surpassed the majority of phasing maneuvers in terms

of the ∆𝑉 required to achieve the shortest time-of-arrival. Although a “descending” phasing

maneuver was shown to overfly Moscow in 7.316 hr with ∆𝑉 = 0.195 km/s, the first skip

maneuver with 𝜎 = +90 deg and an initial inclination of 60 deg was able to achieve an over-

115 Bruce Chesley, Reinhold Lutz, and Robert F. Brodsky, “Space Payload Design and Sizing,” in Space Mission

Analysis and Design, ed. James R. Wertz and Wiley J. Larson (El Segundo, CA: Microcosm Press, 2003), 264.

www.manaraa.com

88

flight after 1.947 hr with ∆𝑉 = 0.466 km/s – a ∆𝑉 increase of 139% for a time-of-arrival

savings of 5.369 hr. Likewise, an increase in ∆𝑉 from 0.466 km/s to 0.485 km/s produces an

over-flight after 5.611 hr for the second 60 deg inclination case – a time-of-arrival that is

1.705 hr faster than the preceding “descending” phasing maneuver case. Besides faster times-of-

arrival over Moscow, the skip maneuver examples furthermore produce improved imager

resolutions of 1.86 m and 2.10 m, respectively, since the re-circularized orbit altitudes of

876.57 km and 989.97 km are lower than the reference orbit altitude.

 As a final point of comparison, Fig. 4.7 also presents the time-of-arrival and ∆𝑉 required

to produce an over-flight of Moscow via a simple plane change maneuver. At an altitude

of 1000 km, the simple plane change achieves a time-of-arrival of 2.043 hr with ∆𝑉 =

0.491 km/s. By comparison, the 𝜎 = +90 deg skip entry case produced a 0.096 hr-slower

time-of-arrival with ∆𝑉 = 0.516 km/s, thus making the simple plane change the superior

alternative. In terms of time-of-arrival alone, the simple plane change out-performs the

“ascending” and “descending” phasing maneuvers alike, while for ∆𝑉, it under-performs the

“ascending” maneuver with ∆𝑉 = 0.107 km/s. When the altitude is decreased to 750 km, then

the simple plane change achieves an over-flight of Moscow with ∆𝑉 = 0.0128 km/s. While this

represents the lowest ∆𝑉 value among the various maneuver options, the lower altitude produces

a trade-off with a time-of-arrival of 23.576 hr for the simple plane change.

www.manaraa.com

89

Table 4.3. Out-of-Plane Skip Maneuver Parameters for Moscow, Russia

Parameter 𝑖𝑖 = 70 deg 𝑖𝑖 = 60 deg 𝑖𝑖 = 60 deg

Bank Angle −90 deg +90 deg −90 deg
Latitude Crossing 33.59 deg E 26.36 deg E 35.06 deg E

Time-of-Arrival, hr 7.361 1.947 5.611
∆𝑉𝑇𝑜𝑡𝑎𝑙, km/s 0.482 0.466 0.485

ℎ𝑝, km 95.9 88.39 103.1
Altitude-of-Arrival, km 949.01 876.57 989.97

𝑋𝑣𝑖𝑠, m 2.01 1.86 2.10
Miss Distance, km 0.637 1.85 0.047

Figure 4.7. Maneuver Over-Flight Parameters for Moscow, Russia

www.manaraa.com

90

 For the medium-latitude case of Gibraltar, over-flights originating from an initial altitude

of 1000 km also occur in bands, but at elapsed times of approximately 11.3, 25.3, and 35.2 hr

for the phasing maneuver cases. As shown in Fig. 4.8, the phasing maneuvers commencing at an

altitude of 1000 km maintained a lower ∆𝑉 than the 750 km-case within the 11.3 hr time-of-

arrival band. Similar to the Moscow case, phasing maneuvers commencing at 1000 km out-

performed the simple plane change maneuver at the same initial altitude with ∆𝑉 = 0.046 km/s

– a value 0.179 km/s lower than the simple plane change with ∆𝑉 = 0.225 km/s and a time-of-

arrival of 11.19 hr. Although more expensive in terms of ∆𝑉, the simple plane change maneuver

conducted at a 750 km altitude produced the fastest time-of-arrival at 1.86 hr.

Figure 4.8. Maneuver Over-Flight Parameters for Gibraltar, United Kingdom

www.manaraa.com

91

 Lastly, for the equatorial case of Pontianak, Indonesia, over-flights originating from an

initial altitude of 1000 km occur at elapsed times of approximately 4.7, 16.6, 28.6, and 40.6 hr

for the phasing maneuver cases. As compared with Moscow and Gibraltar, the 40.6 hr band

represents the longest for time-of-arrival and results from the transformation of “descending”

phasing maneuvers into the “ascending” alternative. Depicted in Fig. 4.9, the phasing maneuvers

commencing at both the 750 km and 1000 km iniital altitude cases maintained a considerably

lower ∆𝑉 than the simple plane change maneuvers, with the most expensive phasing maneuver at

a ∆𝑉 of 4.293 km/s, a value 45.1% lower than ∆𝑉 = 7.815 km/s for the 1000 km-altitude

simple plane change. Overall, such disparity in ∆𝑉 between the phasing and simple plane change

maneuvers stems from the mechanics of the maneuvers: the former achieves over-flight by either

increasing or decreasing the reference orbit semi-major axis while retaining the original heading

angle and inclination; the latter achieves over-flight by decreasing the inclination angle from

70 deg to 0 deg. As a consequence of its equatorial location, Table 4.4 shows that Pontianak

requires the highest ∆𝑉 among the various sample ground targets to achieve over-flight via

simple plane change. For the remaining locations, a direct relationship between ∆𝑉 and target

latitude cannot be conclusively established since the values listed reflect the ∆𝑉 required to shift

the reference orbit ground track towards the target with the intent of creating an over-flight.

Table 4.4. Simple Plane Change Maneuver Parameters (ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg)

Ground Target 𝜓𝑆𝑖𝑚𝑝𝑙𝑒, deg Time-of-
Arrival, hr ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒, km/s

Reykjavik, Iceland 66.65 9.254 0.418
Moscow, Russia 73.25 2.043 0.491

Tokyo, Japan 64.65 15.96 0.666
Gibraltar, United Kingdom 68.20 11.19 0.225

Pontianak, Indonesia 0.000 4.355 7.815

www.manaraa.com

92

Analysis of Out-of-Plane Skip Entry Maneuvers

 For the Moscow over-flight scenario, the first skip maneuver executed set the TAV bank

angle to 𝜎 = +90 deg and the perigee altitude at 88.39 km so as the shift the target latitude

crossing at 26.36 deg E eastward to overfly the target. By performing a rightward-bank, the skip

maneuver not only shifted the ground track trajectory of the reference orbit to the south and east,

but also decreased the maximum orbit inclination from 60 deg to 57.95 deg, a reduction of

3.42%. Even though 𝜎 = +90 deg at the start of the simulation, a shifting in the perturbed orbit

with respect to the reference orbit does not occur until the altitude of the TAV approaches the

upper limit of the sensible atmosphere and descends below it.

Figure 4.9. Maneuver Over-Flight Parameters for Pontianak, Indonesia

www.manaraa.com

93

Representing an ascending node over-flight opportunity, the ground track trajectory of

the first skip maneuver is shown in detail in Fig. 4.10. As a result of aerodynamic drag

encountered by the TAV near perigee, the skip apogee altitude and resulting re-circularized orbit

altitude of 876.57 km is 12.34% lower than the initial 1000 km altitude. Re-circularized at a

comparatively high altitude low-Earth orbit, the TAV is capable of performing either subsequent

exo- or trans-atmospheric maneuvers due to the higher orbital potential energy available.

 For the second skip maneuver, the TAV bank angle was set to 𝜎 = −90 deg and perigee

optimized at a higher altitude of 103.1 km so as to shift the target latitude crossing at

35.06 deg E eastward towards the target. By performing a maximum bank to the left as opposed

to the right as in the first out-of-plane case, the skip maneuver in Fig. 4.11 shifted the ground

track trajectory of the reference orbit to the north and east, thereby decreasing the maximum

orbit inclination from 60 deg to 59.82 deg, a reduction of 0.3%. Since the skip entry seeks to

Figure 4.10. Over-Flight Detail of Ascending Node Out-of-Plane Skip Maneuver
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line)

www.manaraa.com

94

shift a descending node segment of the reference orbit, more flight time is available to propagate

the change in the orbital plane created by the skip maneuver. As a result, the perigee altitude is

optimized at a higher altitude of 103.1 km in order to reduce the aerodynamic drag encountered

by the TAV and limit the overall change in orbit inclination. When simulated, the second skip

maneuver case re-circularized at an orbit altitude of 989.97 km, a reduction of 1.00% from the

initial 1000 km altitude.

 Similar to the preceding maneuver case, the skip entry performed at an initial inclination

of 70 deg also maintained a bank angle of 𝜎 = −90 deg. Transiting a perigee altitude of 95.9

km, this maneuver achieved a time-of-arrival of 7.361 hr with ∆𝑉 = 0.482 km/s. While out-

performed by phasing maneuvers executed at the same initial conditions, the skip maneuver at

𝑖𝑖 = 70 deg still provides a responsive over-flight trajectory with a time-of-arrival less than 18

hr and ∆𝑉 = 0.5 km/s.

Figure 4.11. Over-Flight Detail of Descending Node Out-of-Plane Skip Maneuver
(Reference Orbit: Solid Line; Perturbed Orbit: Dashed Line)

www.manaraa.com

95

Maneuver Performance Comparison for All Ground Targets

 For the complete list of sample ground targets, encompassing both northern and southern

hemisphere locations, only the skip entry and simple plane change maneuvers were simulated to

determine the relative performance of each out-of-plane maneuver option. Starting from the

latitude/longitude coordinates (𝜃,𝜙) = (0,0) deg, a simulation time of 𝑡 = 0, and an initial

inclination of 60 deg, Table 4.5 illustrates the target time-of-arrival, ∆𝑖, and ∆𝑉 required to

achieve target over-flight. Since the simple plane change maneuvers occur in vacuo, then metrics

related to maximum deceleration and maximum stagnation heat flux are provided only for the

skip maneuver alternative. While only one simple plane change opportunity is available for each

target, upwards of one to possibly four maneuver opportunities are available for skip entry based

on the placement of the reference orbit ground track vis-à-vis the target. For example, two skip

maneuver opportunities exist for Tokyo, while four opportunities exist for Cape Town.

Upon comparison, the skip maneuvers produced the lowest mean ∆𝑉, with the required

∆𝑉 expenditure for each target and associated set of maneuver opportunities being less than

0.5 km/s. Shown in Fig. 4.9 and Table 4.4, the simple plane change produced the highest ∆𝑉

expenditure for the over-flight of Pontianak at 7.096 km/s, compared with ∆𝑉 = 0.443 km/s

for skip entry. Although the simple plane change maneuver demonstrated a faster time-of-arrival

for the targets of Buenos Aires, Brasilia, Canberra, Pontianak, Reykjavik, and Tokyo, the skip

maneuvers out-performed each of these cases in terms of ∆𝑉. Of the sample targets selected,

Gibraltar and Moscow represent the only over-flight cases in which the ∆𝑉 expenditure for the

simple plane change out-performed that of the skip maneuver.

www.manaraa.com

96

Table 4.5. Skip Entry and Simple Plane Change Maneuver Comparison
 (ℎ𝑖 = 1000 km, 𝑖𝑖 = 60 deg)

Ground
Target

Simple Plane Change Skip Entry

∆𝑖, deg
Time-of-
Arrival,

hr
∆𝑉, 𝑘𝑚/𝑠 ∆𝑖, deg

Time-of-
Arrival,

hr
∆𝑉, 𝑘𝑚/𝑠 Max.

Decel., g
�̇�𝑠,𝑚𝑎𝑥 ,

 𝑘𝑊/𝑚2

Reykjavik 4.13 7.446 0.511 4.61 8.224 0.364 0.278 497.32

Moscow 0.74 5.785 0.092
0.05 1.947 0.466 0.135 344.87
0.05 3.652 0.434 0.267 487.84
0.07 5.611 0.485 0.131 82.73

Tokyo 4.67 15.963 0.578 4.14 15.991 0.378 0.253 474.53
0.05 16.609 0.425 0.304 519.92

Gibraltar 0.78 1.959 0.097 4.11 1.731 0.379 0.252 473.64
0.05 9.532 0.311 0.572 708.11

Pontianak 60.00 4.355 7.096 0.05 16.644 0.443 0.230 452.13

Brasilia 24.78 1.615 3.045 10.64 15.433 0.304 0.375 577.43

Buenos
Aires 10.09 1.519 1.248 8.97 2.837 0.299 0.369 572.91

0.05 18.076 0.355 0.476 649.00

Canberra 4.97 12.046 0.615 3.48 12.636 0.396 0.219 441.23
0.05 10.921 0.392 0.391 589.73

Cape Town 5.29 20.813 0.655

5.17 21.501 0.350 0.302 518.84
4.17 12.004 0.376 0.256 477.52
0.05 20.677 0.397 0.379 580.70
0.05 12.543 0.432 0.277 496.63

 Increasing the initial inclination of the reference orbit from 60 deg to 70 deg produced

similar results to those given in Table 4.5, with the skip maneuvers maintaining a mean ∆𝑉 less

than 0.5 km/s for each target over-flight, as well as a maximum deceleration and stagnation heat

flux less than 1.0 g and 1000 kW/m2, respectively. Although the simple plane change maneuver

provided a faster time-of-arrival than skip entry for several targets in both Tables 4.5 and 4.6, to

include Brasilia and Pontianak, the ∆𝑉 expenditure is considerably greater. For example, an

over-flight of Buenos Aires commencing from a 𝑖𝑖 = 60 deg reference orbit achieves a time-of-

arrival of 1.519 hr for a simple plane change, compared with 2.837 hr for the fast skip entry

opportunity. Despite saving 1.318 hr in flight time, the simple plane change requires ∆𝑉 =

www.manaraa.com

97

1.248 km/s, a 317% increase from the ∆𝑉 required for the skip maneuver. Similarly, an over-

flight of Canberra commencing from a 𝑖𝑖 = 70 deg reference orbit achieves a time-of-arrival of

2.807 hr for a simple plane change, while the fastest skip entry opportunity achieves over-flight

in 12.546 hr. Despite producing a faster time-of-arrival of 9.739 hr, the simple plane change

requires a 77% greater ∆𝑉 expenditure than the skip entry alternative.

Even though values for maximum deceleration and stagnation heat flux are presented in

Tables 4.5 and 4.6, the relative impact of these parameters as maneuver performance measures

only attain significance when compared with existing re-entry deceleration and heat flux data.

When trajectory data for vehicles such as the Apollo Command Module or Space Shuttle is

examined, it becomes apparent that the simulated deceleration and heat flux experienced by the

TAV are considerably lower in magnitude, with deviations primarily arising due to the perigee

altitude selected for the skip trajectory. With Apollo and the Space Shuttle performing a terminal

re-entry rather than a skip entry aeroassisted maneuver, the vehicles experience an exponentially

increasing dense atmosphere as the altitude decreases towards sea-level. Consequently, increased

atmospheric density translates into greater deceleration and heat flux experienced by the vehicle

as kinetic energy decreases and is frictionally converted into heat during re-entry.

 In terms of TAV survivability during the skip maneuver, the maximum deceleration of

0.304 g for Gibraltar from Table 4.5 is favorable since it is less than 1.0 g and one order of

magnitude less than the maximum deceleration experienced by vehicles such as Apollo. For

example, re-entry of the Apollo 10 Command Module from lunar transfer orbit produced a

maximum deceleration of approximately 6.75 g.116 As for stagnation heat flux, TAV

survivability is not explicitly evident and thus a comparison with known re-entry data is

116 Hicks, 411.

www.manaraa.com

98

required. Recorded at an approximate altitude of 70 km, STS-5 experienced a maximum heat

flux of 1400 kW m2⁄ on the lower surface of the wing leading-edge.117 Despite being lower in

magnitude, the maximum skip entry value of �̇�𝑠,𝑚𝑎𝑥 = 708.11 kW m2⁄ from Table 4.5 (also

for Gibraltar) only represents an estimate of stagnation heat flux, whereas the STS-5

measurement is total heat flux, to include contributions by radiative heating. Based on the

comparatively shallower entry of the TAV, however, the total heat flux is assumed to be less

than the maximum STS-5 measurement and is deemed survivable for the notional TAV.

Table 4.6. Skip Entry and Simple Plane Change Maneuver Comparison
(ℎ𝑖 = 1000 km, 𝑖𝑖 = 70 deg)

Ground
Target

Simple Plane Change Skip Entry

∆𝑖, deg
Time-of-
Arrival,

hr
∆𝑉, 𝑘𝑚/𝑠 ∆𝑖, deg

Time-of-
Arrival,

hr
∆𝑉, 𝑘𝑚/𝑠 Max.

Decel., g
�̇�𝑠,𝑚𝑎𝑥 ,
𝑘𝑊/𝑚2

Reykjavik 3.29 9.254 0.412 7.49 3.285 0.305 0.376 575.69
0.03 6.862 0.419 0.363 564.67

Moscow 2.16 7.591 0.271 0.41 7.361 0.482 0.109 166.40

Tokyo 5.31 15.963 0.666

6.05 15.335 0.328 0.356 559.45
8.44 2.107 0.297 0.387 583.99
0.03 16.084 0.388 0.444 626.81
0.03 15.681 0.486 0.110 206.77

Gibraltar 1.74 11.196 0.218 0.03 1.743 0.408 0.392 506.03
4.56 11.552 0.365 0.295 587.67

Pontianak 70.00 4.355 8.241 0.03 16.650 0.448 0.256 469.08

Brasilia 34.78 1.615 4.294 0.03 15.640 0.426 0.344 548.67

Buenos
Aires 0.15 16.825 0.019 2.55 3.042 0.424 0.183 388.82

0.03 17.151 0.409 0.389 585.17

Canberra 4.47 2.807 0.560 6.52 13.384 0.316 0.363 564.60
0.03 12.546 0.390 0.440 624.07

Cape Town 2.41 11.562 0.302

7.20 22.138 0.303 0.376 575.32
7.04 11.347 0.308 0.372 572.12
0.03 21.563 0.450 0.241 453.08
0.03 12.091 0.388 0.444 626.52

117 Ko, “Finite Element,” 16, 18, 32.

www.manaraa.com

99

Summary and Conclusion

Based on a notional trans-atmospheric, lifting re-entry vehicle design with 𝐿/𝐷 = 6, a

series of planar phasing, out-of-plane skip entry, and simple plane change maneuvers were

simulated to overfly a set of sample ground targets located at high-, medium-, and low-latitudes,

in the northern and southern hemispheres. From these simulations the creation of time-of-arrival

bands was shown, each comprised of a family of phasing maneuver solutions with a

corresponding total ∆𝑉 dependent on both the type and number of maneuvers performed.

Whether characterized as “ascending” or “descending,” phasing maneuvers maintain consistently

low ∆𝑉 requirements of less than 0.5 km/s, with times-of-arrival less than 18 hr for a variety of

ground targets, both east and west of the Prime Meridian. While the ∆𝑉 for the simple plane

change is lower than most phasing maneuvers executed for over-flights of Moscow and

Gibraltar, the equatorial target of Pontianak, Indonesia illustrated that the choice of ground target

can have a detrimental impact on ∆𝑉 with values approaching 8.0 km/s for a single simple plane

change. For a limited sample ground target set, the skip entry aeroassisted maneuvers have been

shown to consistently provide responsive mission execution in terms of target time-of-arrival,

with maximum deceleration and stagnation heat flux less than 1.0 g and 1000 kW/m2,

respectively.

www.manaraa.com

100

V. Design of Experiments Approach to Atmospheric
Skip Entry Maneuver Optimization

Chapter Overview

An optimal trans-atmospheric vehicle and trajectory design are presented to

simultaneously maximize the change in inclination angle and minimize total ∆𝑉 for an

atmospheric skip entry maneuver. Utilizing a Design of Experiments approach featuring

orthogonal arrays of experiments, the optimal vehicle and trajectory designs are determined

within the context of main effects and Pareto front analysis by evaluating the relative

performance of six design variables, to include mass, planform area, aerodynamic coefficients,

perigee altitude, and bank angle. Depending on the chosen re-circularization altitude, the optimal

design performing a skip entry aeroassisted maneuver can achieve an inclination change

of 19.91 deg with 50-85% less ∆𝑉 than a simple plane change.

Introduction

For the skip entry type of aeroassisted maneuver, maneuver design represents a multi-

objective optimization problem (MOP) with a decision space containing not only TAV and

trajectory design parameters, but also constraints related to TAV capability, such as

available ∆𝑉, maximum deceleration g-loading, and maximum heat flux. With the MOP assumed

to be unconstrained in terms of TAV capability, the decision space then focuses on optimizing

only the TAV and trajectory designs in order solve the primary MOP defined by:

MOP = �

max𝑓(�⃑�) ∆𝑖
min𝑓(�⃑�) ∆𝑉

�

subject to �⃑� ∈ �𝑚, 𝑆,𝐶𝐷 ,𝐶𝐿 ,ℎ𝑝,ℎ𝑖 ,𝜎�
 (5.1)

www.manaraa.com

101

As a sample scenario in which to solve the MOP, a TAV – launched from Wallops Island, VA

into a circular orbit with an inclination equal to the launch site latitude (37.84 deg N) – is to

perform a skip entry maneuver at a bank angle of 𝜎 < 0 deg. Since the initial reference orbit is

prograde, then a negative bank angle produces a leftward turn and, therefore, an increase in orbit

inclination angle. Conversely, a positive bank angle creates a rightward turn and a negative

change in inclination. Furthermore, the scenario neither requires ground target over-flights at

specified times, nor adheres to imposed no-fly zones when conducting the maneuver.

While all simulations conducted within the present research perform a single skip entry

maneuver, the user of a given TAV maintains the prerogative of performing as many exo- or

trans-atmospheric maneuvers as permitted by the ∆𝑉 capacity of the vehicle. Consequently, the

ability to perform consecutive maneuvers is contingent on the orbital energy of the TAV. With

re-circularization required for continued mission operations, the altitude of re-circularization

becomes important since the ∆𝑉 necessary for orbit injection decreases as the altitude of desired

re-circularization increases. Presented as a secondary MOP, the corollary objective space of re-

circularization altitude (ℎ𝑟𝑒𝑐𝑖𝑟𝑐) vs. ∆𝑖 is given in Eq. (5.2). As a tertiary MOP, Eq. (5.3)

illustrates the objective space of ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑉.

MOP = �

max𝑓(�⃑�) ∆𝑖
max𝑓(�⃑�) ℎ𝑟𝑒𝑐𝑖𝑟𝑐

�

subject to �⃑� ∈ �𝑚, 𝑆,𝐶𝐷 ,𝐶𝐿 ,ℎ𝑝,ℎ𝑖 ,𝜎�
 (5.2)

MOP = �

min𝑓(�⃑�) ∆𝑉
max𝑓(�⃑�) ℎ𝑟𝑒𝑐𝑖𝑟𝑐

�

subject to �⃑� ∈ �𝑚, 𝑆,𝐶𝐷 ,𝐶𝐿 ,ℎ𝑝,ℎ𝑖 ,𝜎�
 (5.3)

For each MOP, re-circularization is assumed to occur following the trans-atmospheric flight

segment at skip apogee.

www.manaraa.com

102

Methods of Maneuver Optimization

 Whether exo- or trans-atmospheric in nature, maneuver optimization seeks to maximize

the ability of a spacecraft to change orbital states while managing constraints linked to propellant

availability, mission time factors, and trajectory design. Saddled with limited computing

resources, early research into trans-atmospheric maneuver optimization sought to simplify the

problem by linearizing the system dynamics as well as introducing dimensionless state variables

into the differential equations of motion.118 Once simplified, a classical optimization approach

was applied to produce optimal solutions by evaluating expressions for the variational

Hamiltonian, Lagrange multipliers, adjoint variables, and terminal transversality conditions.

Following this general method, several Mayer-style performance indices were solved for skip

entry, to include: (1) maximizing 𝑉𝑓 with ℎ𝑓 prescribed, and vice versa for a single maneuver;119

(2) maximizing the orbit inclination change, ∆𝑖, for a vehicle conducting a transfer from high

Earth orbit to LEO via aerobraking;120 (3) maximize inclination change and range for multiple-

skip maneuvers;121 and (4) simultaneously minimize ∆𝑉 and maximize skip entry time-of-flight

(TOF) while minimizing peak heat flux.122

Modern advancements in computing have enabled the formulation of increasingly robust

numerical algorithms which support multiple degrees of freedom trajectory simulations and

produce optimal solutions without system linearization or equation non-dimensionalization.

118 Dean R. Chapman, “An Approximate Analytical Method for Studying Entry into Planetary Atmospheres,” NACA

TN 4276 (Moffett Field, CA: AMES Aeronautical Laboratory, 1958), 1-101; Eggers and Wong, 1364-1375; J. L.
Speyer and M. E. Womble, “Approximate Optimal Atmospheric Entry Trajectories,” Journal of Spacecraft and
Rockets 8 (1971): 1120-1125.

119 N. X. Vinh, A. Busemann, and R. D. Culp, “Optimum Three-Dimensional Atmospheric Entry,” Acta
Astronautica 2 (1975): 593-611.

120 N. X. Vinh and John M. Hanson, “Optimal Aeroassisted Return from High Earth Orbit with Plane Change,” Acta
Astronautica, 12 (1985): 11-25.

121 N. X. Vinh and Der-Ming Ma, “Optimal Multiple-Pass Aeroassisted Plane Change,” Acta Astronautica 21
(1990): 749-758; N. X. Vinh and Ya-Wen Shih, “Optimum Multiple-Skip Trajectories,” Acta Astronautica 41
(1997): 103-112.

122 Miele et al., 99-122.

www.manaraa.com

103

Identified as a class of direction collocation, pseudospectral methods parameterize the state and

control trajectories and path constraints using interpolating polynomials, thereby converting an

optimal control problem into a nonlinear programming problem. When the polynomials are

obtained from a Gaussian quadrature, then the method is identified as a Gaussian pseudospectral

method.123 A subtype of algorithms which numerically calculate the value of a definite integral

in one or more dimensions, Gaussian quadrature utilizes polynomial approximations of the

integrand f of increasing degree. The roots of the polynomials, also referred to as nodes, are then

chosen optimally to “maximize the degree of polynomials that the quadrature integrates

exactly.”124 As examples of pseudospectral method implementation, Sun and Zhang maximized

the range of a single skip maneuver subject to several path constraints to include g-loading,

dynamic pressure, and heat flux,125 while Rao et al.126 and Darby and Rao127 minimized ∆𝑉 for

multiple-skip maneuvers subject to only heat flux path constraints.

 In addition to the implementation of numerical algorithms such as pseudospectral

methods to solve optimal control problems, computing advances have also enabled the increase

in problem complexity with the development of multidisciplinary design optimization (MDO)

and metaheuristic methods to solve multistate, multi-objective problems (MOPs).128 One method

of solving a MOP, and the focus of the present research, utilizes the Design of Experiments

(DOE) method of orthogonal arrays to provide optimal solutions based on the simulation of

123 Yong Sun and Maorui Zhang, “Optimal Re-Entry Range Trajectory of Hypersonic Vehicle by Gauss

Pseudospectral Method” (Paper presented at the 2nd International Conference on Intelligent Control and
Information Processing, Harbin, China, 25-28 July 2011): 545-549.

124 Narayan Kovvali, Theory and Applications of Gaussian Quadrature Methods (New York: Morgan & Claypool
Publishers, 2011), 2.

125 Sun and Zhang, 545-549.
126 Rao et al., “Numerical Optimization Study,” 215-238.
127 Darby and Rao, “Optimal Impulsive,” 39-52.
128 El-Ghazali Talbi, Metaheuristics: From Design to Implementation (Hoboken, NY: John Wiley & Sons, Inc.,

2009), 308.

www.manaraa.com

104

optimal control design experiments formulated from a user-defined design space. Besides

orthogonal arrays, other statistical techniques exist within the DOE framework to characterize

objective space behavior (output) with respect to the points comprising the design space (inputs),

to include full-factorial design and Latin-hypercube spacing.129 The most computationally

intensive, full-factorial design evaluates every combination of design variable, or factor, at every

design variable value, or level. As the number of factors and levels increase for a given MOP, the

number of experiments within a full-factorial design increases exponentially.130 Requiring fewer

design experiments than either the full-factorial or orthogonal array alternatives, Latin-hypercube

spacing seeks to maximize design space coverage by not only maximizing the distance between

design points, but also preserving near-uniform spacing between the points.131

 Although requiring more design experiments than Latin-hypercube spacing, orthogonal

arrays permit the calculation of main effects for each factor, which represents the effect of a

given factor averaged across all levels of the remaining factors.132 Similar to the other statistical

techniques, the objective space resulting from the orthogonal array experiment simulations allow

for the determination of optimal solutions based on Pareto front analysis and the identification of

non-dominated design solutions.133 Apart from disciplines such as biology and chemical

engineering,134 DOE methods – specifically orthogonal arrays – have been utilized in various

aerospace optimization applications to include multi-layer insulation design for re-entry

129 Jeremy S. Agte, “Multistate Analysis and Design: Case Studies in Aerospace Design and Long Endurance

Systems” (Ph.D Dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology (MIT), 2011), 103.

130 Roger P. Peterson, Design and Analysis of Experiments (New York, NY: Marcel Dekker, Inc., 1985), 116.
131 Jack P. C. Kleijnen, Design and Analysis of Simulation Experiments (New York, NY: Springer Science +

Business Media, LLC, 2008), 129.
132 A. S. Hedayat, N. J. A. Sloane, and John Stufken, Orthogonal Arrays: Theory and Applications (New York, NY:

Springer Verlag New York, Inc., 1999), 252.
133 Talbi, 309, 311.
134 Torbjörn Lundstedt, Elisabeth Seifert, Lisbeth Abramo, Bernt Thelin, B., Åsa Nyström, Jarle Petterson, and Rolf

Bergman, “Experimental Design and Optimization,” Chemometrics and Intelligent Laboratory Systems 42, no. 1-
2 (1998): 3-40.

www.manaraa.com

105

heating,135 supersonic transport design,136 and UAV design.137 Despite the breadth of aerospace

applications, orthogonal arrays have as of yet to be applied to the optimization of skip entry

maneuvers within the current literature. While providing optimal solutions congruent with

pseudospectral and meta-heuristic methods, orthogonal arrays permit an augmented exploration

of the objective space with the ability to perform main effects analysis.

Methodology

The implementation of the DOE method of orthogonal arrays first requires the formation

of the orthogonal array itself. A matrix of dimension (𝑛 x 𝑚), an orthogonal array represents a

subset of a full-factorial experiment campaign with each row and column corresponding to one

experiment and factor (design variable), respectively. Signifying one simulation run, an

experiment corresponds to a different combination of factors levels, or design variable values. As

an example, the following (2 x 1) matrix represents two consecutive experiments extracted from

an orthogonal array constructed for the present research with six factors (TAV mass, planform

area, aerodynamic coefficients, perigee altitude, and bank angle):

�
𝑚1 𝑆1 𝐶𝐷1 𝐶𝐿1 ℎ𝑝1 𝜎1
𝑚2 𝑆2 𝐶𝐷2 𝐶𝐿2 ℎ𝑝2 𝜎2

� = �
3500 kg 18.9375 m2 0.81875 0.5000 102.2500 km −83.75 deg
5500 kg 16.7500 m2 1.13750 2.0625 104.1875 km −82.50 deg�

With the number of experiments as well as the upper and lower bounds for each factor defined as

inputs, orthogonal arrays can be constructed using various existing mathematical software suites.

135 Kamran Daryabeigi, “Thermal Analysis and Design of Multilayer Insulation for Re-Entry Aerodynamic

Heating,” Journal of Spacecraft and Rockets 39, no. 4 (2002): 509-514.
136 Anthony A. Giunta, Vladimir Balabanov, Dan Haim, Bernard Grossman, William H. Mason, Layne T. Watson,

and Raphael T. Haftka, “Multidisciplinary Optimization of a Supersonic Transport Using Design of Experiments
Theory and Response Surface Modeling,” TR 97-10 (Blacksburg, VA: Virginia Polytechnic Institute and State
University, 2001).

137 Jeremy S. Agte, Nicholas Borer, and Olivier de Weck, “Design of Long Endurance Systems with Inherent
Robustness to Partial Failures during Operations,” Journal of Mechanical Design 134, no. 10 (2012): 100903-
100918.

www.manaraa.com

106

Once the experiments comprising the orthogonal array are simulated, the resulting

objective space can be analyzed in terms of main effects and Pareto optimality. For examples

outlining the calculation of main effects for simple orthogonal arrays, see An Introduction to

Design of Experiments: A Simplified Approach by Barrentine and Statistical Design of

Experiments with Engineering Applications by Rekab and Shaikh.138 For information related to

the mathematical theory underpinning orthogonal arrays and main effects analysis, see

Orthogonal Arrays: Theory and Applications by Hedayat, Sloane, and Stufken.139

 Fundamentally, Pareto analysis seeks to identify a set of optimal solutions for a given

objective space and is utilized for multi-objective optimization within a diverse range of

disciplines from economics and management to science and engineering. As stated by Talbi, a

solution is considered Pareto optimal if it is “not possible to improve a given objective without

deteriorating at least [one other] objective” within the MOP.140 Alternatively, a Pareto optimal

solution represents a non-dominated solution within the objective space.141 For each objective

space obtained from the experiment campaigns comprising this research, the Pareto optimal set,

or Pareto front, is determined with a heuristic filter algorithm which identifies solutions as either

dominated or non-dominated and discards the former.142

138 Larry B. Barrentine, An Introduction to Design of Experiments: A Simplified Approach, (Milwaukee, WI: Quality

Press, 1999); Kamel Rekab and Muzaffar Shaikh, Statistical Design of Experiments with Engineering
Applications (Boca Raton, FL: Taylor and Francis Group, LLC., 2005).

139 Hedayat et al., Orthogonal Arrays: Theory and Applications.
140 Talbi, 308.
141 J. Dario Landa Silva, Edmund K. Burke, and Sanja Petrovic, “An Introduction to Multiobjective Metaheuristics

for Scheduling and Timetabling,” in Metaheuristics for Multiobjective Optimization, ed. Xavier Gandibleux,
Marc Sevaux, Kenneth Sörensen, and Vincent T’kindt (Berlin, Germany: Springer-Verlag Berlin Heidelberg,
2004), 96.

142 J. S. Arora, Introduction to Optimum Design, Third Edition (Waltham, MA: Academic Press, 2012), 670.

www.manaraa.com

107

Since the optimal set of TAV design parameters is unknown, the DOE framework can be

employed to create an orthogonal array of experiments formulated according to the notional

factor level bounds outlined in Table 5.1 for each design parameter, or factor.

Table 5.1. Factors and Associated Level Bounds for TAV Design Parameters

Factor Minimum Value Maximum Value

Mass, kg 2000 6000
Planform Area, m2 15 22
Drag Coefficient 0.5 2.2
Lift Coefficient 0.5 3.0

With the decision space comprising four TAV design factors and three factors of ℎ𝑝, ℎ𝑖,𝜎 related

to trajectory design, a systematic optimization approach is required. Initially, two consecutive

sets of experiments (Campaigns #1, 2) are conducted to identify appropriate factor bounds on the

perigee and initial altitude for the skip entry trajectory, respectively, with 𝜎 = −90 deg. For

Campaign #1, ℎ𝑝 ∈ [75,100] km with ℎ𝑖 = 1000 km; for Campaign #2, the perigee altitude

varies according to the preceding campaign results, with ℎ𝑖 ∈ [300,1000] km. Remaining

at 𝜎 = −90 deg, Campaign #3 is then run to establish an objective space from which Pareto

solutions to the three MOPs are identified. Converting the bank angle into an active factor

varying within the interval 𝜎 ∈ [−120, 0] deg, Campaign #4 produces a set of Pareto solutions

which are then compared to those obtained from the preceding campaign to determine the

coupled TAV and trajectory design that satisfies the primary MOP.

www.manaraa.com

108

Results and Analysis

With the experiment campaigns as a foundation, the constant bank angle analysis is first

discussed, to include a presentation of the Pareto optimal fronts for the three MOPs as well as a

comparison of the main effects and Pareto front analysis for the primary MOP. Following the

selection of the optimal TAV and trajectory design based on a comparison of the constant and

variable bank angle analysis results, functions for ∆𝑉 = 𝑓(𝜎) and ∆𝑖 = 𝑓(𝜎,∆𝑉) are derived via

regression analysis. Finally, the performance of the optimal TAV and trajectory design is

compared with that of an exo-atmospheric simple plane change.

Constant Bank Angle Analysis

For Campaign #1, a preliminary orthogonal array with 125 experiments and 5 levels

yielded a success rate of 49.6%, with 63 experiments failing since particular combinations of

TAV and trajectory factors result in either planetary impact or a failure to establish a stable re-

circularized orbit following perigee transit, thus producing an eventual impact scenario. With 62

successful experiments producing a sparse objective space, a higher-density experiment array

was desired and, therefore, the number of experiments increased to 3125. After processing the

higher-density experiment array, the number of successful experiments increased from 62 to

1575. From the objective space, it was observed that the perigee altitude of

81.25 km represented the lowest of the five levels to produce a successful experiment. Restricted

by the number of levels employed to create the experiment array, it was concluded that a proper

lower bound for the perigee altitude factor was not 81.25 km, but rather a value between the

initial lower bound of 75 km and 81.25 km. Calculating the median of these two values and

rounding up to the nearest integer thus produced a new lower bound of 79 km for the perigee

altitude factor.

www.manaraa.com

109

In addition, the perigee altitude upper bound was also modified with the value increasing

from 100 km to 110 km. While the upper limit of the sensible atmosphere is defined at an

altitude of 120 km, the altitude of 110 km was selected since it corresponds to a calculated

atmospheric density of 5.930 x 10−8 kg m3⁄ , a value 300% greater than the density

of 1.474 x 10−8 kg m3⁄ at 120 km. With a greater atmospheric density, an altitude of 110 km

permits an increased ability of a given TAV design to perform an out-of-plane maneuver during

a banked skip entry and thus achieve a change in maximum orbit inclination, albeit small in

magnitude. Also constructed with 3125 experiments and 5 levels, Campaign #2 was run with

ℎ𝑝 ∈ [79,110] km and produced a success rate of 54.8% with trajectory solution distribution

conforming to the a priori expectation that as the initial altitude increases, the likewise increase

in orbital potential energy contributes to an increase in the maximum inclination change. As a

result, the initial altitude was set to 1000 km for the remaining experiment campaigns in order to

satisfy the primary MOP for maximizing ∆𝑖.

When executed, Campaign #3 (3125 experiments, 5 levels) produced the first objective

space from which a Pareto optimal front could be determined based on the primary MOP in Eq.

(5.1). From the 2138 successful experiments, 10 were identified as being non-dominated and

comprising the Pareto optimal set as shown in Fig. 5.1.

www.manaraa.com

110

Figure 5.1. Pareto Optimal Front for Campaign #3: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}

The Pareto optimal fronts related to the MOPs in Eqs. (5.2) and (5.3) are given in Figs. 5.2 and

5.3, respectively:

Figure 5.2. Pareto Optimal Front for Campaign #3: {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}

www.manaraa.com

111

Figure 5.3. Pareto Optimal Front for Campaign #3: {min(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}

One data analysis option available for determining the optimal TAV and trajectory

designs is to map the Pareto optimal set from the objective space ∆𝑉 vs. ∆𝑖 in Fig. 5.1 onto the

objective spaces ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑖 and ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑉 in Figs. 5.2 and 5.3, respectively. Shown in

Fig. 5.4, the Pareto optimal set identified with circles in Fig. 1 is mapped to the squares in Fig.

5.4(a). Upon comparison, the two sets of Pareto optimal points yield a set of intersecting points

which satisfy both the primary MOP and the secondary MOP of {max(∆𝑖) , min(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}. When

mapped to the objective space in Fig. 5.4(b), however, the set of intersecting Pareto points do not

coincide with any of the Pareto points satisfying the tertiary MOP of {min(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}.

While non-intersection persists in Subplot (b) when the boundaries {max(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}

and {min(∆𝑉) , min(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} are plotted, a single point of intersection does arise for the

boundary representing {max(∆𝑉) , min(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)} – a non-optimal flight condition. Overall,

Pareto intersection analysis produces four candidate TAV designs which maximize ∆𝑖, while

minimizing both the total ∆𝑉 and re-circularization altitude. Since these designs do not maximize

re-circularization altitude while minimizing total ∆𝑉, subsequent analysis is restricted to

satisfying only the primary MOP.

www.manaraa.com

112

Figure 5.4. Mapping of Pareto Optimal Set from ∆𝑉 vs. ∆𝑖 onto
Secondary and Tertiary Objective Spaces

www.manaraa.com

113

 Besides forming objective spaces, the solutions obtained from the orthogonal array

experiment campaigns can also be employed to calculate the main effects of each factor on a

selected measure of performance for the system. Although the MOP is defined as the

simultaneous optimization of ∆𝑖 and ∆𝑉, the former can be viewed as a primary driver of TAV

and trajectory optimization based on the exigencies of immediate mission requirements. During

nominal mission operations, ∆𝑉 performance becomes essential since vehicle mission longevity

is irrevocably contingent on propellant availability. Focusing on the maximization of ∆𝑖, Fig. 5.5

depicts the main effects of the TAV design factors on ∆𝑖.

Figure 5.5. Main Effect on Maximum Inclination Change for DOE Campaign #3 with
 (a) TAV Mass, (b) Planform Area, (c) Drag Coefficient, and (d) Lift Coefficient

www.manaraa.com

114

Referencing Fig. 5.5(a) as an example, the main effect of TAV mass on maximum

inclination change, at a sample level of 4000 kg, is the mean inclination change of all factors

within the orthogonal array with the TAV mass equal to 4000 kg. Graphically, the number of

discrete points in each subplot in Fig. 5.5 is equal to the number of levels for each factor within

the orthogonal array. When plotted, the slope of the points as well as any curve fits indicates the

relative strength of the main effect on the desired measure of performance. Of the TAV design

factors, the drag and lift coefficients produce the greatest relative slopes and, therefore, are

considered to contribute the greatest influence on maximum inclination change; nearly horizontal

in slope, planform area has the least influence. In order to maximize ∆𝑖, the main effects from

Fig. 5.5 coalesce to form a potential TAV design with 𝑚 = 2000 kg, 𝐶𝐷 = 0.5, and 𝐶𝐿 = 3.0.

Based on the approximate horizontal distribution of the planform area main effects, the mean of

the planform area decision space of 𝑆 = 18.5 m2 is selected as the final component of the

potential TAV design.

Similar to the TAV design factors, the main effects of the perigee altitude factor can also

be calculated and plotted (see Fig. 5.6). Of the five design factors evaluated within the

orthogonal array, perigee altitude features the greatest comparative impact on maximum

inclination change. At the minimum factor bound of ℎ𝑝 = 79 km the mean response is 6 deg – a

value one order of magnitude greater than the mean response of 0.75 deg obtained from the main

effect plots for the aerodynamic coefficients. As expected, Fig. 5.6 illustrates that as perigee

altitude decreases, the ability of a TAV to perform aeroassisted out-of-plane maneuvers increase

due to the exponential increase in atmospheric density.

www.manaraa.com

115

Figure 5.6. Main Effect of Perigee Altitude on Maximum Inclination Change for
DOE Campaign #3

With a potential TAV and trajectory design established from the main effects analysis,

the optimality of the design in terms of the MOP must be evaluated through a comparison with

the Pareto optimal set obtained from the ∆𝑉 vs. ∆𝑖 objective space. Prior to any comparison, two

supplementary experiment campaigns were run in an effort to populate the sparse objective space

in the range 10 deg ≤ ∆𝑖 ≤ 20 deg. Shown in Table 5.2, the first of the supplemental campaigns

focused on exploring the decision space arising from the Pareto optimal set, while the second

was more limited and focused on two outlier points observed from preliminary inspections of the

objective space. Of these outlier points, the first corresponded to the Pareto optimal solution

which yielded ∆𝑖 = 19.91 deg for ∆𝑉 = 0.345 km/s as shown in Fig. 5.1. For the second point,

outlier status was assigned not for inclination change performance, but rather the maximum

deceleration and stagnation heat flux experienced during skip entry. While the solutions

comprising the objective space maintained an average deceleration and heat flux of 0.17 g

and 129.20 kW m2⁄ , the identified outlier point was considerably higher with 5.56 g

and 1351.5 kW m2⁄ .

www.manaraa.com

116

Table 5.2. Factors and Associated Level Bounds for Supplementary DOE Campaigns

Factor Campaign
1 2

Mass, kg [2000, 5000] [2000, 2000]
Planform Area, m2 [15, 22] [18, 22]
Drag Coefficient [0.5, 0.5] [0.5, 0.5]
Lift Coefficient [2.0, 3.0] [0.5, 3.0]

Perigee Altitude, km [86, 87] [86, 87]

Due to the restricted decision space of the design factors, low-density orthogonal arrays of 125

experiments were constructed for each of the supplementary campaigns. With success rates of

36% each, these campaigns further populated the ∆𝑉 vs. ∆𝑖 objective space from Fig. 5.1 and, as

a result, created an augmented Pareto optimal front based on the addition of more solutions to the

objective space as shown in Fig. 5.7.

Figure 5.7. Augmented Pareto Optimal Front for DOE Campaign #3

www.manaraa.com

117

Demarcated by squares in Fig. 5.7, the augmented Pareto optimal set is given in Table 5.3

in ascending order of maximum inclination change with associated TAV and trajectory design

factors, as well as values related to maximum deceleration and stagnation heat flux performance.

From the Pareto optimal set, the TAV design which produced the greatest change in inclination

(∆𝑖 = 19.91 deg) is identical to that estimated through the main effects analysis, with 𝑚 =

2000 kg, 𝑆 = 18.5 m2, 𝐶𝐷 = 0.5, and 𝐶𝐿 = 3.0. The only design difference arises from the

trajectory, with the main effects and Pareto front analyses yielding perigee altitudes of 86.75 km

and 79 km, respectively.

Table 5.3. Maneuver Parameters of Augmented Pareto Optimal Front

Mass, kg Planform
Area, 𝑚2 𝐶𝐷 𝐶𝐿 Perigee, km ∆𝑖, deg Max.

Decel., g
�̇�𝑠,𝑚𝑎𝑥 ,
𝑘𝑊 𝑚2⁄

2000 19.00 0.500 1.125 86.50 5.31 0.17 370.48
2000 18.00 0.500 1.125 86.25 5.38 0.17 380.81
2000 18.50 0.500 1.750 86.75 6.42 0.21 363.91
2750 22.00 0.500 1.750 86.00 7.49 0.22 396.45
2000 19.00 0.500 1.750 86.75 7.64 0.22 364.00
2000 16.75 0.500 3.000 86.75 9.34 0.35 367.01
2000 18.00 0.500 3.000 87.00 10.38 0.35 356.20
2000 18.50 0.500 2.375 86.75 10.70 0.30 364.48
4000 22.00 0.925 2.375 86.75 11.88 0.17 360.97
3500 16.75 0.875 3.000 86.00 12.99 0.22 395.01
2000 18.00 0.500 2.375 86.50 14.90 0.30 373.39
2000 19.00 0.500 2.375 86.75 14.98 0.30 363.20
2000 18.00 0.500 3.000 86.75 16.38 0.37 363.96
2000 19.00 0.500 3.000 87.00 16.43 0.37 354.04
2000 20.00 0.500 1.750 86.75 16.89 0.23 362.52
2000 18.00 0.500 1.750 86.25 16.95 0.23 382.86
2000 19.00 0.500 1.750 86.50 16.98 0.23 372.45
2000 18.50 0.500 3.000 86.75 19.91 0.38 362.96

www.manaraa.com

118

Variable Bank Angle Analysis

From the main effects and Pareto front analysis of Campaign #3, a candidate design for

TAV and skip trajectory was generated for a bank angle of 𝜎 = −90 deg. So as to ensure the

optimality of the candidate design, Campaign #4 was conducted to ascertain if 𝜎 = −90 deg

satisfies the MOP by introducing bank angle as a sixth factor which varies within 𝜎 ∈

[−120, 0] deg. Overall, five orthogonal arrays (729 experiments, 9 levels each) were created

with the TAV design parameters from Table 5.1 and ℎ𝑝 ∈ [79,110] km as the baseline factors,

and bank angle varying according to the following: 𝜎 ∈ [−120,−100] deg,

𝜎 ∈ [−100,−80] deg, 𝜎 ∈ [−80,−50] deg, 𝜎 ∈ [−50,−20] deg, and 𝜎 ∈ [−20, 0] deg. When

combined, the solutions from each of the five orthogonal arrays produced the objective space

illustrated in Fig. 5.8 with a success rate of 75.8% from the 3645 total experiments.

Figure 5.8. Pareto Optimal Front for DOE Campaign #4: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}

www.manaraa.com

119

 A total of 20 points, the Pareto optimal set from Campaign #4 in Fig. 5.8 is listed in

Table 5.4 in ascending order of maximum inclination change. When compared with the objective

space from the preceding campaign, the Pareto optimal set from Campaign #4 yielded a TAV

and trajectory design which achieved a 0.05 deg greater inclination change of ∆𝑖 = 19.96 deg

at 𝜎 = −57.50 deg and ℎ𝑝 = 79 km. By examining required ∆𝑉, however, the hundredths-place

increase to inclination change corresponds to ∆𝑉 = 0.51 km/s, an increase of 47.8% in ∆𝑉

expenditure from Campaign #3 for ∆𝑖 = 19.91 deg. In addition to requiring a higher ∆𝑉, the

design also features a maximum deceleration greater than 1.0 g and a maximum stagnation heat

flux nearly double the value calculated for the design from Campaign #3.

Table 5.4. Maneuver Parameters of Pareto Optimal Front for DOE Campaign #4

Mass, kg Planform
Area, 𝑚2 𝐶𝐷 𝐶𝐿 Perigee,

km 𝜎, deg ∆𝑖, deg Max.
Decel., g

�̇�𝑠,𝑚𝑎𝑥 ,
𝑘𝑊 𝑚2⁄

4500 15.88 0.500 0.500 82.88 -115.00 1.30 0.17 528.35
2000 17.63 1.988 3.000 94.50 -107.50 1.91 0.17 162.59
3500 17.63 1.775 2.375 90.63 -102.50 2.17 0.17 247.41
4000 20.25 1.775 3.000 90.63 -107.50 2.66 0.17 225.41
6000 17.63 1.563 1.125 86.75 -112.50 5.47 0.17 435.18
2000 17.63 1.350 1.125 90.63 -120.00 6.87 34.34 1471.03
5000 15.00 0.925 0.813 82.88 -76.25 6.89 0.17 537.23
5000 17.63 0.713 3.000 82.88 -85.00 11.09 0.32 543.80
4500 21.13 0.713 1.125 82.88 -68.75 12.12 0.17 546.48
6000 20.25 1.775 1.750 82.88 -20.00 12.19 0.24 529.81
2000 19.38 2.200 2.063 90.63 -15.00 12.49 0.20 259.43
3500 16.75 2.200 2.063 86.75 -20.00 13.80 0.20 371.35
4000 19.38 2.200 2.688 86.75 -38.75 14.63 0.23 369.96
3500 22.00 1.775 2.688 86.75 -50.00 15.84 0.27 366.78
5000 19.38 0.925 2.063 79.00 -38.75 16.06 0.46 710.99
6000 20.25 1.138 2.688 79.00 -38.75 16.32 0.53 712.46
5500 22.00 0.925 2.688 79.00 -46.25 17.07 0.62 715.91
4500 17.63 0.925 3.000 79.00 -50.00 17.63 0.67 714.22
3000 22.00 0.500 2.063 79.00 -50.00 17.84 0.88 721.67
2500 20.25 0.500 3.000 79.00 -57.50 19.96 1.41 719.15

www.manaraa.com

120

 When plotted, the main effects for each factor reveal greater dynamism than shown for

Campaign #3. So as to maximize ∆𝑖, the main effects of the subplots in Fig. 5.9 create a potential

TAV design with 𝑚 = 2000 kg, 𝐶𝐷 = 0.5, and 𝐶𝐿 = 3.0. With the main effects point

distribution for planform area producing a cubic curve fit, the approximate local maxima of the

planform area decision space of 𝑆 = 20.25 m2 is selected to complete the TAV design. Although

Fig. 5.10(a) mirrors the same trend for perigee altitude from Campaign #3, Subplot (b) indicates

a local maximum change in inclination for a bank angle of approximately 𝜎 = −20 deg.

Figure 5.9. Main Effect on Maximum Inclination Change for DOE Campaign #4 with
(a) TAV Mass, (b) Planform Area, (c) Drag Coefficient, and (d) Lift Coefficient

www.manaraa.com

121

Figure 5.10. Main Effect on Maximum Inclination Change for DOE Campaign #4 with
(a) Perigee Altitude, and (b) Bank Angle

Unlike Campaign #3, disparities arise in the TAV and trajectory design when the results

of the main effects and Pareto front analysis are compared from Campaign #4. Even though

aligning for the factors of planform area, perigee altitude, and the aerodynamic coefficients, the

two methods differ for TAV mass and bank angle. Based on the higher ∆𝑉, coupled with the

greater maximum deceleration and stagnation heat flux of the design from Campaign #4, the

potential TAV and trajectory design from Campaign #3 is thus deemed optimal by satisfying

both aspects of the MOP {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)} and is shown in Table 5.5.

Table 5.5. Optimal TAV Design and Trajectory

Mass, kg 2000
Planform Area, m2 18.5
Drag Coefficient 0.5
Lift Coefficient 3.0

Initial Altitude, km 1000
Perigee Altitude, km 86.75

Bank Angle −90 deg

www.manaraa.com

122

Single TAV Design Analysis

With the optimization phase completed, a fifth experiment campaign was formulated to

determine how ∆𝑉 and ∆𝑖 changes as bank angle varies within the interval 𝜎 ∈ [−120, 0] deg for

single TAV and trajectory design. Composed of 241 experiments incremented at 𝜎 = 0.5 deg,

the single TAV campaign resulted in a success rate of 62.6% with the ∆𝑉 vs. ∆𝑖 objective space

and accompanying Pareto optimal front shown in Fig. 5.11:

Figure 5.11. Pareto Optimal Front for Single TAV Design: {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}

Although depicting the graphical relationship between ∆𝑉 and ∆𝑖, Fig. 5.11 fails to convey the

impact of the independent variable 𝜎 on these trajectory performance measures. Therefore, the

objective space was re-plotted with bank angle as the independent variable in Fig. 5.12.

www.manaraa.com

123

Figure 5.12. Polynomial Fit for Single TAV Design with ∆𝑉 = 𝑓(𝜎)

Based on the grouping of solutions within the ∆𝑉 vs. 𝜎 objective space, a univariate quartic

polynomial curve fit with constant coefficients was devised. The general expression for a

polynomial is given by Eq. (5.4a), while the objective space-specific expression is given by Eq.

(5.4b):143

 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯+ 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 (5.4a)

 ∆𝑉 = 𝑓(𝜎) = 𝑎4𝜎4 + 𝑎3𝜎3 + 𝑎2𝜎2 + 𝑎1𝜎 + 𝑐0 (5.4b)

where

Coefficient Coefficient Value 95% Confidence Bounds

𝑎0 0.497 [0.4924, 0.5015]
𝑎1 −3.867 x 10−4 [−1.036 x 10−3, 2.627 x 10−4]
𝑎2 −4.577 x 10−5 [−7.333 x 10−5,−1.821 x 10−5]
𝑎3 −8.323 x 10−7 [−1.272 x 10−6,−3.922 x 10−7]
𝑎4 −7.106 x 10−9 [−9.458 x 10−9,−4.753 x 10−9]

143 Edward J. Barbeau, Polynomials (New York, NY: Springer-Verlag New York, Inc., 1989), 1.

www.manaraa.com

124

The square of the correlation coefficient 𝑟 is defined as:144

 𝑟2 = ss𝑥𝑦2

ss𝑥𝑥ss𝑦𝑦
= (∑𝑥𝑦−𝑛�̅�𝑦�)2

(∑𝑥2−𝑛�̅�2)(∑𝑦2−𝑛𝑦�2) (5.5)

where ss𝑥𝑥, ss𝑦𝑦, and ss𝑥𝑦 are sum of squared values for a set of 𝑛 points. For the polynomial

model of the ∆𝑉 vs. 𝜎 objective space, the squared correlation coefficient is computed to be

𝑟2 = 0.994 with residuals shown in Fig. 5.13.

Figure 5.13. Residuals Plot of Polynomial Fit for Single TAV Design with ∆𝑉 = 𝑓(𝜎)

 The objective space from Fig. 5.12 can be expanded with introduction of ∆𝑖 as the third

orthogonal axis. When plotted within three-dimensional space, the new objective space permits

the creation of a surface fit with 𝜎 and ∆𝑉 as function inputs: ∆𝑖 = 𝑓(𝜎,∆𝑉). Modeled as a

bivariate cubic polynomial with constant coefficients, the surface fit is shown graphically in Fig.

5.14 and given symbolically by Eqs. (5.6a) and (5.6b).145

144 Eric W. Weisstein, CRC Concise Encyclopedia of Mathematics, Second Edition (Boca Raton, FL: CRC Press

LLC, 2003), 568.
145 Keith O. Geddes, Stephen R. Czapor, George Labahn, Algorithms for Computer Algebra (Norwell, MA: Kluwer

Academic Publishers, 1992), 46.

www.manaraa.com

125

Figure 5.14. Surface Fit for Single TAV Design with ∆𝑖 = 𝑓(𝜎,∆𝑉)

𝑓(𝑥,𝑦) = 𝑎𝑛,𝑚𝑥𝑛𝑦𝑚 + ⋯+ 𝑎22𝑥2𝑦2 + 𝑎21𝑥2𝑦 + 𝑎12𝑥𝑦2 +

𝑎11𝑥𝑦 + 𝑎10𝑥 + 𝑎01𝑦 + (5.6a)

∆𝑖 = 𝑓(𝜎,∆𝑉) = 𝑎03(∆𝑉)3 + 𝑎21(𝜎)2(∆𝑉) + 𝑎12(𝜎)(∆𝑉)2 + 𝑎11(𝜎)(∆𝑉) + 𝑎20(𝜎)2 +

𝑎02(∆𝑉)2 + 𝑎10(𝜎) + 𝑎01(∆𝑉) + 𝑎00 (5.6b)

where

Coefficient Coefficient Value 95% Confidence Bounds

𝑎00 -1983 [−2347,−1620]
𝑎10 -22.86 [−26.86,−18.86]
𝑎01 7534 [5692, 9376]
𝑎20 -0.02106 [−0.03121,−0.01091]
𝑎02 -6618 [−9771,−3465]
𝑎11 81.95 [67.68, 96.21]
𝑎21 0.03915 [0.01931, 0.5899]
𝑎12 -72.8 [−85.47,−60.13]
𝑎03 -976.5 [−2842, 888.6]

www.manaraa.com

126

Regarding goodness of fit, the model for ∆𝑖 = 𝑓(𝜎,∆𝑉) features 𝑟2 = 0.979, a sum-squared

error of SSE = 6.37 computed from Eq. (5.7), and a three-dimensional plot of residuals shown in

Fig. 5.15.146

 SSE = ss𝑦𝑦(1 − 𝑟2) (5.7)

Figure 5.15. Residuals Plot of Surface Fit for Single TAV Design with ∆𝑖 = 𝑓(𝜎,∆𝑉)

 Due to the narrow distribution of solutions within the three-dimensional objective space

of Fig. 5.14, the surface fit model described by Eq. (5.6b) contains a limited domain. As an

example, function inputs of 𝜎 = 85 deg and ∆𝑉 = 0.337 km/s will produce a value for ∆𝑖

corresponding to a three-dimensional section of points comprising the objective space. With

function inputs of 𝜎 = 85 deg and ∆𝑉 = 0.427 km/s, then the resulting ∆𝑖 is incorrect since it

resides outside of the objective space. Consequently, Eqs. (5.4b) and (5.6b) must be employed

sequentially, with bank angle and the function output of Eq. (5.4b) serving as the inputs to the

function given by Eq. (5.6b). When the surface fit model is solved accordingly, a three-

dimensional solutions curve of the objective space is produced as illustrated by Fig. 5.16.

146 Weisstein, 568.

www.manaraa.com

127

Figure 5.16. Three-Dimensional Solution for Single TAV Design with
 𝜎 ∈ [−120,0] deg, ∆𝑉 = 𝑓(𝜎), and ∆𝑖 = 𝑓(𝜎,∆𝑉)

 Aligning with the results from Campaign #3, an analysis of the ℎ𝑟𝑒𝑐𝑖𝑟𝑐 vs. ∆𝑖 objective

space for the single TAV design indicates that the re-circularization altitude decreases as the

inclination change increases. This trend is valid since the deeper penetration of the TAV into the

atmosphere increases the amount of inclination change, which, in turn, decreases both the orbital

energy and re-circularization altitude. Plotted in Fig. 5.17, the re-circularization altitudes vary

from 131.2 km to 789.4 km for 𝜎 ∈ [−120,0] deg and ℎ𝑖 = 1000 km. Although lucrative for

certain mission taskings, the maximum inclination change of ∆𝑖 = 19.91 deg is detrimental to

the prospect of continued orbital operations since re-circularization occurs at the skip apogee

www.manaraa.com

128

altitude of 131.2 km. Alternatively, one option available to achieve a high inclination change

and regain orbital energy is to perform a maneuver which re-circularizes the trajectory at an

orbital altitude higher than skip apogee. Shown in Fig. 5.18(b), the ∆𝑉 vs. ∆𝑖 objective space

reflects the completion of a Hohmann transfer up to an example altitude of 500 km for all skip

entry trajectories resulting in a skip apogee less than 500 km. While ∆𝑖 = 19.91 deg is still

achievable, the combined orbit raising and re-circularization increases the total ∆𝑉 expenditure

for the skip entry by 133.6%, from ∆𝑉 = 0.345 km/s in Fig. 5.18 (a), to ∆𝑉 = 0.806 km/s in

Subplot (b).

Figure 5.17. Pareto Optimal Front for Single TAV Design: {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}

www.manaraa.com

129

Figure 5.18. Pareto Optimal Fronts for Single TAV Design with (a) Re-Circularization at Skip
Apogee, and (b) Re-Circularization at ℎ = 500 km via Hohmann Transfer

TAV Design Application

Employing the optimal TAV design listed in Table 5.5, the optimal skip entry trajectory

was simulated with respect to a circular reference orbit with the following initial states:

Table 5.6. Reference Orbit Initial States for Optimal Design Simulation

Eccentricity 0.0
Altitude, km 1000

Longitude 0 deg
Latitude 0 deg

Inclination Angle 37.84 deg

Depicted by a solid line in Fig. 5.19, the reference orbit maintains a maximum orbit inclination

of 37.84 deg, the result of a due East launch from Wallops Island, VA. So as to achieve ∆𝑖 =

19.91 deg, the TAV must reach a perigee altitude of 86.75 km during skip entry. Also referred

to as a perturbed orbit, the intial states for the skip entry trajectory are given in Table 5.7. For

both the reference and perturbed orbits, trajectory time is measured as an elasped quantity from

𝑡 = 0 at the initial longitude/latitude coordinates (𝜃𝑖,𝜙𝑖) = (0,0) deg.

www.manaraa.com

130

Table 5.7. Perturbed Orbit Initial States for Optimal Design Simulation

Altitude, km 1000
Longitude 0 deg
Latitude 0 deg

Inclination Angle 37.84 deg
Flight-Path Angle 0 deg

Heading Angle 37.84 deg
Bank Angle −90 deg

Even though 𝜎 = −90 deg at the start of the simulation, a shifting in the perturbed orbit

with respect to the reference orbit does not occur until the TAV approaches the upper limit of the

sensible atmosphere at an altitude of 120 km and descends below it. As shown in Fig. 5.19, the

perturbed orbit begins to shift at an approximate longitude of 140 deg E and reaches the first

instance of maximum inclination deviation with the reference orbit at 𝜃 ≈ 45 deg E.

Figure 5.19. Reference Orbit (solid, blue) and Perturbed Orbit (dash, red)
Ground Track Trajectories of Single TAV Design

www.manaraa.com

131

 Plotting the altitude profile of the skip entry trajectory in Fig. 5.20 indicates that the

perigee altitude of 86.75 km was reached after an elapsed time of 48.15 min, while re-

circularization at skip apogee occurred after 76.67 min. As a result of losses in kinetic energy

due to aerodynamic drag encountered by the TAV while transiting perigee, the skip apogee and

corresponding re-circularized orbit altitude of 131.2 km is 86.88% lower than the 1000 km

initial reference orbit altitude. With re-circularization near the upper limit of the sensible

atmosphere, the TAV maintains a limited capability of performing subsequent maneuvers

resulting from low available orbital potential energy as well as a drag-induced decaying re-

circularized orbit. By performing a combined orbit-raising and re-circularization maneuver at

skip apogee, a stable orbit can then be established at a higher altitude within LEO. Despite the

added ∆𝑉 expenditure for such a maneuver at skip apogee, the TAV is then capable of multiple

over-flights of ground targets within the 37.84 deg ≤ 𝜙 ≤ 57.75 deg and −57.75 deg ≤ 𝜙 ≤

−37.84 deg latitude bands available upon completion of the orbit-raising transfer.

Figure 5.20. Altitude Profile for Perturbed Orbit of Single TAV Design

www.manaraa.com

132

 To ascertain the effectiveness of the skip entry maneuver with respect to ∆𝑉 expended for

the inclination change achieved, a purely propulsive simple plane change maneuver performed in

vacuo was simulated based on the equation:147

 ∆𝑉𝑆𝑖𝑚𝑝𝑙𝑒 = 2 𝑉𝑅 𝑖 cos(𝛾) ∙ sin �1
2

|∆𝑖|� (5.8)

The ∆𝑉 required to achieve a maximum inclination change of ∆𝑖 = 19.91 deg is given in Table

5.8 with four maneuver cases: (1) Skip entry with re-circularization at skip apogee (131.2 km);

(2) skip entry with re-circularization at 500 km following a Hohmann transfer performed at skip

apogee; (3) skip entry with re-circularization at ℎ𝑖 = 1000 km following a Hohmann transfer

performed at skip apogee; and (4) simple plane change performed at ℎ𝑖 = 1000 km.

Table 5.8. Maneuver ∆𝑉 Comparison of Orbit Re-Circularization Cases

Case Total ∆𝑉 Percent Increase

1 0.345 km/s —
2 0.806 km/s 133.6%
3 1.068 km/s 209.6%
4 2.397 km/s 594.8%

By conducting a Hohmann transfer to boost the TAV altitude from 131.2 to 500 km at skip

apogee, a ∆𝑉 increase of 133.6% is required with the total ∆𝑉 for the skip entry maneuver

increasing from 0.345 km/s to 0.806 km/s. For a skip apogee boost to 1000 km, the total ∆𝑉

increases by 209.6% for the skip entry maneuver. When performed at ℎ𝑖 = 1000 km, the simple

plane change requires 594.8% more ∆𝑉 than the skip entry maneuver with re-circularization at

skip apogee. With re-circularization occurring at either skip apogee or a boosted altitude such as

500 km or 1000 km, the skip entry maneuver demonstrates a considerable reduction in

propellant expenditure when achieving a maximum inclination change of ∆𝑖 = 19.91 deg.

147 Vallado, 345-346.

www.manaraa.com

133

Summary and Conclusion

 Employing the Design of Experiments method of orthogonal arrays, an optimal TAV and

trajectory design can be determined for trans-atmospheric skip entry maneuvers. Satisfying the

multi-objective optimization problem given in Eq. (5.1) as {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}, the

optimal solution was obtained through main effects and Pareto front analyses of the objective

spaces produced by executing a series of orthogonal array experiment campaigns constructed of

factors related to TAV and skip entry trajectory design. Since certain combinations of TAV and

trajectory levels yielded planetary impact and mission failure, orthogonal arrays with a high

density of experiments were created to improve the simulation success rate for each campaign.

Starting from a circular reference orbit with an inclination of 37.84 deg, a TAV can

achieve a maximum inclination change of ∆𝑖 = 19.91 deg by performing a skip entry

aeroassisted maneuver with a vehicle design of 𝑚 = 2000 kg, 𝑆 = 18.5 m2, 𝐶𝐷 = 0.5, and 𝐶𝐿 =

3.0, and a trajectory defined by ℎ𝑖 = 1000 km, ℎ𝑝 = 86.75 km, and 𝜎 = −90 deg. If orbit re-

circularization occurs at skip apogee, then ∆𝑉 = 0.345 km/s for the maneuver. With re-

circularization at an altitude higher than skip apogee, such as 500 km, the total ∆𝑉 required to

perform both the skip entry maneuver and Hohmann transfer is 0.806 km/s. Without an orbit-

raising transfer, the preceding analysis demonstrates that a skip entry maneuver out-performs a

simple plane change, with the former requiring approximately 50-85% less ∆𝑉 to achieve a

maximum inclination change of ∆𝑖 = 19.91 deg. Based on the vehicle and trajectory designs, the

amount of inclination change achievable by a TAV is a function of the duration of atmospheric

flight: longer transit-times in the atmosphere increase the exposure of a TAV to aerodynamic

forces and, as a result, enhance the ability of the TAV to perform an aerodynamic turn and

change orbit inclination.

www.manaraa.com

134

VI. Low Earth Orbit Injection and Reachability Utilizing Descent-Boost Maneuvers

Chapter Overview

Similar to an aerobang trans-atmospheric maneuver, the descent-boost maneuver is

introduced as an alternative to the exo-atmospheric combined Hohmann and bi-elliptic transfers

for injection into a desired low Earth orbit. Utilizing a notional trans-atmospheric, lifting re-entry

vehicle with 𝐿/𝐷 = 6, circular orbit injection simulations demonstrate that despite requiring a

longer time-of-flight than bi-elliptic transfers, descent-boost maneuvers require 6-12% less ∆𝑉

for injection altitudes lower than 650 km for initial altitude cases of 1000, 1100, and 1200 km.

In addition, the concept of the Maneuver Performance Number is introduced as a dimensionless

means of comparative effectiveness analysis for both exo- and trans-atmospheric maneuvers.

Introduction

Defined as a special case of lifting entry, a descent-boost maneuver is comprised of exo-

and trans-atmospheric trajectory segments as described by the example in Fig. 6.1. For the

present research, a descent-boost maneuver commences with two consecutive impulses applied

by the TAV at an initial circular orbit altitude, ℎ𝑖 (A). The first impulse �∆𝑉𝛾�, or “descent” ∆𝑉,

creates a de-orbit trajectory by altering the flight-path angle such that 𝛾𝑖 < 0. The second

impulse (∆𝑉𝐵𝑜𝑜𝑠𝑡), or “boost” ∆𝑉, increases the orbital velocity of the TAV. Following (A),

orbital altitude decreases until perigee transit at (B), which occurs below the upper limit of the

sensible atmosphere at an altitude of approximately 120 km. As the perigee altitude of a descent-

boost trajectory decreases, the TAV encounters increasing atmospheric density and, therefore,

greater aerodynamic drag and heating effects. With the completion of an orbit injection impulse

�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� at skip apogee (C), the TAV enters either a circular or elliptical orbit as prescribed by

www.manaraa.com

135

mission requirements. The total ∆𝑉 required to perform a descent-boost maneuver is given by the

following:

 ∆𝑉𝐷𝐵 = ∆𝑉𝛾 + ∆𝑉𝐵𝑜𝑜𝑠𝑡 + ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 (6.1)

Figure 6.1. Descent-Boost Maneuver Diagram

Apart from inclination-centric orbit transfer analysis, the implementation of aeroassisted

maneuvers for orbit injection via changes to semi-major axis has received minimal attention and

represents the core focus of the present research of descent-boost maneuvers.

Maneuver Performance (MP) Number

Whether formulated according to physical similarity criteria or experimental results,

Kuneš states that a dimensionless quantity is fundamentally comprised of either a simple ratio of

two dimensionally equal quantities, or a composed ratio of dimensionally equal products of

www.manaraa.com

136

quantities.148 Despite the existence of numerous dimensionless quantities in the field of

aerospace engineering, such as those related to fluid mechanics149 and heat transfer,150 no ratios

have been devised pertaining to spacecraft maneuver effectiveness. For a given maneuver,

performance can be measured in terms of several parameters of varying scale: ∆𝑉 expenditure,

time-of-flight, change in orbit altitude and geometry, and change in orbital plane orientation. In

an effort to reduce to the number of parameters and facilitate maneuver comparative analyses,

the Maneuver Performance (MP) number is formulated as:151

 ƥ = (𝑇𝑂𝐹)∆𝑉
|∆ℎ| cos∆𝑖

 (6.2)

where (𝑇𝑂𝐹) denotes the maneuver time-of-flight in seconds, ∆ℎ is the change in orbit altitude,

or ∆ℎ = ℎ𝑓 − ℎ𝑖, and ∆𝑖 is the change in orbit inclination in radians, or ∆𝑖 = 𝑖𝑓 − 𝑖𝑖. A form of

dimensionless cost-effectiveness ratio, the MP number represents the ratio of maneuver cost to

maneuver action.152

As examples of MP number implementation, Table 6.1 provides maneuver information

related to the execution of Hohmann, one-tangent, and bi-elliptic exo-atmospheric transfers for

two cases: (1) Transfer from LEO to GEO; and (2) transfer from LEO to lunar orbit. With the

first case, the one-tangent burn yields the lowest MP number of ƥ = 1.6 and is thus considered

the most effective maneuver option. Even though the Hohmann transfer requires the least ∆𝑉

expenditure, a 6476.4 sec longer time-of-flight than the one-tangent burn produces a higher MP

148 Joseph Kuneš, Dimensionless Physical Quantities in Science and Engineering (Waltham, MA: Elsevier Inc.,

2012), 1.
149 Robert A. Granger, Fluid Mechanics (Mineola, NY: Dover Publications, Inc., 1995), 379-384.
150 E. Marín, A. Calderón, and O. Delgado-Vasallo, “Similarity Theory and Dimensionless Numbers in Heat

Transfer,” European Journal of Physics 30 (2009): 440-441.
151 In the Unicode® script, the symbol for MP number represents the “Latin small letter p with hook” from the

“Latin Extended-B” library (Julie D. Allen, et al., The Unicode Standard, 587).
152 Henry M. Levin and Patrick J. McEwan, Cost-Effectiveness Analysis, Second Edition (Thousand Oaks, CA: Sage

Publications, Inc., 2001), 133.

www.manaraa.com

137

number at ƥ = 2.1. With a time-of-flight nearly 535% greater than the one-tangent burn as a

result of transiting an intermediate orbit apogee of 47836.00 km prior to GEO injection, the bi-

elliptic transfer maintains the highest MP number at ƥ = 9.0. Similarly, MP number analysis of

the second case indicates that the one-tangent burn is again the most effective option, while the

bi-elliptic transfer remains the least effective. For a ∆𝑉 savings of 4.76%, the bi-elliptic transfer

requires a longer time-of-flight than the one-tangent burn at ∆𝑇𝑂𝐹 = 1839088.4 sec = 21.2

days, thus substantiating the higher MP number of ƥ = 22.2.

Table 6.1. MP Number Usage Examples with Exo-Atmospheric Maneuvers153

Type ℎ𝑖, km ℎ𝑓, km ∆𝑉, km/s TOF, sec ∆𝑖, deg ƥ

Hohmann
191.344
(LEO)

35781.35
(GEO)

3.935 18921.6 0.0 2.1
1-Tangent 4.699 12445.2 0.0 1.6
Bi-Elliptic 4.076 78998.4 0.0 9.0

Hohmann
191.344
(LEO)

376310
(Lunar)

3.966 427258.8 0.0 4.5
1-Tangent 4.099 299019.6 0.0 3.3
Bi-Elliptic 3.904 2138108 0.0 22.2

While applicable for both exo- and trans-atmospheric maneuvers, the MP number as

expressed in Eq. (6.2) is restricted to maneuvers cases with unequal initial and final altitudes,

thus precluding the analysis of phasing maneuvers. For maneuvers featuring ℎ𝑖 = ℎ𝑓, the

following variation can be utilized:

 ƥ𝑝 = (𝑇𝑂𝐹)∆𝑉
|∆ℎ𝑚𝑎𝑥| cos∆𝑖

 (6.3)

where the subscript 𝑝 indicates “phasing,” and ∆ℎ𝑚𝑎𝑥 is given by ∆ℎ𝑚𝑎𝑥 = ℎ𝑚𝑎𝑥 − ℎ𝑖, with

ℎ𝑚𝑎𝑥 representing the altitude of the greatest spatial deviation from the initial orbit altitude.

153 Vallado, 338.

www.manaraa.com

138

Descent-Boost Maneuver Sensitivity Study

In contrast to the skip entry maneuver which relies on changes to both bank angle and the

depth of atmospheric penetration as dictated by the perigee altitude, the descent-boost maneuver

instead alters the orbital trajectory of a TAV by modifying the initial flight-path angle and orbital

velocity. The impact of varying these parameters on TAV trajectory geometry is explored though

a sensitivity study comprising the following phases:

(1) Commencing from a circular reference orbit as defined by Table 6.2 and the initial

altitudes of ℎ𝑖 = 500, 1000, 2000, 5000 km, the initial orbital velocity is modified

according to changes in the boost impulse of ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3, 0.5, 0.8, and 1.0 km/s

applied at 𝑡 = 0 with a constant initial flight-path angle and a bank angle of 𝜎 = 0 deg.

Table 6.2. Reference Orbit Initial States for Descent-Boost Simulations

Eccentricity, 𝑒 0.0
Longitude, 𝜃𝑖 0 deg
Latitude, 𝜙𝑖 0 deg

Inclination, 𝑖𝑖 70 deg
Flight-Path Angle, 𝛾𝑖 0 deg
Heading Angle, 𝜓𝐼 𝑖 70 deg

(2) Based on constant values for initial altitude and ∆𝑉𝐵𝑜𝑜𝑠𝑡, the initial flight-path and

inclination angles are varied within the respective intervals 𝛾𝑖 ∈ [−19.5 deg,−1 deg]

and 𝑖 ∈ [0 deg, 80 deg], with 𝜎 = 0 deg.

For each sample initial altitude within the first phase, the initial flight-path angle

represents the greatest angle magnitude that does not produce a planetary impact trajectory for a

descent-boost maneuver with ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s. As shown in Table 6.3, the skip apogee

altitude is a function of both boost impulse and perigee altitude. With ∆𝑉𝐵𝑜𝑜𝑠𝑡 increasing from

www.manaraa.com

139

0.3 km/s to 1.0 km/s, the skip apogee altitude increases since the higher initial levels of orbital

kinetic energy produce a shallower depth of atmospheric penetration. Accordingly, a shallower

perigee altitude with respect to a given initial orbit altitude creates an increase in skip apogee

altitude due to diminished aerodynamic drag losses. For ℎ𝑖 = 500 km, the increase in perigee

altitude from 63 km to 214 km produces a change in skip apogee altitude of 4762 km as

∆𝑉𝐵𝑜𝑜𝑠𝑡 increases from 0.3 km/s to 1.0 km/s. Commencing from the higher altitude of

ℎ𝑖 = 5000 km, the same increase in boost impulse produces a skip apogee change of 16929 km

– an increase approximately 3.5 times greater than the ℎ𝑖 = 500 km case. When ℎ𝑎 vs. ℎ𝑖 is

plotted for each boost impulse case as shown in Fig. 6.2, linear regression analysis yields a

squared correlation coefficient of 𝑅2 = 0.9993 for ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s, 𝑅2 = 0.9989 for

∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝑅2 = 0.9965 for ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.8 km/s, and 𝑅2 = 0.9977 for ∆𝑉𝐵𝑜𝑜𝑠𝑡 =

1.0 km/s. Despite penetrating the deepest into the sensible atmosphere and experiencing greater

nonlinear drag effects, the skip apogee altitudes reached with ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s retain the

strongest linear relationship with initial orbit altitude for all simulated cases.

Figure 6.2. Descent-Boost Apogee Altitude with Variable Initial Altitude and Boost Impulse

www.manaraa.com

140

In addition to skip apogee altitude, the boost impulse and perigee altitude also influence

the maximum deceleration and stagnation heat flux experienced by the TAV during the trans-

atmospheric segment of the descent-boost trajectory. From Table 6.3, the deceleration increases

as the depth of atmospheric penetration increases, with the greatest deceleration of 63.25 g

resulting from the TAV transiting the lowest perigee altitude with the highest velocity of the

sample cases. As periapsis becomes shallower and higher in altitude than the upper atmosphere

limit, the deceleration thus decreases as aerodynamic drag decreases. For descent-boost

maneuvers featuring a perigee altitude of ℎ𝑝 > 120 km, the deceleration experienced by the

TAV becomes less than unity. Adhering to the same physical trends as deceleration, stagnation

heat flux reached a maximum among the sample simulations cases of 10709 kW/m2 for the

initial conditions ℎ𝑖 = 5000 km and ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.3 km/s. By comparison, the Space Shuttle

mission STS-5 experienced a maximum re-entry heat flux of 1400 kW m2⁄ on the lower surface

of the wing leading-edge at an approximate altitude of 70 km.154 Unlike the descent-boost case

which only represents an estimate of stagnation heat flux, the STS-5 measurement is total heat

flux and, therefore, includes contributions by radiative heating.

154 Ko, “Finite Element,” 16, 18, 32.

www.manaraa.com

141

Table 6.3. Trajectory Parameters for Descent-Boost Maneuvers with
Variable Boost ∆𝑉 at 𝜎 = 0 deg

Parameter ∆𝑉𝐵𝑜𝑜𝑠𝑡 ,𝑘𝑚/𝑠 Case
1 2 3 4

ℎ𝑖, km — 500 1000 2000 5000
𝛾𝑖 , deg — −8.0 −11.7 −19.0 −33.8

ℎ𝑝, km

0.3 63 57 50 49
0.5 71 133 107 158
0.8 166 319 386 538
1.0 214 403 532 761

ℎ𝑎 , km

0.3 1505 2509 4019 9308
0.5 2776 4480 7495 18377
0.8 4852 6334 9910 23214
1.0 6267 7952 11991 26237

Max. Decel, g

0.3 7.186 16.07 50.11 63.25
0.5 2.393 0.336 0.500 0.884
0.8 0.340 0.408 0.572 0.950
1.0 0.397 0.464 0.622 0.950

�̇�𝑠,𝑚𝑎𝑥, kW/m2

0.3 2717 4316 8249 10709
0.5 1627 19.12 82.38 13.99
0.8 8.600 0.764 0.410 0.140
1.0 3.511 0.330 0.126 0.038

The second phase of the sensitivity study executed a series of single descent-boost

maneuvers with constant values for initial altitude and boost impulse of ℎ𝑖 = 2000 km and

∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, respectively. Based on the preceding phase, these initial conditions

approximate the median values of the intervals ℎ𝑖 ∈ [500, 5000] km and ∆𝑉𝐵𝑜𝑜𝑠𝑡 ∈

[0.0, 1.0] km/s. As shown in Fig. 6.3(a), the ∆𝑉 required to complete a descent-boost maneuver

– to include circular orbit injection at skip apogee – increases as initial flight-path angle changes

from 𝛾𝑖 = −1 deg to 𝛾𝑖 = −19.5 deg since the descent impulse ∆𝑉𝛾 increases as the flight-path

angle increases in magnitude. In terms of orbital plane orientation, the maneuver ∆𝑉 decreases as

inclination increments from 0 deg to 80 deg, thus indicating a greater propellant cost for

performing a descent-boost maneuver near the equator.

www.manaraa.com

142

Although 𝜎 = 0 deg, Fig. 6.3(b) illustrates a change in inclination angle (∆𝑖) for all

descent-boost maneuvers performed, with the magnitude of ∆𝑖 related to changes in both initial

flight-path angle and inclination. As the magnitude of these parameters increase, a negative

inclination change is created and, consequently, a contraction of the orbit trajectory with respect

to latitude. When the bank angle is changed to 𝜎 = −90 deg, however, the amount of inclination

change remains relatively constant with a RMS deviation of 2.3318 x 10−4 deg for the 𝑖 =

80 deg case with 𝛾𝑖 ∈ [−18.3,−1] deg. For all inclination cases, the initial flight-path angles of

𝛾𝑖 ∈ [−19.5,−18.3] deg could not be simulated since they produced planetary impact scenarios

when 𝜎 = −90 deg. Limited to a single initial altitude case, a cursory assessment of ∆𝑖 solution

behavior indicates a strong dependence on both initial flight-path angle and inclination, and a

weak dependence on bank angle for descent-boost maneuvers.

Figure 6.3. Descent-Boost Maneuvers with Variable Initial Inclination, ℎ𝑖 = 2000 km,
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) ∆𝑉 vs. 𝛾𝑖, and (b) ∆𝑖 vs. 𝛾𝑖

www.manaraa.com

143

Figure 6.4(a) shows that as the initial flight-path angle magnitude increases, the apogee

altitude generally decreases due to a deeper penetration into the sensible atmosphere by the TAV

as given in Subplot (b). For initial inclinations of 𝑖 > 40 deg, Subplot (b) indicates a shallower

perigee altitude either near or higher than the upper atmosphere limit. Consequently,

aerodynamic drag losses are reduced and thus greater apogee altitudes are shown in Subplot (a)

as initial flight-path angle changes from 𝛾𝑖 = −1 deg to 𝛾𝑖 = −19.5 deg. As the apogee altitude

increases, Fig. 6.5(a) illustrates a likewise increase in ∆𝑉 that is approximately linear in nature

for each inclination case. With all descent-boost maneuvers simulated incurring an inclination

change, the combined Hohmann transfer was selected as the comparative maneuver rather than

the planar Hohmann or bi-elliptic alternatives since it changes both inclination and semi-major

axis. Shown in Fig. 6.5(b), the combined Hohmann transfer requires less ∆𝑉 than the descent-

boost maneuvers to reach apogee for all combinations of initial conditions. While the ∆𝑉 is

nearly equivalent for 0 deg ≤ 𝑖 < 40 deg, a divergence is seen for 𝑖 ≥ 60 deg as a result of a

higher ∆𝑖 produced by the descent-boost maneuvers for these initial inclination cases.

Figure 6.4. Descent-Boost Maneuvers with Variable Initial Inclination, ℎ𝑖 = 2000 km,
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) ℎ𝑎 vs. 𝛾𝑖, and (b) ℎ𝑝 vs. 𝛾𝑖

www.manaraa.com

144

Figure 6.5. Comparison of ∆𝑉 vs. Apogee Altitude Performance with Variable Initial Inclination,
ℎ𝑖 = 2000 km, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Descent-Boost Maneuvers, and

(b) Combined Hohmann Transfer Maneuvers

In an effort to reduce the number of comparative parameters between the descent-boost

maneuver and combined-Hohmann transfer, MP number analysis was performed to yield surface

plots as given in Figs. 6.6 and 6.7. For descent-boost maneuvers, Fig. 6.6 demonstrates that the

greatest maneuver effectiveness corresponds to the global minimum of the MP number surface,

where initial flight-path angle magnitude is at a minimum and initial inclination is a maximum.

Conversely, descent-boost maneuvers become increasingly less effective due to higher ∆𝑉 costs

as the initial flight-path angle increases in magnitude and the inclination approaches zero at the

equator. Mirroring the graphical trend in Fig. 6.5(b), the MP number surface in Fig. 6.7 shows a

nearly horizontal orientation with the exception of the region corresponding to both high initial

flight-path angle and inclination. Requiring approximately half of the ∆𝑉 expenditure as the

descent-boost maneuver, the overall magnitude of the MP number surface for the combined

Hohmann transfer is likewise approximately half in magnitude.

www.manaraa.com

145

Figure 6.6. Maneuver Performance (MP) Number Analysis for Descent-Boost Maneuvers with
Variable Initial Inclination,ℎ𝑖 = 2000 km, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg

Figure 6.7. Maneuver Performance (MP) Number Analysis for Combined Hohmann Transfer
Maneuvers with Variable Initial Inclination and ℎ𝑖 = 2000 km

www.manaraa.com

146

Results and Analysis

 Even though the maneuver diagram in Fig. 6.1 assumed orbit injection at skip apogee,

descent-boost maneuvers are capable of performing ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 impulses within the altitude range

ℎ𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 < ℎ𝐼𝑛𝑗𝑒𝑐𝑡 ≤ ℎ𝑎 if multiple skips in the atmosphere are permitted by mission time

requirements. The upper limit of the sensible atmosphere at approximately 120 km is given as

the lower bound for orbit injection altitude since the region ℎ𝑝 ≤ ℎ ≤ ℎ𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 cannot produce a

stable orbit as a result of aerodynamic drag. With orbits near ℎ𝑆𝑒𝑛𝑠𝑖𝑏𝑙𝑒 encountering sufficient

drag forces to create a decaying trajectory, it is assumed that a subsequent orbit-raising maneuver

(e.g. Hohmann transfer) will be performed if TAV mission end-of-life re-entry is not desired.

An example of an orbit injection occurring at an altitude lower than skip apogee is given

in Fig. 6.8. In Subplot (a) of said figure, a descent-boost maneuver is executed from ℎ𝑖 =

1000 km and 𝛾𝑖 = −12.5°, which places perigee at ℎ𝑝 ≈ 76 km. Rather than injecting into

either a circular or elliptical orbit at skip apogee, the TAV transits apogee and again reaches

perigee located within the sensible atmosphere. Due to aerodynamic drag, the apogee of the

elliptical orbit created by the descent-boost maneuver decays with eventual planetary impact

occurring between 700 < 𝑡 < 900 min. For a non-apogee orbit injection, the target altitude of

500 km is selected and illustrated in Subplot (a). So as to minimize the total descent-boost ∆𝑉,

min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� is achieved by first calculating ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 for each crossing of the trajectory with

the target altitude, then performing a global comparison of all injection impulses to select the

minimum value. From Subplot (a), min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡� occurs after the sixth perigee passage and

produces the desired orbit injection after 𝑡 ≈ 550 min in Subplot (b).

www.manaraa.com

147

Figure 6.8. Example Circular Orbit Injection via Descent-Boost Maneuver;
(a) Truncated Descent-Boost Trajectory with Target Altitude Crossings, and

(b) Trajectory with Re-Circularization at min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡�

The circular orbit injection given in Fig. 6.8 is also shown in Fig. 6.9 as a three-dimensional

polar view so as to highlight the decaying elliptical orbit of the precessing trajectory. Shifting

from a trajectory color of yellow to red following the sixth perigee passage, injection occurs at

an altitude of 500 km and the elliptical orbit created by the maneuver is thus re-circularized.

www.manaraa.com

148

Figure 6.9. Three-Dimensional View of Descent-Boost 500 km Circular Orbit Injection with
𝛾𝑖 = −12.5°, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, ℎ𝑖 = 1000 km, ℎ𝑝 ≈ 76 km, 𝜎 = 0 deg

Circular Orbit Injection

 Outlined in Table 6.4, a series of six cases were devised to illustrate the circular orbit

injection performance of descent-boost maneuvers compared with the combined Hohmann and

bi-elliptic transfer alternatives performed in the vacuum environment. As a result of changes to

inclination arising with the execution of the descent-boost maneuvers, the combined Hohmann

transfer is utilized rather than the conventional planar Hohmann transfer since the former alters

both orbital inclination and semi-major axis during the maneuver. Although planar by definition,

the bi-elliptic transfer is simulated since it more closely approximates the altitude evolution of

the descent-boost maneuver than the combined Hohmann. For all bi-elliptic transfers, the apogee

of the intermediate orbit will equal the altitude of the first skip apogee created by the descent-

boost maneuver, thereby yielding an estimate for ∆𝑉 which reflects not only orbit injection, but

also the transit of the greatest altitude deviation imparted by the descent-boost maneuver.

www.manaraa.com

149

Table 6.4. Comparison of Circular Orbit Injection Performance for Descent-Boost Maneuvers,
Combined Hohmann, and Bi-Elliptic Transfers

Parameter Case
1 2 3 4 5 6

ℎ𝑖, km 1000 1000 1000 800 800 800
ℎ𝐼𝑛𝑗𝑒𝑐𝑡, km 1000 1800 500 800 1800 500
𝛾𝑖, deg −12.5 −12.5 −12.5 −10.9 −10.9 −10.9

∆𝑉𝛾 , km/s 0.9077 0.9077 0.9077 0.8356 0.8356 0.8356
∆𝑉𝐵𝑜𝑜𝑠𝑡 , km/s 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 , km/s 0.0157 0.0069 0.0141 0.0194 0.1721 0.0112
∆𝑉𝐷𝐵, km/s 1.4234 1.4146 1.4218 1.3549 1.5076 1.3468
∆𝑉𝐶𝑜𝑚𝑏 , km/s 1.1068 1.2055 1.1757 1.0338 1.0641 1.0498
∆𝑉𝐵𝑖−𝐸𝑙𝑙, km/s 1.1450 1.1205 1.4014 1.0721 1.0453 1.2300
𝑇𝑂𝐹𝐷𝐵, min 427.36 221.14 548.14 345.15 101.08 428.97
𝑇𝑂𝐹𝐶𝑜𝑚𝑏 , min 68.50 68.49 68.50 65.25 64.25 64.25
𝑇𝑂𝐹𝐵𝑖−𝐸𝑙𝑙 , min 136.99 141.71 134.09 128.51 134.30 126.80

As a preliminary examination of descent-boost maneuver performance for orbit injection,

the initial altitudes of 800 km and 1000 km were selected as well as a set of target injection

altitudes located above, below, and at the same altitude as the initial condition. Similar to the

sensitivity study, the initial flight-path angle selected for each case permits the deepest

atmospheric penetration without planetary impact. In terms of trajectory design, 𝛾𝑖 = −12.5 deg

produces a perigee altitude of ℎ𝑝 ≈ 76 km, whereas the shallower flight-path angle of 𝛾𝑖 =

−10.9 deg produces a perigee at ℎ𝑝 ≈ 75 km due to a lower initial altitude.

With a constant ∆𝑉𝛾 and ∆𝑉𝐵𝑜𝑜𝑠𝑡 for each initial altitude set, the variation in total

maneuver ∆𝑉 arises with the selection of orbit injection altitude. For the ℎ𝑖 = 1000 km case set,

the lowest injection impulse ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 corresponds to a target altitude of 1800 km. In contrast, the

www.manaraa.com

150

lowest ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 for the ℎ𝑖 = 800 km case set is associated with an altitude of 500 km. By

decreasing the initial altitude by 200 km, the descent-boost maneuver ∆𝑉 decreases by 4.9% for

both ℎ𝑖 = ℎ𝐼𝑛𝑗𝑒𝑐𝑡 and ℎ𝑖 > ℎ𝐼𝑛𝑗𝑒𝑐𝑡, and increases by 7.1% for ℎ𝑖 < ℎ𝐼𝑛𝑗𝑒𝑐𝑡.

When compared with the exo-atmospheric maneuvers, however, the descent-boost

maneuvers maintain the highest ∆𝑉 and longest time-of-flight with the exception of the bi-

elliptic transfer in Case #5. Despite featuring a time-of-flight savings of 33.22 min, the ∆𝑉

associated with the descent-boost maneuver is 1.5076 km/s – a value 44.2% greater than the bi-

elliptic transfer ∆𝑉. Overall, the combined Hohmann transfer maintains both the lowest ∆𝑉 and

time-of-flight for each orbit injection case. While explicitly the superior maneuver, the combined

Hohmann transfer performance is a direct function of maneuver design. Unlike the descent-boost

and bi-elliptic alternatives which host at least one intermediate trajectory between the initial and

target orbits, the combined Hohmann produces the most direct orbit injection scenario with the

maneuver altitude restricted to either ℎ𝐼𝑛𝑗𝑒𝑐𝑡 ≤ ℎ ≤ ℎ𝑖 or ℎ𝑖 ≤ ℎ ≤ ℎ𝐼𝑛𝑗𝑒𝑐𝑡. As a consequence of

not transiting the first skip apogee altitude of the descent-boost maneuver, the combined

Hohmann transfer was excluded from subsequent comparative simulations in favor of the bi-

elliptic transfer which provides the closest approximation of the descent-boost altitude evolution.

Starting from the reference orbit states given in Table 6.2, a series of descent-boost

maneuvers and bi-elliptic transfers were simulated with ℎ𝑖 = [500: 100: 1200] km. For the

former maneuver type, the initial flight-path angles as given in Table 6.5 permit multiple skips

without planetary impact for 𝑡 ∈ [0, 800] min as well as periapsis locations below the upper

atmosphere limit.

www.manaraa.com

151

Table 6.5. Initial Flight-Path Angles and Associated Perigee Altitudes
for Descent-Boost Maneuvers

ℎ𝑖, 𝑘𝑚 𝛾𝑖,𝑑𝑒𝑔 ℎ𝑝,𝑘𝑚

500 −7.9 79
600 −8.9 79
700 −10.0 75
800 −10.9 75
900 −11.8 74

1000 −12.5 76
1100 −13.2 77
1200 −14.0 76

With ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s and 𝜎 = 0 deg, Fig. 6.10(a) illustrates the ∆𝑉 required for

circular orbit injection into LEO target altitudes within the range 300 km ≤ ℎ𝐼𝑛𝑗𝑒𝑐𝑡 ≤ ℎ𝑖. Since

the descent-boost trajectory is a decaying elliptical orbit, the minimization of ∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡 creates a

sinusoidal relationship between the target altitude and total ∆𝑉. As a substitute to the scatterplot

data obtained from the maneuver simulations, Subplot (a) instead portrays the trigonometric

functions of injection altitude for each initial altitude case derived via regression analysis as

listed in Table 6.6. Upon examination, the the mean ∆𝑉 in each sinusoid model substantiates the

general maneuver performance trend initially identified in Table 6.4: the descent-boost maneuver

∆𝑉 increases as the initial altitude increases.

When the descent-boost ∆𝑉 from Fig. 6.10(a) is compared with that for the bi-elliptic

transfers in Fig. 6.10(b), regions can be demarcated where the former maneuver requires a lower

∆𝑉 for orbit injection and, therefore, represents the more viable maneuver option in terms of

propellant expenditure. Shown in detail in Fig. 6.11, a lower descent-boost ∆𝑉 can be identified

for ℎ𝐼𝑛𝑗𝑒𝑐𝑡 < 480 km with ℎ𝑖 = 1000 km, ℎ𝐼𝑛𝑗𝑒𝑐𝑡 < 630 km with ℎ𝑖 = 1100 km, and ℎ𝐼𝑛𝑗𝑒𝑐𝑡 <

600 km with ℎ𝑖 = 1200 km.

www.manaraa.com

152

Table 6.6. Sinusoid Models for Descent-Boost LEO Injection Maneuvers

Initial Altitude,
𝑘𝑚 Sinusoid Model RMS Error,

𝑘𝑚/𝑠

500 ∆𝑉 = 0.0215 sin�0.040537ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 1.86469� + 1.223 0.00410

600 ∆𝑉 = 0.0210 sin�0.040020ℎ𝐼𝑛𝑗𝑒𝑐𝑡 + 2.20112� + 1.257 0.00431

700 ∆𝑉 = 0.0310 sin�0.025964ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 1.94727� + 1.328 0.00939

800 ∆𝑉 = 0.0305 sin�0.025234ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.17010� + 1.368 0.00583

900 ∆𝑉 = 0.0370 sin�0.025751ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.08581� + 1.418 0.01383

1000 ∆𝑉 = 0.0305 sin�0.030952ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.63089� + 1.433 0.01017

1100 ∆𝑉 = 0.0318 sin�0.025751ℎ𝐼𝑛𝑗𝑒𝑐𝑡 + 2.08581� + 1.471 0.01663

1200 ∆𝑉 = 0.0330 sin�0.025033ℎ𝐼𝑛𝑗𝑒𝑐𝑡 − 2.12777� + 1.510 0.01240

By design, an orbit injection descent-boost maneuver is comprised of an initial skip

apogee which transitions into a decaying elliptical trajectory that terminates when min�∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡�

is satisfied. A function of 𝛾𝑖 and ∆𝑉𝐵𝑜𝑜𝑠𝑡, the altitude of the first skip apogee ostensibly dictates

not only the number of feasible elliptical orbit passages before planetary impact, but also the

upper bound of possible injection orbit altitudes. Implicitly, the first skip apogee provides an

opportunity for augmented mission operations. Utilizing Case #3 from Table 6.4 as an example,

a TAV executing a descent-boost maneuver at ℎ𝑖 = 1000 km will reach a skip apogee of ℎ𝑎 ≈

3850 km. While the ultimate mission requirement is to inject into a circular orbit at 500 km, the

TAV is capable of performing a possible orbital inspection upon transiting skip apogee.

www.manaraa.com

153

Figure 6.10. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with Variable 𝛾𝑖,
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Descent-Boost Maneuver ∆𝑉, and

(b) Bi-Elliptic Transfer ∆𝑉

www.manaraa.com

154

Figure 6.11. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with Variable 𝛾𝑖,
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg, and ℎ𝑖 = [1000, 1100, 1200] km

Based on the aforementioned utility of skip apogee, Fig. 6.12 portrays the time-of-flight

to reach the first apogee for both the descent-boost maneuver and bi-elliptic transfer in Subplot

(a), and a quartic model for skip apogee altitude as a function of initial altitude in Subplot (b). In

addition to requiring a higher orbit injection ∆𝑉 than bi-elliptic transfers – with a few cited

exceptions based on the choice of both initial and injection altitudes – Subplot (a) illustrates that

descent-boost maneuvers entail a longer time-of-flight to reach skip apogee. Starting at ℎ𝑖 =

500 km, the deviation in time-of-flight between the two maneuver options is ∆𝑇𝑂𝐹 ≈ 4 min;

increasing the initial altitude to ℎ𝑖 = 1200 km, the deviation increases to ∆𝑇𝑂𝐹 ≈ 15 min.

Pertaining only to descent-boost maneuvers, Subplot (b) depicts a regression-derived quartic

model for first skip apogee altitude as described by Eq. (6.4):

 ℎ𝑎 = 𝑓(ℎ𝑖) = 𝑎4ℎ𝑖
4 + 𝑎3ℎ𝑖

3 + 𝑎2ℎ𝑖
2 + 𝑎1ℎ𝑖 + 𝑎0 (6.4)

where

www.manaraa.com

155

Coefficient Value

𝑎0 −9.161075 x 103
𝑎1 6.078239 x 101
𝑎2 −1.140242 x 10−1
𝑎3 9.422693 x 10−5
𝑎4 −2.797119 x 10−8

A single variable polynomial with 𝑅2 = 0.9989, Eq. (6.4) assumes an average perigee altitude of

ℎ�𝑝 ≈ 76 km and is continuous within the interval ℎ𝑖 ∈ [500, 1200] km.

Figure 6.12. Comparison of Descent-Boost Maneuver and Bi-Elliptic Transfer with
Variable 𝛾𝑖, ∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, 𝜎 = 0 deg; (a) Time-of-Flight to Apogee, and

(b) ℎ𝑎 vs. ℎ𝑖 for Descent-Boost Maneuvers (Quartic Model, 𝑅2 = 0.9989)

www.manaraa.com

156

Molniya Orbit Injection

The altitude reachability of descent-boost maneuvers for orbit injection is dependent on

the magnitude of both the descent and boost impulses applied at 𝑡 = 0, as well as the initial orbit

altitude. With available propellant onboard the TAV representing the fundamental limiting

factor, the reachability envelope becomes constrained by not only the requirements of an

immediate mission tasking, but also the prospect of continued on-orbit operations. As a

consequence of minimizing total ∆𝑉 expenditure, the utilization of descent-boost maneuvers for

orbit injection limits the feasible reachability envelope to LEO and the transition region between

LEO and medium Earth orbit (MEO), specifically 2000 ≤ ℎ𝐼𝑛𝑗𝑒𝑐𝑡 < 5000 km.155 Although

precluding injection into MEO trajectories with 12 hr periods such as those associated with the

Global Positioning System (GPS) constellation, descent-boost maneuvers proffer the ability for

injection into Molniya orbits. Highly elliptical orbits with eccentricities greater than 0.7 and a

period approximately equal to half of one sidereal day, Molniya orbits feature a periapsis within

the LEO altitude regime.156

Based on the two-line element (TLE) set for the Molniya 3-42 communications satellite,

an example Molniya injection orbit can be defined by a perigee and apogee altitude of

501.1350 km and ℎ𝑎 = 36621.9905 km, respectively, with an orbit inclination of 62.8 deg.157

Commencing from ℎ𝑖 = 1000 km, the initial latitude/longitude coordinates (𝜃𝑖 ,𝜙𝑖) = (0,0) deg,

and 𝑖 = 62.8 deg, Molniya orbit injection performance is given in Table 6.7 for the descent-

boost maneuver as well as the bi-elliptic and combined Hohmann transfers. Depicted in Fig.

155 I. H. Ph. Diederiks-Verschoor and V. Kopal, An Introduction to Space Law, Third Edition (Alphen aan den Rijn,

The Netherlands: Kluwer Law International, 2008), 20.
156 Charles D. Brown, Elements of Spacecraft Design (Reston, VA: American Institute of Aeronautics and

Astronautics, Inc., 2002), 109.
157 The Center for Space Standards & Innovation, “Molniya 3-42 TLE,” NORAD Two-Line Element Sets,

CelesTrak, last modified 29 January 2014, accessed 29 January 2014, http://www.celestrak.com/NORAD/
elements/molniya.txt; See Appendix C for a guide to convert TLE data into Keplerian elements.

www.manaraa.com

157

6.13, the descent-boost maneuver completes the injection impulse between the first skip apogee

and the second perigee passage. Similar to previous simulations, the apogee of the bi-elliptic

intermediate transfer orbit is equal to the altitude of the first skip apogee, which, for the Molniya

orbit injection example is ℎ𝑎 = 3906 km. As alternatives to the descent-boost maneuver and bi-

elliptic transfer, two variations of the combined Hohmann transfer are simulated: (1) Transfer

from ℎ𝑖 = 1000 km to the Molniya orbit periapsis; and (2) Transfer from ℎ𝑖 = 1000 km to the

Molniya orbit apoapsis.

Table 6.7. Comparison of Molniya Orbit Injection Performance for Descent-Boost Maneuver
(∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km s⁄ ,𝜎 = 0 deg), Bi-Elliptic, and Combined Hohmann Transfer

Parameter Descent-Boost Bi-Elliptic Combined Hohmann
Perigee Transfer Apogee Transfer

ℎ𝑖, km 1000 1000 1000 1000
ℎ𝐼𝑛𝑗𝑒𝑐𝑡, km 501.1350 501.1350 501.1350 36621.9905
𝛾𝑖, deg −12.3 0.0 0.0 0.0

∆𝑉𝛾 , km/s 0.8887 — — —
∆𝑉𝐼𝑛𝑗𝑒𝑐𝑡, km/s 2.0231 — — —
∆𝑉𝑇𝑜𝑡𝑎𝑙 , km/s 3.4118 2.4090 2.4301 2.3517
𝑇𝑂𝐹, min 127.52 134.75 49.92 331.55

MP Number, ƥ 52.3 39.0 14.6 1.3

Despite maintaining the lowest total ∆𝑉 of the maneuvers simulated, the combined

Hohmann apogee transfer requires the longest time-of-flight at 331.55 min. As a result of

featuring the most direct transfer trajectory between ℎ𝑖 and the target orbit, the combined

Hohmann perigee transfer requires the shortest time-of-flight, with a savings of 281.63 min for a

7.8% increase in ∆𝑉 when compared with the apogee transfer. While representing the highest ∆𝑉

expenditure for Molniya orbit injection, the descent-boost maneuver maintains a lower time-of-

www.manaraa.com

158

flight than both the bi-elliptic and apogee transfers. In terms of MP number, the apogee transfer

is cast as the most effective maneuver since the greatest spatial distance is traversed for the

lowest ∆𝑉 even though the longest time-of-flight is required. For the perigee injection cases, the

combined Hohmann perigee transfer is the more effective maneuver option based primarily on a

60.9% and 63% lower time-of-flight than the descent-boost and bi-elliptic alternatives,

respectively.

Figure 6.13. Descent-Boost Maneuver with Molniya Orbit Injection with 𝛾𝑖 = −12.3°,
∆𝑉𝐵𝑜𝑜𝑠𝑡 = 0.5 km/s, ℎ𝑖 = 1000 km, ℎ𝑝 ≈ 78 km, 𝜎 = 0 deg

When viewed with respect to the Earth, the orbit injection scenario as shown in Fig. 6.14

reveals several details unavailable in the preceding figure, to include the first perigee passage

occurring over northern Asia, skip apogee located over the South Pacific, and the signature

“figure-8” geometry of the Molniya orbit.

www.manaraa.com

159

Figure 6.14. Three-Dimensional Polar View of Descent-Boost Molniya Orbit Injection

In order to reduce the total ∆𝑉 expenditure, the descent-boost maneuver was initiated

without any preliminary phasing maneuver to ensure alignment with the Molniya 3-42 orbit in

terms of RAAN and argument of perigee. Consequently, the Molniya injection and Molniya 3-42

trajectories share the same geometric shape, but not the same orbital orientation with respect to

the Earth as shown in Fig. 6.15. Limited to a simulation time duration of 1600 min, both the

Molniya injection (yellow) and Molniya 3-42 (green) trajectories only represent two complete

orbital revolutions. If the simulation time were to be extended, precession effects would become

evident since the Earth is modeled as a rotating central body. Even though the two trajectories do

not intersect within the interval 0 ≤ 𝑡 ≤ 1600 min, several opportunities for possible orbit

inspection exist during periods of trajectory close-approach. Located on the right-side of Fig.

6.16, the apparent point of orbit intersection corresponds to the closest approach of the two

trajectories for 0 ≤ 𝑡 ≤ 1600 min. Employing the Hausdorff distance formula, the close-

approach can be characterized as a trajectory separation distance of approximately 492 km.

www.manaraa.com

160

Given two sets of finite points 𝐴 = {𝑎1,𝑎2, … ,𝑎𝑚} and 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛}, the Hausdorff

distance is defined by:158

 𝐻(𝐴,𝐵) = max�ℎ(𝐴,𝐵),ℎ(𝐵,𝐴)� (6.5)

where

 ℎ(𝐴,𝐵) = max𝑎∈𝐴 min𝑏∈𝐵 𝑑𝐸(𝑎, 𝑏) (6.6)

From Eq. (6.6), the term 𝑑𝐸(𝑎, 𝑏) represents the Euclidean norm of the points between sets 𝐴 and

𝐵.159 In terms of time-of-flight, the close-approach occurs after an elapsed time of 375.5 min for

the Molniya injection trajectory, to include the initial descent-boost maneuver and the Molniya

perigee injection impulse. Also starting from 𝑡 = 0, the close-approach for the Molniya 3-42

trajectory occurs after 369.5 min.

Figure 6.15. Three-Dimensional Polar View of Descent-Boost Orbit Injection
and Molniya 3-42 Orbit Trajectories

158 Yalin Wang, Qilong Han, and Haiwei Pan, “A Clustering Scheme for Trajectories in Road Networks,” in

Advanced Technology in Teaching – Proceedings of the 2009 3rd International Conference on Teaching and
Computational Science, ed. Yanwen Wu (Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2012), 14;
Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge, “Comparing Images Using the
Hausdorff Distance,” IEEE Transactions on Pattern Analysis and Machine Intelligence 15, no. 9 (1993): 850.

159 Michel M. Deza and Elena Deza, Encyclopedia of Distances, Second Edition (Berlin, Germany: Springer-Verlag
Berlin Heidelberg, 2013), 323.

www.manaraa.com

161

Figure 6.16. Detail of Close-Approach of Descent-Boost Orbit Injection

and Molniya 3-42 Orbit Trajectories

Summary and Conclusion

A series of descent-boost maneuvers were executed to investigate maneuver performance

sensitivity and the prospect of LEO injection for a notional trans-atmospheric, lifting re-entry

vehicle with 𝐿/𝐷 = 6. When initial altitude and boost impulse are constant, simulations indicate

that the total descent-boost maneuver ∆𝑉 is a strong function of initial flight-path angle and

inclination, with ∆𝑉 increasing as the magnitude of both of these parameters increases. Based on

www.manaraa.com

162

the design of the descent-boost maneuver, the requirement for an initial ∆𝑉 impulse to alter

trajectory flight-path angle and orbital velocity produces an approximately 1.5 to 2.0 times

greater ∆𝑉 expenditure when compared with the exo-atmospheric combined Hohmann transfer.

Although requiring a longer time-of-flight for orbit injection than bi-elliptic transfers, descent-

boost maneuvers are shown here to require 6-12% less ∆𝑉 for injection altitudes lower than

650 km for circular orbits with an initial altitude of 1000, 1100, and 1200 km. While MP

number analysis casts the combined Hohmann transfer as the more effective option for orbit

injection in terms of both ∆𝑉 expenditure and time-of-flight, descent-boost maneuvers provide

two capabilities not available for the Hohmann. First, the TAV can perform an orbital inspection

upon transiting skip apogee when conducting a descent-boost orbit injection; second, a degree of

maneuver unpredictability is garnered since the descent-boost trajectories are trans-atmospheric

by design and maintain a decaying elliptical flight-path which produces multiple orbit injection

possibilities.

www.manaraa.com

163

VII. Aeroassisted Maneuvers: Potential Air and Space Law Challenges

Chapter Overview

Diverging from the paradigm that spacecraft exclusively operate within the vacuum of

outer space, current engineering efforts are seeking to create vehicles that can exploit the

aerodynamic forces of the upper atmosphere in order to implement an aeroassisted, trans-

atmospheric maneuver. By transcending both the airspace and outer space environments,

aeroassisted maneuver represent a source of potential air and space law challenges arising due to

current ambiguities surrounding the atmospheric delimitation debate as well as the question of

airspace sovereignty limits vis-à-vis space law.

Introduction

Spacecraft can be divided functionally into two categories: (1) Vehicles that operate

exclusively in the vacuum environment of space; and (2) vehicles that are hybrid in nature and

capable of re-entering the Earth’s atmosphere following the completion of a given on-orbit

mission. While the former category is referred to as satellites, the latter are identified trans-

atmospheric vehicles, or TAVs. Since the 1970s, TAVs have been limited to boost-glider

designs, such as the Space Shuttle and X-37B Orbital Test Vehicle (OTV), which achieve orbit

as either a secondary or tertiary stage on a rocket-propelled spacelift system. Following re-entry,

a TAV then utilizes aerodynamic lift to perform a gliding maneuver in order to land. Seeking to

evolve the boost-glider design concept, the early 21st century has witnessed an emergence of

both national and corporate efforts to create a hypersonic spaceplane capable of taking off and

landing horizontally on a conventional runway.160 Designed as a single-stage-to-orbit vehicle,

160 Carl Q. Christol, “The Aerospace Plane: Its’ Legal and Political Future,” Space Policy 9, no. 1 (1993): 36.

www.manaraa.com

164

the spaceplane is able to attain a level of mission “availability and flexibility of use” hitherto

limited by mass budget, launch window, and launch site location restrictions inherent in existing

rocket booster systems.161

Whether designed as a boost-glider or spaceplane, TAVs offer the capability of utilizing

the upper atmosphere as an alternative maneuver environment rather than an interface solely for

the purpose of re-entry at the mission end-of-life for manned and unmanned spacecraft.

Traditionally, orbital states and orbit geometry are modified via various maneuvers performed in

vacuo which, depending on both the initial mission altitude and desired orbital change, have the

propensity of becoming prohibitively expensive in terms of propellant expenditure.

Alternatively, atmospheric re-entry can be employed as a means of operational maneuver

whereby the aerodynamic drag of the upper atmosphere is exploited by a TAV to create an

aeroassisted maneuver. Such maneuvers have been analytically demonstrated to achieve a

desired orbital change for less propellant than required by an exo-atmospheric maneuver, thus

extending the spacecraft mission life.

Applicability of Air and Space Law

Not officially defined by international treaty, the demarcation between airspace and outer

space has created an extant legal debate concerning where air law ends and space law begins. As

codified in Article I of the Convention on International Civil Aviation, Chicago, 1944, air law

grants each state “sovereignty and exclusive territorial jurisdiction” over its’ respective airspace,

only to be infringed upon by prior formal agreement or treaty.162 By contrast, Article II of the

Outer Space Treaty of 1967 declares outer space to be an international zone outside the realm of

161 Pierre Betin, “Reflections on the Spaceplane,” Space Policy 7, no. 2 (1991): 138.
162 Alexandra Harris and Ray Harris, “The Need for Air Space and Outer Space Demarcation,” Space Policy 22, no.

1 (2006): 4; Stephan Hobe, Gerardine M. Goh, and Julia Neumann, “Space Tourism Activities – Emerging
Challenges to Air and Space Law?” Journal of Space Law 33, no. 2 (2007): 361.

www.manaraa.com

165

state sovereignty.163 In order to define the transition between air and space law, two differing

methods of airspace and outer space delimitation have arisen: spatialism and functionalism. For

spatialists, the boundary between air and space is defined physically in terms of altitude, such as

the von Kármán Line devised in the 1950s. Rather than an altitude boundary, the functionalist

approach seeks to delimit airspace and outer space according to the function and “distinctive

traits” of the vehicle operating within the environment in question.164

Compounding the demarcation debate is the absence of any conventional or customary

rule of international law addressing the “innocent passage” of vehicles ascending to or

descending from space. While such passages do occur within foreign airspace, “no protests

against [them] have been raised so far” and the passages are viewed as a fait accompli.165 When

considered within the context of the demarcation and atmospheric passage debates, aeroassisted

maneuvers pose a series of challenges to air and space law alike. Since aeroassisted maneuvers

are initiated from and terminate in space, are they governed by air and/or space law? Can such

maneuvers be considered an “innocent passage” when implemented within foreign airspace?

Spatialism and Aeroassisted Maneuver Altitude Delimitation

Whether an aeroassisted maneuver is implemented to modify an existing orbit or conduct

an orbital transfer from high Earth orbit to LEO, the trajectory must transit the upper atmosphere

at an altitude with sufficient density to impart the requisite aerodynamic force on a TAV.

Depending on the desired final orbit geometry and the imposition of deceleration and heat flux

constraints by the TAV structure and/or payload, trajectory simulations have indicated that

163 Harris, 4.
164 Hobe, 363.
165 Andrei D. Terekhov, “Passage of Space Objects through Foreign Airspace: International Custom?” Journal of

Space Law 25, no. 1 (1997): 6, 8.

www.manaraa.com

166

aeroassisted maneuvers have the potential of occurring within the 50 − 100 km altitude

regime.166

When viewed within the context of spatialism, the potential altitude regime for

aeroassisted maneuvers occurs lower than many international attempts to delimit airspace and

outer space. Corresponding to an altitude of 100 km, the von Kármán Line represents an

approximate boundary above which an aircraft cannot derive any aerodynamic lift from the

atmosphere and must travel at a speed approaching orbital velocity.167 As an alternative, Italy in

1975 proposed a boundary at 90 km since it represented the median altitude between the upper

limit of aircraft flight at 60 km, and the lowest possible satellite orbit at 120 km. In 1976,

Belgium echoed the reasoning of von Kármán by advocating a boundary at 100 km, while the

Soviet Union in 1979 proposed an arbitrary boundary “at an altitude not exceeding 110 km.”168

Although the Italian delimitation proposal places the upper altitude limit of aircraft flight

at 60 km, this corresponds to the approximate operating altitude of the X-15, an experimental

rocket-propelled aircraft of the early 1960s.169 In terms of conventional aircraft, the upper

altitude limit is considerably lower with the U.S. Air Force’s U-2 reaching a maximum ceiling of

approximately 21 km. As for spacecraft, the lowest operational orbit corresponds to an altitude

of 96 km, which is lower than all aforementioned delimitation proposals.170 By considering both

the nominal ceiling of the X-15 and the lowest achieved satellite orbit, an altitude “gap” at

166 Darby and Rao, “Minimum-Fuel,” 618-628; Patrick R. Jolley and Stephen A. Whitmore, “Aerodynamic and

Propulsion Assisted Maneuvering for Orbital Transfer Vehicles” (paper presented at the 5th Responsive Space
Conference, Los Angeles, CA, 23-26 April 2007): 1-39.

167 Francis Lyall and Paul B. Larsen, Space Law: A Treatise (Surrey, United Kingdom: Ashgate Publishing Limited,
2009), 167-169.

168 Ibid., 169.
169 W. D. Kay, “The X-15 Hypersonic Flight Research Program: Politics and Permutations at NASA,” in From

Engineering Science to Big Science: The NACA and NASA Collier Trophy Research Project Winners, ed. Pamela
E. Mack (Washington D.C.: U.S. Government Printing Office, 1998), 155.

170 Katherine M. Gorove, “Delimitation of Outer Space and the Aerospace Object – Where is the Law?” Journal of
Space Law 28, no. 1 (2000): 12.

www.manaraa.com

167

60 − 96 km is created which aligns with the potential operating environment for aeroassisted

maneuvers.

Even though conventional aircraft and lighter-than-air vehicles such as blimps do not

operate at 60 − 96 km, this altitude regime is still considered to be sovereign airspace as

evidenced in several reports issued since the 1960s. As one example, the Canadian government

identified that the Space Shuttle Challenger flew within its airspace at an altitude of

approximately 68 km while on glide path to land in the United States following re-entry in

1984.171 A second example arises from the proceedings of the United Nations’ Committee on the

Peaceful Uses of Outer Space in 1996.172 In response to a questionnaire disseminated to member

states regarding legal issues associated with “aerospace objects,” Germany noted that the Soviet

Space Shuttle Buran passed through the airspace of Turkey following re-entry in 1988.173 Based

on a similar structural design and mission profile, the Buran is assumed to have flown through

Turkish airspace at an altitude commensurate with that of the Challenger.

Despite the ambiguity surrounding the actual spatial delimitation of airspace and outer

space, precedence dictates that airspace sovereignty extends up to and beyond an altitude of

90 km. Consequently, aeroassisted maneuvers occurring at an altitude 50 − 90 km would be

considered a passage through foreign airspace if not implemented over international waters.174

By implementing an aeroassisted maneuver within airspace, a TAV is then subject to the

jurisdiction of air law. Since an aeroassisted maneuver places a TAV within foreign airspace for

a time of finite duration, however, can the passage and resulting airspace infringement be

171 Terekhov, 3.
172 For the complete questionnaire, see Gorove, 17-18; for the complete member states responses to the

questionnaire, see . A/AC.105/635, 15 February 1996.
173 UN doc. A/AC.105/635, 15 February 1996, at 7.
174 Since aeroassisted maneuvers implemented over international waters represent benign occurrences, only those

maneuvers that infringe on foreign airspace will be considered henceforth.

www.manaraa.com

168

deemed “innocent” and thus overlooked by the overflown state as with cases of vehicles

ascending to or descending from space? The presumptive answer would be in the affirmative, but

a functional analysis of the TAV mission is required in order properly classify an aeroassisted

maneuver as an “innocent passage” or not.

Functionalism and TAV Classification

According to the functionalist approach, the question of legal jurisdiction is dependent on

the function of the vehicle in question. Outlined in the 1975 Convention on Registration of

Objects Launched into Outer Space, a launch vehicle and satellite payload are considered “space

objects” and, therefore, governed by space law since they are intended to reach and operate

within the space environment.175 A broad term, “launch vehicle” within the context of the

aforementioned Convention applies to rocket boosters and not carrier aircraft. For the latter case,

such as the Lockheed L-1011 transport aircraft utilized as an upper atmospheric launching

platform for the Pegasus booster rocket, both the carrier aircraft and attached spacecraft are

governed by air law until vehicle separation. Following separation, the Pegasus booster and

similar spacecraft cannot “derive support in the atmosphere from the reactions of the air” and are

thus considered “space objects” subject to space law.176

Based on the Convention on Registration, a TAV conducting normal mission operations

in orbit is considered a “space object” and is subject to space law. When conducting an

aeroassisted maneuver, however, the TAV utilizes aerodynamic forces within the upper

atmosphere to produce lift. Does this ability to leverage aerodynamic forces during the

175 Convention on Registration of Objects Launched into Outer Space, 14 January 1975, 28 U.S.T. 695, 1023

U.N.T.S. 15.
176 Jane Van Nimmen, Leonard C. Bruno, and Linda N. Ezell, NASA Historical Data Book, Volume VII: NASA

Launch Systems, Space Transportation, Human Spaceflight, and Space Science, 1989-1998 (Washington D.C.:
U.S. Government Printing Office, 1999), 55; Hobe, 364.

www.manaraa.com

169

aeroassisted maneuver necessitate a change in vehicle status from space object to aircraft, and a

likewise change in legal jurisdiction from space law to air law? Since the TAV produces lift

while transiting the upper atmosphere, then it could be assumed that air law supersedes any space

law consideration as with the preceding example of the Pegasus booster attached to the L-1011

carrier aircraft. The validity of this assumption is tenuous, especially when the functions of both

the TAV and aeroassisted maneuver are considered. With the former, a TAV is intended to reach

and operate within outer space and thus constitutes the baseline definition of a “space object.”

For the latter, an aeroassisted maneuver is implemented in order to alter the geometry of an orbit,

whether originally in LEO or high Earth orbit. As a result, the TAV always remains within the

space environment except for the duration of the aeroassisted maneuver itself (and the eventual

re-entry at mission end-of-life).

If a TAV is subject to air law during an aeroassisted maneuver, then the right of foreign

airspace sovereignty must be observed. Consequently, a state whose airspace will be infringed by

an aeroassisted maneuver maintains the right to regulate passage within its airspace. Apart from

civilian missions such as those related to science or transportation, as with the case of space

tourism, TAVs also have the potential of hosting a variety of military functions. From being a

platform for augmented command, control, communications, intelligence, surveillance, and

reconnaissance (C3ISR), to a vehicle for prompt global strike, TAVs proffer an undeniable

enhancement of military capabilities.177 Based on the their inherent military mission

implications, aeroassisted maneuvers could be implemented to either deliver a TAV over a target

of interest, or place a TAV inside the atmosphere to conduct a specific mission within the

airspace of a state being overflown.

177 Jinyuan Su, “Near Space as a Sui Generis Zone: A Tri-Layer Approach of Delimitation,” Space Policy 29, no. 2

(2013): 91.

www.manaraa.com

170

In light of these potential missions, a state could follow precedence and impose a no-fly

zone for aeroassisted maneuvers deemed to fall outside the bounds of an “innocent passage.” For

example, the French and Spanish governments imposed no-fly zones which prevented the

passage of U.S. Air Force aircraft through their respective airspaces when executing Operation

El Dorado Canyon against Libya in 1986.178 Similarly, a state could impose a no-fly zone

precluding an aeroassisted maneuver intended to insert a TAV in orbital position to complete a

specific military mission, e.g. C3ISR or prompt global strike. When considered under the

jurisdiction of air law, aeroassisted maneuvers implemented in violation of a state-imposed no-

fly zone would constitute a breach of international treaty.

Environmental Considerations

Occurring within the 50 − 90 km altitude regime, aeroassisted maneuvers place a TAV

not only within potential foreign airspace, but also in the physical environment of the upper

atmosphere. Of the various human space activities, space launch produces a high level of exhaust

pollutants in the form of dust, the emission of toxic compounds such as aluminum oxide (from

solid propellant), and the spraying of unburned liquid propellant like hydrazine. Although argued

by many to have a negligible cumulative effect on atmospheric degradation, the burning of

rocket propellant – whether solid or liquid in composition – in the upper atmosphere has been

demonstrated to deteriorate the ozone layer and chemically contaminate the water cycle.179 Not

chemically destructive, the release of water as an exhaust by-product can interfere with

ionospheric conditions, thus disrupting the transmission of wireless communications.180

178 Joseph T. Stanik, El Dorado Canyon: Reagan’s Undeclared War with Qaddafi (Annapolis, MD: Naval Institute

Press, 2003), 145-146.
179 Lotta Viikari, The Environmental Element in Space Law: Assessing the Present and Charting the Future (Leiden,

The Netherlands: Koninkliijke Brill NV, 2008), 29-31.
180 Ibid., 31.

www.manaraa.com

171

While the aeroglide type of aeroassisted maneuver only performs thruster burns in space,

the aerobang and aerocruise alternatives produce a steady thrust throughout the trans-

atmospheric trajectory. Even though a TAV’s propulsion system burns liquid rather than solid

propellants and, therefore, produces fewer pollutants, exhaust by-products are continuously

injected into the airspace when an aerobang or aerocruise maneuver is implemented. As a result,

can a state deny the infringement of its airspace by an aeroassisted maneuver due to

environmental considerations? If an aerobang or aerocruise maneuver is considered within the

jurisdiction of air law, does the operator of the TAV assume sole liability for any environmental

impact of the maneuver?

Summary and Conclusion

The continued engineering development of TAVs will undoubtedly require the air and

space law challenges of aeroassisted maneuvers to be formally addressed due to ongoing debate

associated with the prospect of airspace and outer space delimitation. Occurring within the

50 − 90 km altitude regime, spatialism dictates that TAVs implementing an aeroassisted

maneuver are subject to air law. From the functionalist perspective, however, the legal

delimitation of air and space law becomes ambiguous with arguments that can identify a TAV as

either an aircraft or space object. For many states, to include the Lebanon, the Syrian Arab

Republic, and Turkey, the stance is clear: A TAV traversing foreign airspace during an

aeroassisted maneuver is subject to air law. For states like the Czech Republic though, ambiguity

resurfaces with the view that air law only applies to “objects resembling [spaceplanes], but not to

objects resembling Space Shuttles.”181

181 Gorove, 21-22.

www.manaraa.com

172

Due to the unique hybrid characteristics of not only aeroassisted maneuvers, but also

TAVs, one viable solution option is to spatially establish an exclusive zone of operation for

TAVs between the maximum operating ceiling of conventional aircraft and the lowest achievable

orbit for satellites. Defined as a sui generis zone, the approximate altitude regime of 21 − 96 km

would permit the freedom of operation of TAVs (within peaceful bounds) and officially delimit

the boundaries of both airspace sovereignty and outer space.182 A propitious compromise, such

an exclusive zone for TAVs could forestall the onset of legal challenges for nascent commercial

and national ventures seeking to implement aeroassisted maneuvers.

182 Su, 92.

www.manaraa.com

173

VIII. Conclusions and Recommendations

Conclusions of Research

Once verified by duplicating the re-entry trajectory of the Apollo 10 command module

capsule, the trajectory dynamics model was used to determine the terrestrial and LEO

reachability potential of aeroassisted maneuvers, specifically skip entry and descent-boost.

During the terrestrial reachability study, a series of skip entry and exo-atmospheric planar

phasing and simple plane change maneuvers were first simulated to establish the time-of-arrival

and ∆𝑉 required for each respective maneuver to overfly specific ground targets located at high-,

medium-, and low-latitudes. For the sample target of Moscow, it was demonstrated that skip

entry maneuvers provide the fastest time-of-arrival at a low ∆𝑉 when compared with the planar

phasing and simple plane change maneuver alternatives. While the ∆𝑉 for the simple plane

change is lower than most phasing maneuvers for targets such as Moscow and Gibraltar, the

equatorial target of Pontianak, Indonesia illustrated that the choice of ground target can have a

detrimental impact on ∆𝑉 with values approaching 8.0 km/s for a single simple plane change

maneuver. For a limited yet diverse set of sample ground targets, skip entry maneuvers are

shown to require a total ∆𝑉 less than 0.5 km/s and consistently provide responsive mission

execution in terms of target time-of-arrival.

While the ground target over-flight simulations assumed a notional TAV design with a

hypersonic lift-to-drag ratio of 𝐿/𝐷 = 6, the second phase of the terrestrial reachability study

sought to determine aeroassisted maneuver performance by optimizing both TAV and maneuver

trajectory design. Of the various optimization algorithms available, to include pseudospectral and

meta-heuristic methods, the Design of Experiments method of orthogonal arrays was employed

since it provides for an augmented exploration of the objective space with the ability to perform

www.manaraa.com

174

main effects as well as Pareto front analysis. Initially, three multiple-objective optimization

problems (MOPs) were devised from in order to obtain optimal designs for both a TAV and skip

entry trajectory: (1) {max(∆𝑖) , min(∆𝑉𝑇𝑜𝑡𝑎𝑙)}; (2) {max(∆𝑖) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}; and (3)

{min(∆𝑉) , max(ℎ𝑟𝑒𝑐𝑖𝑟𝑐)}. The first, or primary MOP sought maximize terrestrial reachability in

the form of inclination change, ∆𝑖, while minimizing ∆𝑉; the secondary and tertiary MOPs

focused on maximizing post-maneuver re-circularization altitude while maximizing reachability

and minimizing ∆𝑉, respectively. Although the maximization of re-circularization altitude

permits the execution of subsequent maneuvers and, therefore, a greater terrestrial reachability

potential due to higher orbital potential energy, Pareto analysis revealed that all three MOPs

could not be satisfied without sacrificing either ∆𝑖, ∆𝑉, or re-circularization altitude.

Consequently, the optimization was restricted to the primary MOP and the combined main

effects and Pareto front analysis yielded the following optimal TAV and skip entry trajectory

design:

Table 8.1. Optimal TAV Design and Trajectory from DOE Analysis

Mass, kg 2000
Planform Area, m2 18.5
Drag Coefficient 0.5
Lift Coefficient 3.0

Initial Altitude, km 1000
Perigee Altitude, km 86.75

Bank Angle −90 deg

Starting from a circular reference orbit with an inclination of 37.84 deg, the optimal

TAV design can achieve a maximum inclination change of ∆𝑖 = 19.91 deg for ∆𝑉 =

0.345 km/s if re-circularization occurs at the skip apogee altitude of 131.2 km. By performing a

Hohmann transfer following the aeroassisted maneuver in order to re-circularize at a sample

www.manaraa.com

175

higher altitude of 500 km, the total ∆𝑉 required to perform both maneuvers is 0.806 km/s.

Without an orbit-raising transfer, the orthogonal array optimization demonstrated that a skip

entry maneuver requires approximately 50-85% less ∆𝑉 than a simple plane change to achieve a

maximum inclination change of ∆𝑖 = 19.91 deg.

As an alternative to skip entry, the descent-boost type of aeroassisted maneuvers was

used to perform the LEO reachability study. For a single TAV design with 𝐿/𝐷 = 6, an initial

maneuver performance sensitivity study indicated the total descent-boost maneuver ∆𝑉 is a

strong function of both initial flight-path angle and inclination, with ∆𝑉 increasing as the

magnitude of these respective parameters increases. Utilizing MP number analysis, the combined

Hohmann transfer was deemed a more effective maneuver option for injection into orbits such as

Molniya, with the descent-boost maneuver generally requiring a greater ∆𝑉 expenditure due to

the initial ∆𝑉 impulse performed to alter TAV trajectory flight-path angle and orbital velocity.

Although requiring a longer time-of-flight for orbit injection than bi-elliptic transfers, descent-

boost maneuvers commencing from the initial altitudes of 1000, 1100, and 1200 km are shown

here to require 6-12% less ∆𝑉 for injection into circular orbits with altitudes less than 650 km.

Through the pursuance of both trajectory- and optimization-centric performance analysis,

aeroassisted maneuvers in the form of skip entry and descent-boost have been demonstrated in

several cases to require a lower ∆𝑉 expenditure than exo-atmospheric maneuvers in order to

achieve terrestrial and LEO reachability. Despite potential air and space law challenges arising

due to current ambiguities surrounding atmospheric delimitation and the question of airspace

sovereignty, aeroassisted maneuvers provide several implicit capabilities not readily available for

conventional exo-atmospheric maneuvers. For skip entry, maneuver unpredictability is

conceivable by penetrating the upper atmosphere to utilize aerodynamic forces to change orbital

www.manaraa.com

176

states such as inclination and semi-major axis. With descent-boost maneuvers, the TAV cannot

only perform an orbital inspection upon transiting skip apogee during orbit injection, but also

provide a level of unpredictability since the descent-boost trans-atmospheric trajectories feature a

decaying elliptical flight-path which produces multiple orbit injection possibilities.

Significance of Research

Aeroassisted maneuvers – specifically skip entry and descent-boost – provide a viable

alternative to exo-atmospheric maneuvers for the alteration of orbital states and the completion

of user-defined mission objectives linked to ground target over-flight as well as LEO injection.

Besides trajectory-centric design analysis, the Design of Experiments method of orthogonal

arrays has been demonstrated as an advantageous means of optimizing both TAV and skip entry

maneuver trajectory for a multi-objective optimization problem (MOP) through the ability to

perform main effects and Pareto front analysis. Utilized in the LEO reachability study, the

concept of the Maneuver Performance (MP) number was introduced as a dimensionless means of

comparative effectiveness analysis for exo- and trans-atmospheric maneuvers. Based on inherent

analysis limitations of a single formulation, two versions of the effectiveness ratio are provided;

the first is applicable to maneuvers between non-equal initial and final orbital altitudes, while the

second accounts for phasing maneuvers in which the initial and final orbital altitudes are equal.

Finally, all aeroassisted maneuver simulations comprising the present research used a piecewise-

continuous atmospheric density function that was developed to model the MSIS-E-90 density

profile by incorporating three separate altitude-delimited models: (1) Exponential density for

ℎ ∈ [0, 84] km; (2) scale height-varying density for ℎ ∈ [84, 120] km; and (3) power regression

density for ℎ ∈ [120, 1000] km.

www.manaraa.com

177

Recommendations for Future Research

Although providing an assessment of aeroassisted maneuver performance in terms of

terrestrial and LEO reachability, the present research features limitations based on the simulation

simplifying assumptions and the circumscribed investigation of only the skip entry and descent-

boost types of aeroassisted maneuvers. As a result, recommendations for future research are

enumerated below:

1. Investigate the effect of induced drag on aeroassisted maneuver performance by utilizing

a vehicle-specific drag polar rather than constant aerodynamic coefficients.

2. Conduct a comparative analysis of aeroassisted skip entry and exo-atmospheric

maneuvers for ground target over-flight with variable initial RAAN.

3. For the Design of Experiments optimization segment of research, expand the variable

bank angle analysis to account for greater inverted-TAV motion with 𝜎 ∈ [−160, 0] deg

so as to increase duration of trans-atmospheric flight and maximize inclination change.

4. Explore the optimal implementation of aerobang and aerocruise as alternatives to skip

entry and descent-boost. Specifically, investigate if an optimal location exists along the

trans-atmospheric trajectory at which to commence continuous thrusting in order to

maximize inclination change while minimizing ∆𝑉.

5. Investigate the performance effects of conducting periodic impulsive thrusting along the

trans-atmospheric trajectory instead of continuous thrusting for aerobang and aerocruise

aeroassisted maneuvers.

6. Conduct a comparative analysis of aeroassisted maneuvers and Lambert transfers in

terms of ∆𝑉 and time-of-flight performance. See Appendix D for a Lambert transfer

solution algorithm.

www.manaraa.com

178

Appendix A: Exo-Atmospheric Maneuver Algorithms

 Initially described in Chapter I, the algorithms underpinning the Hohmann, combined

Hohmann, bi-elliptic, and planar phasing exo-atmospheric maneuvers are given by the following:

Hohmann Transfer183

Based on the assumption that both the parking (A) and mission (B) orbits are circular, the

semi-major axis of the Hohmann transfer ellipse (T) is expressed by Eq. (A.1) in terms of the

geocentric orbital radii 𝑟𝐴 and 𝑟𝐵:

 𝑎𝑇 = 1
2

(𝑟𝐴 + 𝑟𝐵) (A.1)

The tangential impulse ∆𝑉𝐴 required to inject the spacecraft into the perigee of the transfer ellipse

from parking orbit (A) is defined by the circular orbit velocity of (A) and the velocity of the

elliptical trajectory corresponding with the impulse location:

 𝑉𝐴 = �
𝜇
𝑟𝐴

 𝑉𝑇,𝐴 = �𝜇 � 2
𝑟𝐴
− 1

𝑎𝑇
�

(A.2)

 ∆𝑉𝐴 = �𝑉𝐴 − 𝑉𝑇,𝐴� (A.3)

Similarly, the tangential impulse ∆𝑉𝐵 required to re-circularize the spacecraft at the intersection

of the transfer ellipse apoapsis and the mission orbit (B) is given by:

 𝑉𝐵 = �
𝜇
𝑟𝐵

 𝑉𝑇,𝐵 = �𝜇 � 2
𝑟𝐵
− 1

𝑎𝑇
�

(A.4)

 ∆𝑉𝐵 = �𝑉𝐵 − 𝑉𝑇,𝐵�

(A.5)

The summation of the two impulse burns yields the total ∆𝑉 for the Hohmann transfer:

 ∆𝑉𝑇𝑜𝑡𝑎𝑙 = ∆𝑉𝐴 + ∆𝑉𝐵 = �𝑉𝐴 − 𝑉𝑇,𝐴� + �𝑉𝐵 − 𝑉𝑇,𝐵�

(A.6)

183 Vallado, 327.

www.manaraa.com

179

Finally, the time-of-flight of the Hohmann transfer is defined as one half of the period of the

transfer ellipse:

 𝑡𝑇 = 𝜋�𝑎𝑇
3

𝜇
 (A.7)

As an alternative, Vladimir A. Chobotov in Orbital Mechanics defines the time-of-flight as a

function of the parking and mission orbital radii:184

 𝑡𝑇 = 𝜋�𝑟𝐴
3

𝜇
∙ � 1
25 2⁄ �1 + 𝑟𝐵

𝑟𝐴
�
3 2⁄
� (A.8)

Combined Hohmann Transfer185

For cases in which the parking (A) and mission (B) orbits are circular and non-coplanar,

the combined Hohmann transfer is utilized to change both inclination and semi-major axis.

Initially, the transfer ellipse semi-major axis is given by Eq. (A.1) and the velocities associated

with the parking and mission orbits as well as the transfer ellipse perigee and apogee locations

are given by Eqs. (A.2) and (A.4), respectively. In order to minimize the total ∆𝑉 for the

maneuver, the inclination change is incorporated into the impulse burns at the transfer ellipse

periapsis and apoapsis. At the transfer ellipse injection point in parking orbit (A), the amount of

inclination change is expressed by:

 ∆𝑖𝐴 = 𝑠∆𝑖 (A.9)

Likewise, the amount of inclination change to perform during re-circularization at mission orbit

(B) is:

 ∆𝑖𝐵 = (1 − 𝑠)∆𝑖 (A.10)

184 Chobotov, 95.
185 Vallado, 354-355.

www.manaraa.com

180

One option of determining the “best” amount of inclination change to perform at each transfer

burn consists of iterating the transcendental equation of sin(𝑠∆𝑖) given by Eq. (A.11):

 sin(∆𝑖𝐴) = ∆𝑉𝐴𝑉𝐵𝑉𝑇,𝐵 sin(∆𝑖𝐵)
∆𝑉𝐵𝑉𝐴𝑉𝑇,𝐴

 (A.11)

A second option, which is used for descent-boost maneuver comparative analysis in Chapter VII,

involves the following non-iterative analytic approximation:

 𝑠 ≈ 1
∆𝑖

tan−1 � sin(∆𝑖)
𝑅3 2⁄ +cos(∆𝑖)

� (A.12)

where 𝑅 = 𝑟𝐵 𝑟𝐴⁄ . Utilizing the Law of Cosines, the transfer burn impulses ∆𝑉𝐴 and ∆𝑉𝐵 are

given by Eqs. (A.13) and (A.14):

 ∆𝑉𝐴 = �𝑉𝐴2 + 𝑉𝑇,𝐴
2 − 2𝑉𝐴𝑉𝑇,𝐴 cos(∆𝑖𝐴) (A.13)

 ∆𝑉𝐵 = �𝑉𝐵2 + 𝑉𝑇,𝐵
2 − 2𝑉𝐵𝑉𝑇,𝐵 cos(∆𝑖𝐵)

(A.14)

The summation of the two transfer burns yields the total ∆𝑉 for the combined Hohmann transfer:

 ∆𝑉𝑇𝑜𝑡𝑎𝑙 = ∆𝑉𝐴 + ∆𝑉𝐵
 (A.15)

Similar to the Hohmann transfer, the time-of-flight of the combined Hohmann transfer is

expressed by Eq. (A.7).

Bi-Elliptic Transfer186

Unlike the preceding maneuvers, the design of the bi-elliptic transfer features two

transfer ellipses. The first ellipse extends from the parking orbit (A) to an intermediate orbit (B),

which is greater in altitude than the mission orbit (C). The semi-major axis of the first ellipse is

given by:

186 Ibid., 328.

www.manaraa.com

181

 𝑎1 = 1
2

(𝑟𝐴 + 𝑟𝐵) (A.16)

With a semi-major axis defined by Eq. (A.17), the second ellipse extends from the intermediate

orbit (B) to the mission orbit (C):

 𝑎2 = 1
2

(𝑟𝐵 + 𝑟𝐶) (A.17)

The velocities associated with the bi-elliptic transfer are expressed as:

 𝑉𝐴 = �
𝜇
𝑟𝐴

 𝑉1,𝐴 = �𝜇 � 2
𝑟𝐴
− 1

𝑎1
�

(A.18)

 𝑉1,𝐵 = �𝜇 � 2
𝑟𝐵
− 1

𝑎1
� 𝑉2,𝐵 = �𝜇 � 2

𝑟𝐵
− 1

𝑎2
�

(A.19)

 𝑉𝐶 = �
𝜇
𝑟𝐶

 𝑉2,𝐶 = �𝜇 � 2
𝑟𝐶
− 1

𝑎2
�

(A.20)

where 𝑉𝐴 is the velocity of parking orbit (A), 𝑉1,𝐴 is the perigee velocity of the first transfer

ellipse at (A), 𝑉1,𝐵 is the apogee velocity of the first transfer ellipse at the intermediate orbit (B),

𝑉2,𝐵 is the apogee velocity of the second transfer ellipse at (B), 𝑉2,𝐶 is the perigee velocity of the

second transfer ellipse at the mission orbit (C), and 𝑉𝐶 is the velocity of (C).

The total ∆𝑉 and the time-of-flight are given by Eqs. (A.21) and (A.22), respectively:

 ∆𝑉𝑇𝑜𝑡𝑎𝑙 = ∆𝑉𝐴 + ∆𝑉𝐵 + ∆𝑉𝐶 = �𝑉1 − 𝑉1,𝐴� + �𝑉1,𝐵 − 𝑉2,𝐵� + �𝑉𝐶 − 𝑉2,𝐶� (A.21)

 𝑡𝑇𝑜𝑡𝑎𝑙 = 𝜋�𝑎1
3

𝜇
+ 𝜋�𝑎2

3

𝜇
 (A.22)

www.manaraa.com

182

Phasing Maneuvers

Figure A.1. Phasing Maneuver Flowchart

Define Reference Orbit Select Growtd Target

Determine Latitude
Crossings

Interpolate to Fmd
Longitude of Crossings

East

Calculate ' Lofting '
Semi-Maj or Axis

Calculate Difference
between Target and
Crossing Longitude

West

Calculate ' Descending'
Semi-Mai or Axis

Propagate
Perturbed Orbit

Re.-Circularize and
Propagate Orbit

Detennine Time-of
Arrival and~V

www.manaraa.com

183

Appendix B: Geodesic Equation Formulation

In his paper “Direct and Inverse Solutions of Geodesics on the Ellipsoid with

Applications of Nested Equations,” Thaddeus Vincenty presented what he termed as “compact

formulae” for both the direct and inverse solutions of geodesies. For the purposes of the present

research, only the direct solution algorithm are presented.187 Defined in terms of an ellipsoidal

planetary model, the direct solution is a function of longitude and geodetic latitude of each

location point, as well as the major (𝑎) and minor (𝑏) semi-axes of the ellipsoid. With these

inputs, the reduced latitude, 𝑈, is calculated in terms of geodetic latitude and the flattening

parameter: 𝑓 = (𝑎 − 𝑏) 𝑎⁄ .

 𝑈1 = tan−1�(1 − 𝑓) tan𝜙1�

 𝑈2 = tan−1�(1 − 𝑓) tan𝜙2�
(B.1)

The term “reduced” indicates that the latitude 𝑈 is measured on an auxiliary sphere centered and

located coincident with an ellipsoidal model. From the longitudinal components of each location

coordinate set, the quantity 𝜆 is determined from measurements on the auxiliary sphere:

 𝜆 = 𝜃2 − 𝜃1 (B.2)

By initially setting 𝜆 = 𝐿, where 𝐿 is the difference in longitude on the ellipsoid, Eqs. (B.3) –

(B.10) are solved iteratively until 𝜆 converges to a specified error tolerance, e.g. 1.0 x 10−12:

 sin𝜎 = �(cos𝑈2 sin 𝜆)2 + (cos𝑈1 sin𝑈2 − sin𝑈1 cos𝑈2 cos 𝜆)2
(B.3)

 cos𝜎 = sin𝑈1 sin𝑈2 + cos𝑈1 cos𝑈2 cos 𝜆 (B.4)

 𝜎 = tan−1 �sin𝜎
cos𝜎

� (B.5)

187 Thaddeus Vincenty, “Direct and Inverse Solutions of Geodesics on the Ellipsoid with Applications of Nested

Equations,” Survey Review XXII 176 (1975): 88-90.

www.manaraa.com

184

 sin𝛼 = cos𝑈1 cos𝑈2 sin 𝜆
sin𝜎

 (B.6)

 cos2 𝛼 = 1 − sin2 𝛼 (B.7)

 cos 2𝜎𝑚 = cos𝜎 − 2sin𝑈1 sin𝑈2
cos2 𝛼

 (B.8)

 𝐶 =
𝑓

16
cos2 𝛼 ∙ [4 + 𝑓(4 − 3 cos2 𝛼)]

(B.9)

𝜆 = 𝐿 + (1 − 𝐶)𝑓 sin𝜎 ∙ {𝜎 + 𝐶 sin𝜎 [cos 2𝜎𝑚 + 𝐶 cos𝜎 (−1 + 2 cos2 2𝜎𝑚)]} (B.10)

From the equations above, 𝛼 is the azimuth of the geodesic, 𝜎 is the angular distance between the

coordinate locations on the auxiliary sphere, and 𝜎𝑚 is the angular distance from the equator to

the midpoint of the geodesic on the auxiliary sphere.

 With convergence attained, the following equations are solved in succession until the

geodesic distance 𝑠 is calculated in Eq. (B.15):

 𝑢2 = cos2 𝛼 ∙ �
𝑎2 − 𝑏2

𝑏2
� (B.11)

 𝐴 = 1 + 𝑢2

16384
{4096 + 𝑢2[−768 + 𝑢2(320 − 175𝑢2)]} (B.12)

 𝐵 = 𝑢2

1024
{256 + 𝑢2[−128 + 𝑢2(74 − 47𝑢2)]} (B.13)

∆𝜎 = 𝐵 sin𝜎 ∙ �cos 2𝜎𝑚 +
𝐵
4

∙ �cos𝜎 (−1 + 2 cos2 2𝜎𝑚) −
𝐵
6

∙ cos 2𝜎𝑚 (−3 + 4 sin2 𝛼)(−3 + 4 cos2 2𝜎𝑚)��

(B.14)

 𝑠 = 𝑏𝐴(𝜎 − ∆𝜎) (B.15)

For all equations, 𝐴, 𝐵, and 𝐶 represent intermediate variables.

www.manaraa.com

185

Appendix C: TLE Guide

Updated twice daily, the North American Aerospace Defense Command (NORAD)

provides an inventory of orbiting objects in the form of Two-Line Element (TLE) sets for each

space object. The TLEs contain information pertaining to the position of the object within its

orbit as well as the orbit position relative to the Earth-Centered Inertial (ECI) reference frame.188

In his book Satellites: Orbits and Missions, Michel Capderou presents a general TLE format and

element description as adapted in Table C.1. Note that the letter A in the general TLE refers to

“alphabetical character,” while N is a “numerical character.”

Table C.1 General TLE and Element Description189

Line Column Description

1 01 Line number
1 03-08 Satellite number with classification
1 10-17 International designator
1 19-32 Epoch year; day of year; fraction of day
1 34-43 First time derivative of mean motion, 𝑛
1 45-52 Second time derivative of 𝑛 (decimal point assumed)
1 54-61 Drag term (decimal point assumed)
1 63-69 Ephemeris type; element number; checksum (modulo 10)
2 01-07 Line number; satellite number without classification
2 09-16 Inclination, 𝑖 (degrees)
2 18-25 Right ascension of the ascending node, 𝛺 (degrees)
2 27-33 Eccentricity, 𝑒 (decimal point assumed)
2 35-42 Argument of perigee, 𝜔 (degrees)
2 44-51 Mean anomaly, 𝑀 (degrees)
2 53-63 Mean motion, 𝑛 (revolutions per day)
2 64-69 Revolution number at epoch; checksum (modulo 10)

188 Michel Capderou, Satellites: Orbits and Missions (Paris, France: Springer-Verlag France, 2005), 254.
189 Ibid., 254-255.

www.manaraa.com

186

 An example TLE for the Molniya 3-42 communications satellite is given in Figure C.1.

While four of the six standard Keplerian elements are provided in the TLE (𝑒, 𝑖, 𝛺, 𝜔), the

remaining elements of semi-major axis, 𝑎, and true anomaly, 𝜈, must be calculated utilizing the

mean motion and mean anomaly data.

Figure C.1. Element Mapping for Molniya 3-42 Example TLE

As a function of mean motion, the semi-major axis is given by the following:190

 𝑎 = �
𝜇
𝑛2
�
1 3⁄

 (C.1)

The true anomaly as shown in Eq. (C.3) is calculated by first solving Kepler’s equation in Eq.

(C.2) via a Newton-Rhapson iteration for the eccentric anomaly, 𝐸:191

 𝑀 = 𝐸 − 𝑒 sin𝐸 (C.2)

 𝜈 = cos−1 �
cos𝐸 − 𝑒

1 − 𝑒 cos𝐸
� (C.3)

190 Vallado, 31.
191 Ibid., 54-55, 73.

Inclination (deg)

RAAN (deg)

Eccentricity Argument of Perigee (deg)

Mean Anomaly (deg)

Mean Motion (rev/day)

www.manaraa.com

187

Appendix D: Lambert Algorithm

Originally formulated in 1761, Swiss mathematician Johann H. Lambert’s eponymous

problem seeks to determine the orbit between two known position vectors and represents a two-

point boundary value problem.192 Overall, Lambert’s problem permits several different situations

in astrodynamics to be examined, from initial orbit determination based on a preliminary set of

observation vectors (e.g. Gauss’s efforts to determine the orbit of the planetoid Ceres), to

intercept and rendezvous between position vectors either within the same orbit, or in two

separate orbits.193 Regardless of the application, numerous solution algorithms exist for

Lambert’s problem. In his book Fundamentals of Astrodynamics and Applications, Vallado not

only presents Gauss’s solution,194 but also the power series solution developed by Thorne,195 a

method utilizing universal variables,196 and an overview of Battin’s method.197 The complete

derivation of the last method can be found in Richard H. Battin and Robin M. Vaughn’s original

paper “An Elegant Lambert Algorithm.”198 Besides Battin and the other methods discussed by

Vallado, other examples of Lambert algorithms include Gim J. Der’s formulation of a multi-

revolution analytic solution and R. H. Gooding’s approach based on Halley’s cubic iteration

method.199

192 Vallado, 420; Michael O’Leary, Revolutions of Geometry (Hoboken, NJ: John Wiley & Sons, Inc., 2010), 353;

Gim J. Der, “The Superior Lambert Algorithm” (paper presented at the Advanced Maui Optical and Space
Surveillance Technologies Conference, Wailea, Maui, HI, 13-16 September 2011): 4.

193 Vallado, 472, 495.
194 Ibid., 472-476.
195 Ibid., 476-485.
196 Ibid., 485-490.
197 Ibid., 490-494.
198 Richard H. Battin and Robin M. Vaughn, “An Elegant Lambert Algorithm,” Journal of Spacecraft and Rockets 7,

no. 6 (1984): 662-670.
199 Der, 1-28; R. H. Gooding, “A Procedure for the Solution of Lambert’s Orbital Boundary-Value Problem,”

Celestial Mechanics and Dynamical Astronomy 48, no. 2 (1990): 145-165.

www.manaraa.com

188

For the present research, a variation of the universal variable algorithm utilizing

Newton’s method is outlined as described in Tewari’s text Atmospheric and Spaceflight

Dynamics.200 In Tewari’s algorithm, the initial and final velocities vectors describing the transfer

orbit are determined by first calculating the transfer angle, 𝜙, between the two position vectors:

 𝜙 =

⎩
⎪
⎨

⎪
⎧ cos−1 �

𝑟1 ∙ 𝑟2
𝑟1𝑟2

� ,𝛼 > 0

2𝜋 − cos−1 �
𝑟1 ∙ 𝑟2
𝑟1𝑟2

� ,𝛼 < 0

� (D.1)

where 𝛼 = 𝑘� ∙ (𝑟1 × 𝑟2) and 𝑘� = [0 0 1]T. With the transfer angle defined in the appropriate

quadrant, the variable 𝐴 is calculated by:

 𝐴 = sin𝜙�
𝑟1𝑟2

1 − cos𝜙
 (D.2)

Initial values for the auxiliary variables 𝑥,𝑦, 𝑧 are determined by first assuming a value for 𝑧,

which Tewari defines as “usually a small, positive number,” such as 𝑧 = 0.01. Equations for 𝑥

and 𝑦 are:

 𝑦 = 𝑟1 + 𝑟2 −
𝐴

�𝐶(𝑧)
�1 − 𝑧𝑆(𝑧)� (D.3)

 𝑥 = �
𝑦

𝐶(𝑧)
 (D.4)

The variables 𝐶(𝑧) and 𝑆(𝑧) represent Stumpff functions, which are expressed by the two infinite

series in Eq. (D.5); for a discussion of the mathematical properties associated with Stumpff

functions, see Bate, Mueller, and White’s Fundamentals of Astrodynamics:201

200 Tewari, 144-147.
201 Roger R. Bate, Donald D. Mueller, and Jerry E. White, Fundamentals of Astrodynamics (New York, NY: Dover

Publications, Inc., 1971), 196.

www.manaraa.com

189

 𝐶(𝑧) =
1
2!
−
𝑧
4!

+
𝑧2

6!
−⋯ = �

(−𝑧)𝑖

(2𝑖 + 2)!

∞

𝑖=0

 𝑆(𝑧) =
1
3!
−
𝑧
5!

+
𝑧2

7!
−⋯ = �

(−𝑧)𝑖

(2𝑖 + 3)!

∞

𝑖=0

(D.5)

The derivation of the Eq. (D.3) is given as a coda to this Appendix.

 Based on the preceding values for 𝑥 and 𝑧, an initial value for the transfer time, 𝑡, is then

calculated with the following equation:

 𝑡 =
1
√𝜇

�𝑆(𝑧) ∙ 𝑥3 + 𝐴�𝐶(𝑧) ∙ 𝑥� (D.6)

Once determined, the initial values for 𝑥,𝑦, 𝑧, 𝑡 serve to initiate a Newton’s method algorithm

based on the following cubic equation, to which Eq. (D.4) is a solution:

 �𝜇�𝑡𝑓 − 𝑡𝑖� = 𝐴�𝐶(𝑧)𝑥 + 𝑆(𝑧)𝑥3 (D.7)

Substituting Eq. (D.7) into the Newton sequence yields:202

𝑥𝑛+1 = 𝑥𝑛 −
𝐹(𝑥𝑛)
𝐹′(𝑥𝑛) = 𝑥𝑛 −

𝑆(𝑧𝑛) ∙ (𝑥𝑛)3 + 𝐴�𝐶(𝑧𝑛) ∙ (𝑥𝑛) − √𝜇(𝑡𝑛 − 𝑡𝑖)

3 ∙ 𝑆(𝑧𝑛) ∙ (𝑥𝑛)2 + 𝐴�𝐶(𝑧𝑛)
 (D.8)

Iterative values for 𝑦, 𝑧, 𝑡 are given by:

 𝑦𝑛+1 = 𝐶(𝑧𝑛) ∙ (𝑥𝑛+1)2

 𝑧𝑛+1 =
1

𝑆(𝑧𝑛) �1 −
𝐶(𝑧𝑛)
𝐴

� (𝑟1 + 𝑟2 − 𝑦𝑛+1)

 𝑡𝑛+1 =
1
√𝜇

�𝑆(𝑧𝑛) ∙ (𝑥𝑛+1)3 + 𝐴�𝐶(𝑧𝑛) ∙ (𝑥𝑛+1)�

(D.9)

Updated values for the Stumpff functions 𝐶(𝑧𝑛+1),𝑆(𝑧𝑛+1) are calculated utilizing Eq. (D.5).

202 C. T. Kelley, Solving Nonlinear Equations with Newton’s Method (Philadelphia, PA: Society for Industrial and

Applied Mathematics (SIAM), 2003), 2; Tewari, 147.

www.manaraa.com

190

 Once the solution for z has converged within a specified tolerance, then the final value

for 𝑦 is used to solve for the Lagrange coefficients:

 𝑓 = 1 −
𝑦
𝑟1

𝑔 = 𝐴�
𝑦
𝜇

�̇� = 1 −
𝑦
𝑟2

 𝑓̇ =
1
𝑔

(𝑓�̇� − 1)

(D.10)

Finally, the Lagrange coefficients enable the determination of the initial and final velocity

vectors of the transfer orbit, �⃑�1, �⃑�2:

 �⃑�1 =
1
𝑔

(𝑟2 − 𝑓𝑟1) (D.11)

 �⃑�2 = 𝑓̇𝑟1 + �̇��⃑�1 (D.12)

Alternatively, Eq. (D.12) can be written as:

 �⃑�2 =
1
𝑔

(�̇�𝑟2 − 𝑟1) (D.13)

Derivation of Equation for Auxiliary Variable y

The equation for 𝑦, or Eq. (D.3), is derived by first substituting the expressions for the

𝑓,𝑔, �̇� Lagrange coefficients in Eq. (D.10) into the relationship �𝑓�̇� − 𝑔𝑓̇ = 1� to yield:

�1 −
𝑦
𝑟1
� �1 −

𝑦
𝑟2
� − �𝐴�

𝑦
𝜇
�𝑓̇ = 1

Solving for the fourth Lagrange coefficient, �̇�, gives:

www.manaraa.com

191

 �̇� =
�1 − 𝑦

𝑟1
� �1 − 𝑦

𝑟2
� − 1

𝐴�𝑦𝜇

=
� 𝑦

2

𝑟1𝑟2
− 𝑦
𝑟1
− 𝑦
𝑟2
�

𝐴�𝑦𝜇

=
𝑦

𝐴�𝑦𝜇

�
𝑦 − 𝑟2 − 𝑟1

𝑟1𝑟2
� (D.14)

In terms of the variable 𝑥 and the Stumpff function 𝑆(𝑧), an alternate formulation of Eq. (D.14)

is given by:203

 �̇� = √𝜇
𝑟1𝑟2

(𝑥𝑧𝑆(𝑧) − 𝑥) (D.15)

where 𝑧 = 𝑥2 𝑎⁄ , and 𝑎 is the semi-major axis of the transfer orbit. By setting Eq. (D.14) equal

to Eq. (D.15), an equation for 𝑦 can be determined via the following algebra:

𝑦

𝐴�𝑦𝜇

�
𝑦 − 𝑟2 − 𝑟1

𝑟1𝑟2
� = √𝜇

𝑟1𝑟2
(𝑥𝑧𝑆(𝑧) − 𝑥)

𝑦√𝜇
𝐴�𝑦

�
1
𝑟1𝑟2

� (𝑦 − 𝑟2 − 𝑟1) =
𝑥√𝜇
𝑟1𝑟2

(𝑧𝑆(𝑧) − 1)

�𝑦
𝐴

(𝑦 − 𝑟2 − 𝑟1) = 𝑥(𝑧𝑆(𝑧) − 1)

If 𝑥 = �𝑦 𝐶(𝑧)⁄ , then �𝑦 = 𝑥�𝐶(𝑧):

𝑥�𝐶(𝑧)
𝐴

(𝑦 − 𝑟2 − 𝑟1) = 𝑥(𝑧𝑆(𝑧) − 1)

𝑦 − 𝑟2 − 𝑟1 =
𝐴

�𝐶(𝑧)
(𝑧𝑆(𝑧) − 1)

 𝑦 = 𝑟1 + 𝑟2 −
𝐴

�𝐶(𝑧)
�1 − 𝑧𝑆(𝑧)� (D.16)

203 Tewari, 144.

www.manaraa.com

192

Appendix E: MATLAB® Code for Trajectory Dynamics Model

Table E.1. m-File Classification for Trajectory Dynamics Model

Filename File Type Description

Maneuver_MainFunction Function Core module
EventFunction Function Solver stopping condition

Maneuver_SubFile Function Supports operation of solver
AtmosModel Function Atmospheric model

AtmosModel_PostAnalysis Function Atmos. model for post-processing
EntryEOM_Complete Function Equations of motion with 𝑇,𝜔⊕

EntryEOM_Simple Function Equations of motion without 𝑇,𝜔⊕
EntryEOM_Euler Function Equations of motion without 𝑇,𝜔⊕

GravityModel Function Gravity model
VehicleSpecs Function Spacecraft model

WGS84Constants Function Planetary constants

The core module of the Trajectory Dynamics Model contains the following options:

• Spacecraft: (1) TAV, (2) Apollo 10 capsule, or (3) various notional satellite designs.

• Equations of Motion: (1) “Complete” six-state set which includes thruster modeling and

planetary rotation, or (2) “simple” six-state set which assumes a non-thrusting vehicle

and non-rotating planetary model.

• Planetary Rotation: (1) Activated, or (2) de-activated.

• Bank Angle Control Input: (1) Constant bank angle throughout trajectory, or (2) time-

dependent bank angle profile.

• Differential Equation Solver: (1) MATLAB® “ODE45” solver, or (2) Euler integration.

The former option supports both the spherical and 𝐽2-gravity models, while the latter

supports only the spherical gravity model.

www.manaraa.com

193

Maneuver_MainFunction.m

function [t,traj_param] = Maneuver_MainFunction(Choice_1,Choice_2,...
 Choice_3,Choice_4,Choice_5,Choice_6,Time_Max,...
 r,V,lon,lat,fpa,heading,bank_angle)

global Vehicle_Choice EOM_Choice Gravity_Choice Omega_Choice
global BankAngle_Choice Solver_Choice bank
WGS84Constants; %Loads global constants from external m-file

%%%
%% User-Defined Input Definitions
Vehicle_Choice = Choice_1;
%1 = Notional Trans-Atmospheric Vehicle (m = 5000 kg, Cd = 0.5)
%2 = ESPA SPL Notional Satellite (m = 200 kg, Cd = 2.2)
%3 = Primary Payload Notional Satellite (m = 1000 kg, Cd = 2.2)
%4 = Apollo 10 Command Module Capsule (m = 5498.22 kg, Cd = 1.2569)
%5 = Apollo 10 CM Capsule w/ Alt. Cl/Cd (m = 5498.22 kg, Cd = 1.255)
%6 = Notional Satellite (m = 2000 kg, Cd = 3.0)

EOM_Choice = Choice_2;
%1 = "Complete" entry EOM (6 states, includes thrusting & rotation)
%2 = "Simple" entry EOM (6 states, assumes non-thrusting & non-rotation)

Gravity_Choice = Choice_3;
%1 = Force Equations with spherical (Newtonian) gravity model
%2 = Force Equations with J2 gravity model

Omega_Choice = Choice_4;
%1 = Planetary rotation "activated"
%2 = Planetary rotation "de-activated"

BankAngle_Choice = Choice_5;
%1 = Constant bank angle throughout trajectory
%2 = Specified bank angle profile

Solver_Choice = Choice_6;
%1 = MATLAB ODE 45 with 6-state EOM
%2 = Euler Integration (only spherical gravity, 6-state EOM)

%%%
%% Bank Angle Conversion
bank = deg2rad(bank_angle);

%%%
%% Equation of Motion (EOM) Solver
if Solver_Choice == 1
 %% MATLAB ODE Solver with 6-State EOM
% options = odeset('Events',@EventFunction,'RelTol',1e-7);
 options = odeset('RelTol',1e-3); %,'MaxStep',1.0);
 traj_int = [r V lon lat fpa heading];
 [t,traj_param] = ode45(@Maneuver_SubFile,[0,Time_Max],traj_int,options);

www.manaraa.com

194

elseif Solver_Choice == 2
 %% Euler Integration with 6-State EOM
 deltaT = 1; %Simulation propagation time-step (s)
 [t,traj_param] = EntryEOM_Euler(r,V,lon,lat,fpa,heading,bank,...
 deltaT,Time_Max);
end

EventFunction.m

function [value,isterminal,direction] = EventFunction(t,traj_param)

global RE

value = traj_param(1) - RE;
isterminal = 1;
direction = -1;

Maneuver_SubFile.m

function Y = Maneuver_SubFile(t,traj_param)

global OmegaE Vehicle_Choice EOM_Choice Omega_Choice bank
global mass S_m2 Cd Cl

%%%
%% Trajectory States
r = traj_param(1); %Radial position (km)
V = traj_param(2); %Velocity (km/s)

%Initial latitude (lat) and longitude (lon)
lon = traj_param(3); lat = traj_param(4);
%Initial flight-path (fpa) and heading (psi) angles
fpa = traj_param(5); heading = traj_param(6);

%%%
%% Planetary Rotation Rate
if Omega_Choice == 1
 OmegaRot = OmegaE; %Planetary rotation "activated"
elseif Omega_Choice == 2
 OmegaRot = 0; %Planetary rotation "de-activated"
end

%%%
%% Vehicle Model
[Vehicle] = VehicleSpecs(Vehicle_Choice);

mass = Vehicle.mass; %Mass (kg)
S_m2 = Vehicle.S_m2; %Planform area (m^2)
S = S_m2/(1000^2); %Planform area (km^2)

www.manaraa.com

195

Cd = Vehicle.Cd; %Drag coefficient
Cl = Vehicle.Cl; %Lift coefficient
Thrust = 0; %Thrust (kg.km/s^2)
epsT = 0; %Thrust vector angle (rad)
zetaT = 0; %Thrust vector angle (rad)

%%%
%% Equations of Motion (EOM)
if EOM_Choice == 1
 Y = EntryEOM_Complete(r,V,lon,lat,fpa,heading,bank,...
 OmegaRot,mass,S,Cd,Cl,Thrust,epsT,zetaT);
elseif EOM_Choice == 2
 Y = EntryEOM_Simple(r,V,lon,lat,fpa,heading,bank,mass,S,Cd,Cl);
end

AtmosModel.m

function [Rho] = AtmosModel(h_gd,AtmosModel_Choice)

global RE BetaH Rho0

WGS84Constants; %Loads global constants from external m-file

%Note: AtmosModel_Choice
%1 = Exponential density model
%2 = Combined density model (approximation of MSIS model)

%%%
%% Exponential Density Model (kg/km^3)
if AtmosModel_Choice == 1
 Rho = Rho0.*exp(-BetaH.*h_gd);

%%%
%% Combined Density Model (kg/km^3)
%Note: Exponential Model: h < 84 km
% Scale Height (v1) Variation Model: 84 <= h <= 120 km
% Power Model: 121 <= h <= 1000 km

elseif AtmosModel_Choice == 2
%Reference altitude (km)
h_i = [67; 85; 99; 110];

%Reference density (kg/km^3)
Rho_i = [1.4975e-4; 7.726e-6; 4.504e-7; 5.930e-8] * (1000)^3;

%Reference scale height (km)
Hi = [6.6597; 4.979; 5.905; 8.731];

%Reference molecular scale temperature (K)
TMi = [222.8; 165.7; 195.6; 288.2];

www.manaraa.com

196

%Atmospheric constant (K/km)
Constant_A = [0.1296385; 0.1545455; 0.1189286; 0.5925240];

%Atmospheric constant (K/km)
Constant_B = [4.044231; 0.0; 3.878571; 19.17964];

%Dimensionless parameters
deltaH = (Constant_A.*RE)./Hi;
deltaTM = (Constant_B.*RE)./TMi;

%Altitude Sections
if h_gd <= 84 %Section 1: Exponential model
 Rho = Rho0.*exp(-BetaH.*h_gd);

elseif h_gd > 84 && h_gd <= 90 %Section 2: Single Variation
 Rho = Rho_i(2).*((1./(1 + deltaH(2).*((h_gd - h_i(2))./RE))).^ ...
 ((1 + Constant_A(2))./Constant_A(2)));

elseif h_gd > 90 && h_gd <= 106 %Section 3: Single Variation
 Rho = Rho_i(3).*((1./(1 + deltaH(3).*((h_gd - h_i(3))./RE))).^ ...
 ((1 + Constant_A(3))./Constant_A(3)));

elseif h_gd > 106 && h_gd <= 120 %Section 4: Single Variation
 Rho = Rho_i(4).*((1./(1 + deltaH(4).*((h_gd - h_i(4))./RE))).^ ...
 ((1 + Constant_A(4))./Constant_A(4)));

elseif h_gd > 120 && h_gd <= 1000 %Section 5: Power Model
 Rho = ((4.50847623E7).*((h_gd).^(-7.44605852))).*((1000)^3);

 %Note: 'Power Model' formulated with altitude in units of (km) and
 % the output density in (kg/m^3)

else %if h_gd > 1000;
 Rho = 0;
end

end

www.manaraa.com

197

AtmosModel.m

function [Rho_Vec] = AtmosModel_PostAnalysis(h_gd,AtmosModel_Choice)

global RE BetaH Rho0

WGS84Constants; %Loads global constants from external m-file

%Note: AtmosModel_Choice
%1 = Exponential density model
%2 = Combined density model (approximation of MSIS model)

%%%
%% Exponential Density Model (kg/km^3)
if AtmosModel_Choice == 1
 Rho = Rho0.*exp(-BetaH.*h_gd);

%%%
%% Combined Density Model (kg/km^3)
%Note: Exponential Model: h < 84 km
% Scale Height (v1) Variation Model: 84 <= h <= 120 km
% Power Model: 121 <= h <= 1000 km

elseif AtmosModel_Choice == 2
%Reference altitude (km)
h_i = [67; 85; 99; 110];

%Reference density (kg/km^3)
Rho_i = [1.4975e-4; 7.726e-6; 4.504e-7; 5.930e-8] * (1000)^3;

%Reference scale height (km)
Hi = [6.6597; 4.979; 5.905; 8.731];

%Reference molecular scale temperature (K)
TMi = [222.8; 165.7; 195.6; 288.2];

%Atmospheric constant (K/km)
Constant_A = [0.1296385; 0.1545455; 0.1189286; 0.5925240];

%Atmospheric constant (K/km)
Constant_B = [4.044231; 0.0; 3.878571; 19.17964];

%Dimensionless parameters
deltaH = (Constant_A.*RE)./Hi;
deltaTM = (Constant_B.*RE)./TMi;

%%%
%% Density Model Altitude Section Functions
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(h_gd);

www.manaraa.com

198

%Altitude Sections
if h_gd(ii) <= 84 %Section 1: Exponential model
 Rho = Rho0.*exp(-BetaH.*h_gd(ii));

elseif h_gd(ii) > 84 && h_gd(ii) <= 90 %Section 2: Single Variation
 Rho = Rho_i(2).*((1./(1 + deltaH(2).*((h_gd(ii) - h_i(2))./RE))).^ ...
 ((1 + Constant_A(2))./Constant_A(2)));

elseif h_gd(ii) > 90 && h_gd(ii) <= 106 %Section 3: Single Variation
 Rho = Rho_i(3).*((1./(1 + deltaH(3).*((h_gd(ii) - h_i(3))./RE))).^ ...
 ((1 + Constant_A(3))./Constant_A(3)));

elseif h_gd(ii) > 106 && h_gd(ii) <= 120 %Section 4: Single Variation
 Rho = Rho_i(4).*((1./(1 + deltaH(4).*((h_gd(ii) - h_i(4))./RE))).^ ...
 ((1 + Constant_A(4))./Constant_A(4)));

elseif h_gd(ii) > 120 && h_gd(ii) <= 1000 %Section 5: Power Model
 Rho = ((4.50847623E7).*((h_gd(ii)).^(-7.44605852))).*((1000)^3);

 %Note: 'Power Model' formulated with altitude in units of (km) and
 % the output density in (kg/m^3)

else %if h_gd > 1000;
 Rho = 0;
end

mm = mm + 1;
Rho_Vec(mm,1) = Rho;

end

end

www.manaraa.com

199

EntryEOM_Complete.m

function Y = EntryEOM_Complete(r,V,lon,lat,fpa,heading,bank,...
 OmegaRot,mass,S,Cd,Cl,Thrust,epsT,zetaT)

global RE FlatE Gravity_Choice

%%%
%% Variable/Function Simplification
%Latitude (lat) and longitude (lon)
clon = cos(lon); slon = sin(lon);
clat = cos(lat); slat = sin(lat); tlat = tan(lat);

%Flight-path (fpa), heading (psi), and bank (sigma) angles
cfpa = cos(fpa); sfpa = sin(fpa); tfpa = tan(fpa);
cpsi = cos(heading); spsi = sin(heading);
cbank = cos(bank); sbank = sin(bank);

%Thrust vector angles
cepsT = cos(epsT); sepsT = sin(epsT);
czetaT = cos(zetaT); szetaT = sin(zetaT);

%Thrust components of Force Equations
Thrust_V = (Thrust/mass)*(czetaT*cepsT);
Thrust_fpa = (Thrust/mass)*(szetaT*sbank + czetaT*sepsT*cbank);
Thrust_psi = Thrust*(czetaT*sepsT*sbank - szetaT*cbank);

%%%
%% Planetary Model
[GravModel] = GravityModel(r,lat);
g = GravModel.g; %Spherical gravity model (km/s^2)
g_r = GravModel.J2g_r; %Radial component of gravity (km/s^2)
g_p = GravModel.J2g_p; %Transverse component of gravity (km/s^2)

if Gravity_Choice == 1 %Spherical gravity model
 h_gd = r - RE;
elseif Gravity_Choice == 2 %J2 gravity model
 [h_gd, lat_gd] = Geocentric2Geodetic(r,lat,RE,FlatE);
end

%Atmospheric density (kg/km^3)
[Rho] = AtmosModel(h_gd,2);

%Planetary rotation parameter
OmegaRot2 = OmegaRot^2;

%%%
%% Vehicle Aerodynamics
D = 0.5*Rho*Cd*S*(V^2); %Drag force (kg.km/s^2)
L = 0.5*Rho*Cl*S*(V^2); %Lift force (kg.km/s^2)

www.manaraa.com

200

%%%
%% Kinematic Equations (Hicks, 42)
%Radial position (r) differential equation
r_dot = V*sfpa;

%Longitude (lon) differential equation
lon_dot = ((V*cfpa*cpsi)/(r*clat));

%Latitude (lat) differential equation
lat_dot = (1/r)*(V*cfpa*spsi);

%%%
%% Force Equations
if Gravity_Choice == 1 %Spherical gravity model (Hicks, 52)
 %Velocity (V) differential equation
 V_dot = Thrust_V - (D/mass) - (g*sfpa) + ...
 (r*OmegaRot2*clat*(clat*sfpa - slat*spsi*cfpa));

 %Flight-path angle (fpa) differential equation
 fpa_dot = (1/V)*(Thrust_fpa + ((L/mass)*cbank) - (g*cfpa) + ...
 ((V^2)/r)*cfpa + (2*V*OmegaRot*clat*cpsi) + ...
 (r*OmegaRot2*clat*(clat*cfpa + slat*spsi*sfpa)));

 %Heading angle (psi) differential equation
 psi_dot = (1/V)*(((Thrust_psi + L*sbank)/(mass*cfpa)) - ...
 ((V^2)/r)*(cfpa*cpsi*tlat) + ...
 ((2*V*OmegaRot)*(spsi*clat*tfpa - slat)) - ...
 ((r*OmegaRot2)/cfpa)*(slat*clat*cpsi));

elseif Gravity_Choice == 2 %J2 gravity model (Hicks, 413)
 %Velocity (V) differential equation
 V_dot = Thrust_V - (D/mass) - (g_r*sfpa) - (g_p*sfpa*cfpa) + ...
 (r*OmegaRot2*clat*(clat*sfpa - slat*spsi*cfpa));

 %Flight-path angle (fpa) differential equation
 fpa_dot = (1/V)*(Thrust_fpa + ((L/mass)*cbank) - ...
 (g_r*cfpa) + (g_p*(sfpa^2)) + ...
 ((V^2)/r)*cfpa + (2*V*OmegaRot*clat*cpsi) + ...
 (r*OmegaRot2*clat*(clat*cfpa + slat*spsi*sfpa)));

 %Heading angle (psi) differential equation
 psi_dot = (1/V)*(((Thrust_psi + L*sbank)/(mass*cfpa)) - ...
 (cpsi/cfpa)*g_p - ((V^2)/r)*(cfpa*cpsi*tlat) + ...
 (2*V*OmegaRot)*(spsi*clat*tfpa - slat) - ...
 ((r*OmegaRot2)/(cfpa))*(slat*clat*cpsi));
end

%%%
%% Differential Equation Vector
Y = [r_dot; V_dot; lon_dot; lat_dot; fpa_dot; psi_dot];

www.manaraa.com

201

EntryEOM_Simple.m

function Y = EntryEOM_Simple(r,V,lon,lat,fpa,heading,bank,mass,S,Cd,Cl)
 global RE BetaH Rho0

%%%
%% Variable Simplification
%Initial latitude (lat) and longitude (lon)
clon = cos(lon); slon = sin(lon);
clat = cos(lat); slat = sin(lat); tlat = tan(lat);

%Initial flight-path (fpa), heading (psi), and bank (sigma) angles
cfpa = cos(fpa); sfpa = sin(fpa); cpsi = cos(heading);
spsi = sin(heading); cbank = cos(bank); sbank = sin(bank);

%%%
%% Planetary Model
[GravModel] = GravityModel(r,lat);
g = GravModel.g; %Spherical gravity model (km/s^2)
h = r - RE; %Altitude (km)
[rho_r] = AtmosModel(h,2); %Atmospheric density (kg/km^3)

 %%%
%% Vehicle Aerodynamics
D = 0.5*rho_r*Cd*S*(V^2); %Drag force (kg.km/s^2)
L = 0.5*rho_r*Cl*S*(V^2); %Lift force (kg.km/s^2)

%%%
%% Kinematic Equations (Hicks, 42)
%Radial position (r) differential equation
r_dot = V*sfpa;

%Longitude (lon) differential equation
lon_dot = ((V*cfpa*cpsi)/(r*clat));

%Latitude (lat) differential equation
lat_dot = (1/r)*(V*cfpa*spsi);

%%%
%% Force Equations (Hicks, 52)
%Velocity (V) differential equation
V_dot = -(D/mass) - (g*sfpa);

%Flight-path angle (fpa) differential equation
fpa_dot = (1/V)*((L/mass)*cbank - (g*cfpa) + ((V^2)/r)*cfpa);

%Heading angle (psi) differential equation
psi_dot = (1/V)*(((L*sbank)/(mass*cfpa)) - ((V^2)/r)*(cfpa*cpsi*tlat));

%%%
%% Differential Equation Vector
Y = [r_dot; V_dot; lon_dot; lat_dot; fpa_dot; psi_dot];

www.manaraa.com

202

EntryEOM_Euler.m

function [T_total,traj_param] = EntryEOM_Euler(r,V,lon,lat,fpa,heading,...
 bank,deltaT,Time_max)

global g0 RE OmegaE BetaH Rho0 Vehicle_Choice Omega_Choice BankAngle_Choice

%%%
%% Initial Maneuver Profile Angles (rad)
lon(1) = lon; %Longitude
lat(1) = lat; %Latitude
fpa(1) = fpa; %Flight-path angle
heading(1) = heading; %Heading angle
bank(1) = bank; %Bank angle

%%%
%% Planetary Model
[GravModel] = GravityModel(r,lat);
g = GravModel.g; %Spherical gravity model (km/s^2)
rho_r = Rho0*exp(-BetaH*(r - RE)); %Atmospheric density (kg/km^3)

if Omega_Choice == 1
 OmegaRot = OmegaE; %Planetary rotation "activated"
elseif Omega_Choice == 2
 OmegaRot = 0; %Planetary rotation "de-activated"
end

%%%
%% Variable/Function Simplification
OmegaRot2 = (OmegaRot)^2; %Planetary rotation parameter

%%%
%% Vehicle Model
[Vehicle] = VehicleSpecs(Vehicle_Choice);

mass = Vehicle.mass; %Mass (kg)
S_m2 = Vehicle.S_m2; %Planform area (m^2)
S = S_m2/(1000^2); %Planform area (km^2)
Cd = Vehicle.Cd; %Drag coefficient
Cl = Vehicle.Cl; %Lift coefficient

D = 0.5*rho_r*Cd*S*(V^2); %Drag force (kg.km/s^2)
L = 0.5*rho_r*Cl*S*(V^2); %Lift force (kg.km/s^2)

%%%
%% Numerical Integration of Equations of Motion
r(1) = r; V(1) = V; %Initial conditions for vehicle dynamics
g(1) = g; rho_r(1) = rho_r; %Initial conditions for entry environment
D(1) = D; L(1) = L; %Initial conditions for vehicle aerodynamics

www.manaraa.com

203

%Initial vehicle deceleration
a_decel_v(1) = (D(1)/mass) + g(1)*sin(fpa(1));
a_decel_L(1) = (-L(1)/mass) - (((V(1)^2)/r(1)) - g(1))*cos(fpa(1));
a_decel_mag(1) = sqrt((a_decel_v(1))^2 + (a_decel_L(1))^2);
ag_decel_mag(1) = a_decel_mag(1)/g(1);

%Initial vehicle stagnation and wall heat flux
qdot_s(1) = sqrt((rho_r(1)*S*Cd)/(2*mass*BetaH))* ...
 ((V(1)^2)/(2*g(1)*r(1)))^(3/2);
qdot_w(1) = ((rho_r(1)*S*Cd)/(2*mass*BetaH))* ...
 ((V(1)^2)/(2*g(1)*r(1)))^(3/2);

T_total(1) = 0; %Initial condition for total mission time
ctr = 1; %Iteration counter initiation

while (T_total <= Time_max)
 %% Kinematic Equations
 %Radial position (r) differential equation
 r_dot = V(ctr)*sin(fpa(ctr));

 %Longitude (lon) differential equation
 lon_dot = ((V(ctr)*cos(fpa(ctr))*cos(heading(ctr)))/ ...
 (r(ctr)*cos(lat(ctr))));

 %Latitude (lat) differential equation
 lat_dot = (V(ctr)*cos(fpa(ctr))*sin(heading(ctr)))/r(ctr);

 %% Force Equations
 %Velocity (V) differential equation
 V_dot = -(D(ctr)/mass) - (g(ctr)*sin(fpa(ctr))) + ...
 (r(ctr)*OmegaRot2*cos(lat(ctr))* ...
 (cos(lat(ctr))*sin(fpa(ctr)) - ...
 sin(lat(ctr))*sin(heading(ctr))*cos(fpa(ctr))));

 %Flight-path angle (gamma) differential equation
 Vgamma_dot = ((L(ctr)*cos(bank(ctr)))/mass)-(g(ctr)*cos(fpa(ctr))) + ...
 ((V(ctr)^2)/r(ctr))*cos(fpa(ctr)) + ...
 (2*V(ctr)*OmegaRot*cos(lat(ctr))*cos(heading(ctr))) + ...
 (r(ctr)*OmegaRot2*cos(lat(ctr))* ...
 (cos(lat(ctr))*cos(fpa(ctr)) + ...
 sin(lat(ctr))*sin(heading(ctr))*sin(fpa(ctr))));

 %Heading angle (psi) differential equation
 Vpsi_dot = ((L(ctr)*sin(bank(ctr)))/(mass*cos(fpa(ctr)))) - ...
 (((V(ctr)^2)/r(ctr))*cos(fpa(ctr))* ...
 cos(heading(ctr))*tan(lat(ctr))) + ((2*V(ctr)*OmegaRot)* ...
 (sin(heading(ctr))*cos(lat(ctr))*tan(fpa(ctr)) - ...
 sin(lat(ctr)))) - (((r(ctr)*OmegaRot2)/(cos(fpa(ctr))))* ...
 (sin(lat(ctr))*cos(lat(ctr))*cos(heading(ctr))));

 %% Parameter Updates
 %Updates to Vehicle Dynamics
 r(ctr+1) = r(ctr) + r_dot*deltaT; %Radial position
 V(ctr+1) = V(ctr) + V_dot*deltaT; %Velocity

www.manaraa.com

204

 %Updates to Maneuver Profile Angles
 lon(ctr+1) = lon(ctr) + lon_dot*deltaT; %Longitude
 lat(ctr+1) = lat(ctr) + lat_dot*deltaT; %Latitude
 fpa(ctr+1) = fpa(ctr) + (Vgamma_dot/V(ctr))*deltaT; %Flight-path angle
 heading(ctr+1) = heading(ctr)+(Vpsi_dot/V(ctr))*deltaT; %Heading angle

 %Updates to Simulation Environment
 g(ctr+1) = g0*((RE/r(ctr+1))^2); %Grav. acceleration
 rho_r(ctr+1) = Rho0*exp(-BetaH*(r(ctr+1) - RE)); %Density
 D(ctr+1) = 0.5*rho_r(ctr+1)*Cd*S*(V(ctr+1)^2); %Drag force
 L(ctr+1) = 0.5*rho_r(ctr+1)*Cl*S*(V(ctr+1)^2); %Lift force
 T_total(ctr+1) = T_total(ctr) + deltaT; %Trajectory time

 if BankAngle_Choice == 1
 bank(ctr+1) = bank(ctr);

 elseif BankAngle_Choice == 2
 load Apollo_10_BankAngle; %Loads bank angle profile
 BankAngle_time = Apollo_10_BankAngle(:,1);
 BankAngle_rad = deg2rad(Apollo_10_BankAngle(:,2));
 bank(ctr+1) = interp1(BankAngle_time,BankAngle_rad,T_total(ctr+1));
 end

 ctr = ctr + 1; %Update to iteration counter
end

%Trajectory solution vectors
T_total = T_total';
traj_param = [r' V' lon' lat' fpa' heading' bank'];

www.manaraa.com

205

GravityModel.m

function [GravModel] = GravityModel(r,phi_gc)

global MU g0 RE J2 J3 J4

WGS84Constants; %Loads global constants from external m-file

%%%
lat = phi_gc; %Geocentric latitude (rad)
clat = cos(lat); slat = sin(lat); %Variable simplification
RE_r = RE./r; %Ratio of planet radius/radius of interest

%Legendre polynomials
P0 = 1;
P1 = slat;
P2 = (1/2).*(3. *(slat.^2) - 1);
P3 = (1/2).*(5. *(slat.^3) - 3.*slat);
P4 = (1/8).*(35.*(slat.^4) - 30.*(slat.^2) + 3);
P5 = (1/8).*(63.*(slat.^5) - 70.*(slat.^3) + 15.*slat);

%%%
%% Spherical (Newtonian) Gravity Model (km/s^2)
GravModel.g = g0.*((RE./r).^2);

%%%
%% J2-Gravity Model (km/s^2)
%Reverse radial direction along unit vector toward planetary center
GravModel.J2g_r = (MU./r.^2).*(1 - 3.*J2.*(RE_r.^2).*P2);

%Reverse transverse direction along unit vector toward planetary north
GravModel.J2g_p = ((3.*MU)./r.^2).*(RE_r.^2).*clat.*slat.*J2;

%%%
%% J4-Gravity Model (km/s^2)
%Reverse radial direction along unit vector toward planetary center
GravModel.J4g_r = (MU./r.^2).*(1 - 3.*J2.*(RE_r.^2).*P2 - ...
 4.*J3.*(RE_r.^3).*P3 - ...
 5.*J4.*(RE_r.^4).*P4);

%Reverse transverse direction along unit vector toward planetary north
GravModel.J4g_p = ((3.*MU)./r.^2).*(RE_r.^2).*clat.*slat.* ...
 (J2 + (1/2).*J3.*(RE_r).*(1./slat).*(5.*(slat.^2)-1) + ...
 (5/6).*J4.*(RE_r.^2).*(7.*(slat.^2)-1));

www.manaraa.com

206

VehicleSpecs.m

function [Vehicle] = VehicleSpecs(Vehicle_Choice)

%%%
%% 'Vehicle_Choice' Options
%1 = Notional Transatmospheric Vehicle (TAV)
%2 = ESPA Secondary Payload Notional Satellite
%3 = Primary Payload Notional Satellite
%4 = Apollo 10 Command Module Capsule
%5 = Apollo 10 CM Capsule w/ Alternative Cl/Cd
%6 = Notional Satellite

%%%
%% Spacecraft Data
L2D = linspace(0.8,2.0,25); %Lift-to-drag ratio vector

%L2D = [0.80,0.85,0.90,0.95,1.00,
% 1.05,1.10,1.15,1.20,1.25,
% 1.30,1.35,1.40,1.45,1.50,
% 1.55,1.60,1.65,1.70,1.75,
% 1.80,1.85,1.90,1.95,2.00]

if Vehicle_Choice == 1 %Notional Trans-Atmospheric Vehicle (TAV)
 Vehicle.mass = 5000; %Wet mass (kg)
 Vehicle.S_m2 = 18; %Planform area (m^2)
 Vehicle.Cd = 0.5; %Drag coefficient
 Vehicle.Cl = 3.0; %Lift coefficient
 Vehicle.Rn = 0.3048; %Nose radius (m)

 %Notional Trans-Atmospheric Vehicle (TAV)
% Vehicle.mass = 4000; %Wet mass (kg)
% Vehicle.S_m2 = 10; %Planform area (m^2)
% Vehicle.Cd = 1.0; %Drag coefficient
% Vehicle.Cl = 6.6; %Lift coefficient

 %X-37B Lifting Entry Vehicle
% Vehicle.mass = 4989.5; %Wet mass (kg)
% Vehicle.S_m2 = 18.63; %Planform area (m^2)
% Vehicle.Cd = 0.5; %Drag coefficient
% Vehicle.Cl = L2D(5).*Vehicle.Cd; %Lift coefficient

elseif Vehicle_Choice == 2 %ESPA SPL Notional Satellite
 Vehicle.mass = 200; %Wet mass (kg)
 Vehicle.S_m2 = 18.63; %Planform area (m^2)
 Vehicle.Cd = 2.2; %Drag coefficient
 Vehicle.Cl = L2D(5).*Vehicle.Cd; %Lift coefficient

elseif Vehicle_Choice == 3 %Primary Payload Notional Satellite
 Vehicle.mass = 1000; %Wet mass (kg)
 Vehicle.S_m2 = 18.63; %Planform area (m^2)
 Vehicle.Cd = 2.2; %Drag coefficient
 Vehicle.Cl = L2D(5).*Vehicle.Cd; %Lift coefficient

www.manaraa.com

207

elseif Vehicle_Choice == 4 %Apollo 10 Command Module (CM) Capsule
 Vehicle.mass = 5498.22; %Mass (kg)
 Vehicle.S_m2 = 12.017; %Planform area (m^2)
 Vehicle.Cd = 1.2569; %Drag coefficient
 Vehicle.Cl = 0.4082; %Lift coefficient

elseif Vehicle_Choice == 5 %Apollo 10 CM Capsule w/ Alternative Cl/Cd
 Vehicle.mass = 5498.22; %Mass (kg)
 Vehicle.S_m2 = 12.017; %Planform area (m^2)
 Vehicle.Cd = 1.255; %Drag coefficient
 Vehicle.Cl = 0.4225; %Lift coefficient

elseif Vehicle_Choice == 6 %Notional Satellite
 Vehicle.mass = 2000; %Mass (kg)
 Vehicle.S_m2 = 10; %Planform area (m^2)
 Vehicle.Cd = 3.0; %Drag coefficient
 Vehicle.Cl = 0; %Lift coefficient

elseif Vehicle_Choice == 9 %TAV from DOE
 Vehicle.mass = 2000; %Mass (kg)
 Vehicle.S_m2 = 18.5; %Planform area (m^2)
 Vehicle.Cd = 0.5; %Drag coefficient
 Vehicle.Cl = 3.0; %Lift coefficient
end

%Engine Parameters
%Max Thrust Options: 14679 N (Impulsive thrusting; H2O2/JP-8; X-37B)
% 13345 N (Impulsive thrusting; H2O2/JP-10; X-37B)
% 9901 N (Impulsive thrusting; H2O2; X-37B)
% 300E-3 N (Continuous thrusting; notional satellite)
% 500E-3 N (Continuous thrusting; notional satellite)

Vehicle.T_Max = 0 * (1/1000); %Maximum thrust, (N)->(kg.km/s^2)
Vehicle.Throttle = 100; %Throttle (percentage)

%Magnitude of thrust (kg.km/s^2)
Vehicle.Thrust = Vehicle.T_Max * (Vehicle.Throttle/100);

%Angle describing projection of thrust vector on L-V plane (rad)
Vehicle.epsT = deg2rad(0.0);

%Angle describing projection of thrust vector on R-V plane (rad)
Vehicle.zetaT = deg2rad(0.0);

www.manaraa.com

208

WGS84Constants.m

function WGS84Constants

global MU g0 RE OmegaE J2 J3 J4 J6 FlatE EccE BetaH Rho0 BR StefBoltz Boltz

%%%
%% Earth Planetary Constants
MU = 398600.442; %Gravitational parameter (km^3/s^2)
RE = 6378.137; %Planetary radius (km)
g0 = MU/(RE^2); %Sea-level gravitational acceleration (km/s^2)
OmegaE = 7.2921158e-5; %Planetary rotational velocity (rad/s)

%Jeffery's Constants
J2 = 0.0010826269;
J3 = -0.0000025323;
J4 = -0.0000016204;
J6 = -0.0000021;

%Planetary Eccentricity Calculation
FlatE = 1.0/298.257; %Flattening parameter (f)
EccE2 = (2.0 - FlatE)*FlatE; %Square of planetary eccentricity
EccE = sqrt(EccE2); %Planetary eccentricity

%%%
%% Earth Atmospheric Constants
BetaH = 0.14; %Atmospheric scale height (km^-1)
Rho0 = 1.225 * (1000)^3; %Atmospheric density @ planetary surface (kg/km^3)
BR = 900; %Average parameter for universal formulation

%%%
%% Physical Constants
StefBoltz = 5.67E-8; %Stefan-Boltzmann constant (W.m^-2.K^-4)
Boltz = 1.380658E-23; %Boltzmann constant (J/K)

www.manaraa.com

209

Appendix F. MATLAB® Code for Maneuver Simulations

Table F.1. m-File Classification for Maneuver Simulations

Filename File Type Description

BankManeuvers Script Skip entry maneuvers
BankManeuvers_Function Function Skip entry maneuver function
BankManeuvers_fxnDOE Function Skip entry for DOE

BankManeuvers_fxnDOE_Hohmann Function Skip entry for DOE with Hohmann
BankManeuvers_MultiAOT Function Skip entry and descent-boost

BiElliptic Function Bi-elliptic transfer
BiElliptic_VelInput Function Bi-elliptic transfer, 𝑉 specified

DescentBoost_Molniya Script Descent-boost Molniya injection
DescentBoost_ReCirc Script Descent-boost orbit injection

Hohmann_Analysis_Molniya Script Hohmann for Molniya injection
Hohmann_Combined Function Combined Hohmann transfer

Hohmann_Combined_dI Function Combined Hohmann, ∆𝑖 specified
Hohmann_Combined_VelInput Function Combined Hohmann, 𝑉 specified

Hohmann_Geocentric Function Hohmann, geocentric coordinates
Hohmann_Geodetic Function Hohmann, geodetic coordinates

Hohmann_SkipReCirc Function Hohmann at skip apogee
Hohmann_VelInput Function Hohmann, 𝑉 specified
PlanarManeuvers Function Planar phasing maneuvers
RefOrb_Targeting Script Simple plane change maneuvers

Trajectory_3DPlotting Script Three-dimensional plotting

BankManeuvers.m

clear all; clc; close all;

global MU RE
global Lat_Denver Lon_Denver Lat_Gibraltar Lon_Gibraltar
global Lat_Glasgow Lon_Glasgow Lat_Grozny Lon_Grozny
global Lat_Moscow Lon_Moscow Lat_Ponti Lon_Ponti
global Lat_Pyong Lon_Pyong Lat_Reyk Lon_Reyk
global Lat_Tehran Lon_Tehran Lat_Tokyo Lon_Tokyo
global Lat_Brasil Lon_Brasil Lat_Buenos Lon_Buenos
global Lat_Canberra Lon_Canberra Lat_Cape Lon_Cape

WGS84Constants; %Loads global constants from external m-file
GroundTargets; %Loads ground target geographical coordinates (deg)

www.manaraa.com

210

%%%
%% Target Selection and Targeting Loop Initialization
LatJump_Change = 1;
LonThreshold = 35;
LatThreshold = 35;
Target_Choice = 2;
Vehicle_Choice = 9;
Map_Choice = 1;

if Target_Choice == 1 %Denver, United States
 Lat_Target = Lat_Denver; Lon_Target = Lon_Denver; dLat = 3;
elseif Target_Choice == 2 %Gibraltar, United Kingdom
 Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5;
elseif Target_Choice == 3 %Glasgow, Scotland
 Lat_Target = Lat_Glasgow; Lon_Target = Lon_Glasgow; dLat = 3;
elseif Target_Choice == 4 %Grozny, Chechnya
 Lat_Target = Lat_Grozny; Lon_Target = Lon_Grozny; dLat = 3;
elseif Target_Choice == 5 %Moscow, Russia
 Lat_Target = Lat_Moscow; Lon_Target = Lon_Moscow; dLat = 3;
elseif Target_Choice == 6 %Pontianak, Indonesia
 Lat_Target = Lat_Ponti; Lon_Target = Lon_Ponti; dLat = 7;
elseif Target_Choice == 7 %Pyongyang, North Korea
 Lat_Target = Lat_Pyong; Lon_Target = Lon_Pyong; dLat = 5;
elseif Target_Choice == 8 %Reykjavik, Iceland
 Lat_Target = Lat_Reyk; Lon_Target = Lon_Reyk; dLat = 3;
elseif Target_Choice == 9 %Tehran, Iran
 Lat_Target = Lat_Tehran; Lon_Target = Lon_Tehran; dLat = 5;
elseif Target_Choice == 10 %Tokyo, Japan
 Lat_Target = Lat_Tokyo; Lon_Target = Lon_Tokyo; dLat = 4;
elseif Target_Choice == 11 %Brasilia, Brazil
 Lat_Target = Lat_Brasil; Lon_Target = Lon_Brasil; dLat = 4;
elseif Target_Choice == 12 %Buenos Aires, Argentina
 Lat_Target = Lat_Buenos; Lon_Target = Lon_Buenos; dLat = 4;
elseif Target_Choice == 13 %Canberra, Australia
 Lat_Target = Lat_Canberra; Lon_Target = Lon_Canberra; dLat = 4;
elseif Target_Choice == 14 %Cape Town, South Africa
 Lat_Target = Lat_Cape; Lon_Target = Lon_Cape; dLat = 4;
end

h_Perig0 = 87;
h_Perig = h_Perig0;
% MissDistance = 9999;
% WhileCount = 0;
% while MissDistance > 1.0

%%%
%% Vehicle Model
if Vehicle_Choice == 9 %VEHICLE SELECTION OVERRIDE
 mass = 2000; %Mass (kg)
 S_m2 = 18.5; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = 0.5; %Drag coefficient
 Cl = 3.0; %Lift coefficient
else

www.manaraa.com

211

 [Vehicle] = VehicleSpecs(Vehicle_Choice);
 mass = Vehicle.mass; %Mass (kg)
 S_m2 = Vehicle.S_m2; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Vehicle.Cd; %Drag coefficient
 Cl = Vehicle.Cl; %Lift coefficient
end

%%%
%% Initial Reference Orbit Conditions
Time_Max = 1.00; %Maximum simulation time (days)
ecc_Ref = 0; %Orbit eccentricity
h_Apog = 1000; %Apogee altitude (km)
lon_Ref = 0; %Initial longitude (deg)
lat_Ref = 0; %Initial geodetic latitude (deg)
fpa_Ref = 0; %Flight-path angle (deg)
PSI_Ref = 37.835; %Heading angle (deg)
bank_Ref = 0; %Reference orbit bank angle (deg)
bank_Skip = -90; %Skip maneuver bank angle (deg)

%Converts and overwrites initial angle variables
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref);
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);

%Reference orbit parameters
r_Apog = h_Apog + RE; %Apogee radial position (km)
r_Perig = h_Perig + RE; %Perigee radial position (km)
SMA_Ref = 0.5*(r_Apog + r_Apog); %Reference orbit semi-major axis (km)
SMA_Skip = 0.5*(r_Apog + r_Perig); %Skip orbit semi-major axis (km)
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Apog,lat_Ref, ...
 fpa_Ref,PSI_Ref,bank_Ref);

%Apogee velocity for non-rotating frame (km/s)
V_Apog = sqrt((2*MU*r_Perig)/(r_Apog*(r_Apog + r_Perig)));

%Conversion of time units from days to seconds
Time_Max = Time_Max*(24)*(60)*(60);

SMA_Target0 = SMA_Ref; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check0(1,1) = V_Rel; %Initial guess for velocity (km/s)
PSI_Check0(1,1) = PSI_Ref; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref);

www.manaraa.com

212

[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1));

%Semi-major axis (km)
SMA_Check0(1,1) = 0.5*(r_Apog + r_Check0(1,1));

%Iteration error (s)
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ...
 ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));

%Updated velocity (km/s)
V_Check0(2,1) = (V_Check0(1,1) - V_Decrement) - ...
 ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1));

%Updated heading angle (rad)
PSI_Check0(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1));
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));

IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ...
 abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref);

 [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check0(ii,1) = 0.5*(r_Apog + r_Check0(ii,1));

 %Iteration error (sec)
 GuessError0(ii,1) = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ...
 (V_Check0(ii,1) - V_Check0(ii-1,1)));

 %Updated velocity (km/s)
 V_Check0(ii+1,1) = V_Check0(ii,1) - ...
 ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1));

 %Updated heading angle (rad)
 PSI_Check0(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1));

www.manaraa.com

213

 IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ...
 PSI_Check0(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Rel0 = V_Check0(ii); %Velocity (km/s)
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad)

%Trajectory simulation for reference orbit
[RefOrb_t, RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_Apog,V_Rel0, ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref);

%%%
%% Determination of Descent Velocity
IterMax = 20; %Maximum number of iterations
SMA0 = SMA_Ref; %Initial guess for semi-major axis (km)
SMA_Target = SMA_Skip; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check(1,1) = .96*V_Apog; %Initial guess for descent velocity (km/s)
% Set 'V_Check' coeff. to 0.98 for over-flights; 0.96 for max. inclination
PSI_Check(1,1) = PSI_Ref; %Initial guess for heading angle (rad)

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[t_vec, traj_states] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ...
 0.5*RefPeriod,r_Apog,V_Check(1,1),lon_Ref, ...
 lat_Ref,fpa_Ref,PSI_Check(1,1),bank_Skip);
%Perigee radial position (km)
[r_Check(1,1),Perig_Index] = min(traj_states(:,1));
%Semi-major axis (km)
SMA_Check(1,1) = 0.5*(r_Apog + r_Check(1,1));

%Iteration error (s)
GuessError(1,1) = -((SMA_Check(1,1) - SMA0)/ ...
 ((V_Check(1,1) - V_Decrement) - V_Check(1,1)));

%Updated velocity (km/s)
V_Check(2,1) = (V_Check(1,1) - V_Decrement) - ...
 ((SMA_Target - SMA_Check(1,1))/GuessError(1,1));

%Updated heading angle (rad)
PSI_Check(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA(1,1) = abs(SMA_Target - SMA_Check(1,1));
IterativeDiff_PSI(1,1) = abs(PSI_Check(2,1) - PSI_Check(1,1));
IterCount = 1; %Initialization of iteration counter for Secant loop

www.manaraa.com

214

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target - SMA_Check(ii-1,1)) > 1E-6 && ...
 abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)) > 1E-8 && ...
 IterCount < IterMax

 %Trajectory simulation [0:t:HalfPeriod]
 [t_vec, traj_states] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Apog, ...
 V_Check(ii,1),lon_Ref,lat_Ref,fpa_Ref, ...
 PSI_Check(ii,1),bank_Skip);

 %Current iteration perigee radial position (km)
 [r_Check(ii,1),Perig_Index] = min(traj_states(:,1));
 %Current iteration semi-major axis (km)
 SMA_Check(ii,1) = 0.5*(r_Apog + r_Check(ii,1));
 %Iteration error (sec)
 GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ...
 (V_Check(ii,1) - V_Check(ii-1,1)));

 %Updated velocity (km/s)
 V_Check(ii+1,1) = V_Check(ii,1) - ...
 ((SMA_Target - SMA_Check(ii,1))/GuessError(ii,1));

 %Updated heading angle (rad)
 PSI_Check(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA(ii,1) = abs(SMA_Target - SMA_Check(ii,1));
 IterativeDiff_PSI(ii,1) = abs(PSI_Check(ii,1) - PSI_Check(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Maneuver = V_Check(ii,1); %Descent velocity for target SMA
dV_Maneuver = abs(V_Maneuver - V_Rel); %Maneuver delta-V (km/s)
PSI_Rel = rad2deg(PSI_Check(ii,1)); %Relative heading angle (deg)

%Trajectory simulation for skip maneuver
[Skip_t, Skip_States] = SingleSkip_Maneuver(Vehicle_Choice,1,1,1,1,1, ...
 RefPeriod,r_Apog,V_Maneuver,lon_Ref, ...
 lat_Ref,fpa_Ref,deg2rad(PSI_Rel),bank_Skip);

Perigee_Altitude = min(Skip_States(:,1)) - RE

www.manaraa.com

215

%%%
%% Propagation of Re-Circularized Orbit
Time_Max = 8000; %Maximum simulation time (s)
ecc = 0; %Orbit eccentricity
r_Prop = Skip_States(end,1); %Orbit radial position (km)
h_Prop = r_Prop - RE; %Orbit altitude (km)
lon_Prop = Skip_States(end,3); %Initial longitude (rad)
lat_Prop = Skip_States(end,4); %Initial geodetic latitude (rad)
fpa_Prop = 0; %Flight-path angle (rad)
PSI_Prop = -(min(Skip_States(:,4))); %Heading angle (rad)
bank_Prop = bank_Skip; %Bank angle (deg)

%Re-circularized orbit parameters
SMA_Prop = 0.5*(r_Prop + r_Prop); %Semi-major axis (km)
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ...
 fpa_Prop,PSI_Prop,bank_Prop);

SMA_TargetProp = SMA_Prop;
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_CheckP(1,1) = V_RelProp; %Initial guess for velocity (km/s)
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop, ...
 V_CheckP(1,1),lon_Prop,lat_Prop, ...
 fpa_Prop,PSI_CheckP(1,1),bank_Prop);

[r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1));

%Semi-major axis (km)
SMA_CheckP(1,1) = 0.5*(r_Prop + r_CheckP(1,1));

%Iteration error (s)
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ...
 ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1)));

%Updated velocity (km/s)
V_CheckP(2,1) = (V_CheckP(1,1) - V_Decrement) - ...
 ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1));

%Updated heading angle (rad)
PSI_CheckP(2,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp - SMA_CheckP(1,1));
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1));
IterCount = 1; %Initializes iteration counter for Secant loop

www.manaraa.com

216

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_TargetProp - SMA_CheckP(ii-1,1)) > 1E-10 && ...
 abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ...
 IterCount < IterMax

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1), ...
 lon_Prop,lat_Prop,fpa_Prop, ...
 PSI_CheckP(ii,1),bank_Prop);

 [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1));

 %Current iteration semi-major axis (km)
 SMA_CheckP(ii,1) = 0.5*(r_Prop + r_CheckP(ii,1));

 %Iteration error (sec)
 GuessErrorP(ii,1) = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ...
 (V_CheckP(ii,1) - V_CheckP(ii-1,1)));

 %Updated velocity (km/s)
 V_CheckP(ii+1,1) = V_CheckP(ii,1) - ...
 ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1));

 %Updated heading angle (rad)
 PSI_CheckP(ii+1,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp-SMA_CheckP(ii,1));
 IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ...

 PSI_CheckP(ii-1,1));
 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

%Trajectory simulation for re-circularized orbit
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice, ...

1,1,1,1,1,Time_Max,r_Prop,V_CheckP(ii), ...
lon_Prop,lat_Prop,fpa_Prop, ...
PSI_CheckP(ii),bank_Prop);

%Re-defined propagated orbit states
PropOrb_t = [Skip_t ; Skip_t(end) + Orbit_t(2:end)];
PropOrb_States = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)];
PropOrb_h = PropOrb_States(:,1) - RE; %Altitude (km)
PropOrb_V = PropOrb_States(:,2); %Velocity (km/s)
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ...
 + 180),360) - 180; %Longitude (rad)
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad)

www.manaraa.com

217

%%%
%% Determination of Propagated Trajectory Crossings of Target Coordinates
% %Longitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(PropOrb_Lon_deg)
% mm = mm + 1;
% if abs(PropOrb_Lon_deg(ii) - Lon_Target) < LonThreshold
% LonTGT_Crossing(mm,1) = PropOrb_t(ii);
% LonTGT_Crossing(mm,2) = PropOrb_h(ii);
% LonTGT_Crossing(mm,3) = PropOrb_Lat_deg(ii);
% LonTGT_Crossing(mm,4) = PropOrb_Lon_deg(ii);
% else
% LonTGT_Crossing(mm,1:4) = 0;
% end
% end
%
% %Latitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(PropOrb_Lat_deg)
% mm = mm + 1;
% if abs(PropOrb_Lat_deg(ii) - Lat_Target) < LatThreshold
% %&& abs(PropOrb_Lon_deg(ii) - Lon_Target) < 30
% LatTGT_Crossing(mm,1) = PropOrb_t(ii);
% LatTGT_Crossing(mm,2) = PropOrb_h(ii);
% LatTGT_Crossing(mm,3) = PropOrb_Lon_deg(ii);
% LatTGT_Crossing(mm,4) = PropOrb_Lat_deg(ii);
% else
% LatTGT_Crossing(mm,1:4) = 0;
% end
% end
%
% %%%
% %% Determination of Indices Corresponding to Crossings
% %Longitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(LonTGT_Crossing)
% if LonTGT_Crossing(ii) ~= 0
% mm = mm + 1;
% FlagVector_Lon(mm,1) = ii;
% WithinIdent_Lon(mm,:) = LonTGT_Crossing(ii,:);
% end
% end
% FlagVector_Lon = [FlagVector_Lon;0];
%
% %Latitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(LatTGT_Crossing)
% if LatTGT_Crossing(ii) ~= 0
% mm = mm + 1;
% FlagVector_Lat(mm,1) = ii;
% WithinIdent_Lat(mm,:) = LatTGT_Crossing(ii,:);
% end
% end
% FlagVector_Lat = [FlagVector_Lat;0];
%

www.manaraa.com

218

% %%%
% %% Determination of Indices Corresponding to Jumps in Crossings
% %Longitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(FlagVector_Lon)-1
% if abs((FlagVector_Lon(ii+1) - FlagVector_Lon(ii))) > 1
% mm = mm + 1;
% LonTGT_Jump(mm,1) = ii;
% end
% end
% LonTGT_Jump = [0;LonTGT_Jump];
%
% %Latitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(FlagVector_Lat)-1
% if abs((FlagVector_Lat(ii+1) - FlagVector_Lat(ii))) > 1
% mm = mm + 1;
% LatTGT_Jump(mm,1) = ii;
% end
% end
%
% if LatJump_Change == 1 %Appropriate for 'mid-' to 'high-' latitudes
% LatTGT_Jump = [0; LatTGT_Jump];
% elseif LatJump_Change == 2 %Appropriate for 'low-' latitudes
% LatTGT_Jump = [LatTGT_Jump];
% end
%
% %%%
% %% Interpolation of Crossing Trajectories
% %Longitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 2:length(LonTGT_Jump)
% mm = mm + 1;
% LonTGT_Interp(mm,:) = ...
% interp1(LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1): ...
% FlagVector_Lon(LonTGT_Jump(ii)),4), ...
% LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1): ...
% FlagVector_Lon(LonTGT_Jump(ii)),1:3), ...
% Lon_Target,'spline'); %Cubic spline interpolation
% end
%
% %Latitude crossings
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 2:length(LatTGT_Jump)
% mm = mm + 1;
% LatTGT_Interp(mm,:) = ...
% interp1(LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1): ...
% FlagVector_Lat(LatTGT_Jump(ii)),4), ...
% LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1): ...
% FlagVector_Lat(LatTGT_Jump(ii)),1:3), ...
% Lat_Target,'spline'); %Cubic spline interpolation
% end
%
% %Removal of negative perturbed periods
% LatTGT_Interp(any(LatTGT_Interp(:,1)<0,2),:) = [];
%

www.manaraa.com

219

% %%%
% %% Determination of Minimum Target Miss Distance
% %Target miss distance for both spherical and oblate planetary models
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(PropOrb_Lon_deg)
% mm = mm + 1;
% SphereDist_Lon = CoordDist(Lon_Target,Lon_Target, ...
% Lat_Target,LonTGT_Interp(:,3),1);
% end
%
% %Longitudinal target miss distance (km)
% [MinDistance_Lon,MinFlag_Lon] = min(SphereDist_Lon(:,1));
%
% mm = 0; %Initializes vector concatenation counter at zero
% for ii = 1:length(PropOrb_Lat_deg)
% mm = mm + 1;
% SphereDist_Lat = CoordDist(Lon_Target,LatTGT_Interp(:,3), ...
% Lat_Target,Lat_Target,1);
% end
%
% %Latitudinal target miss distance (km)
% [MinDistance_Lat,MinFlag_Lat] = min(SphereDist_Lat(:,1));
%
% MinDist_Vec = [MinDistance_Lon, MinDistance_Lat];
% MinFlag_Vec = [MinFlag_Lon, MinFlag_Lat];
% [MinDistance, MinIndex] = min(MinDist_Vec);
% MinFlag = MinFlag_Vec(MinIndex);
% MissDistance = MinDistance
%
% if MinIndex == 1
% MinInterp = LonTGT_Interp;
% elseif MinIndex == 2
% MinInterp = LatTGT_Interp;
% end

%%%
%% Over-Flight Parameters
%Time-of-arrival at target (hr)
% TimeArrival = (MinInterp(MinFlag,1))*(1/60)*(1/60);
%
% %Altitude-of-arrival at target (km)
% AltArrival = MinInterp(MinFlag,2);
%
% %Payload imager field-of-view (FOV) and resolution during over-flight
% %Visible spectrum imager
% [FOV_m2_Vis, FOV_km2_Vis, Resolution_Vis] = ...
% PayloadImager(AltArrival*(1.0E3),1.15,2.70,1.0E-6);
%
% %Latitude-of-arrival at target (deg)
% LatArrival = LonTGT_Interp(MinFlag_Lon,3);
%
% %Longitude-of-arrival at target (deg)
% LonArrival = LatTGT_Interp(MinFlag_Lat,3);
%
% %Maximum inclination (deg)
% MaxIncl = max(PropOrb_Lat_deg);

www.manaraa.com

220

%%%
%% Atmospheric-Transit Parameters
%Identifies time/altitude segment of trajectory within atmosphere
jj = 0; %Initializes vector concatenation counter at zero
PropOrb_th = [PropOrb_t,PropOrb_h]; %Concatenation of t, h vectors

for ii = 1:length(PropOrb_th(:,1))
 if PropOrb_th(ii,2) < 120
 jj = jj + 1;
 t_Atmos(jj,:) = PropOrb_th(ii,1); %Time (s)
 h_Atmos(jj,:) = PropOrb_th(ii,2); %Altitude (km)
 end
end

t_EnterAtmos = t_Atmos(1); %Time of atmospheric entry (h < 120 km)
t_ExitAtmos = t_Atmos(end); %Time of atmospheric exit (h > 120 km)
t_Transit = [t_EnterAtmos,t_ExitAtmos];

%%%
%% Deceleration
[decel] = EntryDecel(1,mass,S,Cd,Cl, ...
 PropOrb_States(:,1),PropOrb_States(:,2), ...
 PropOrb_States(:,4),PropOrb_States(:,5));

%Tangential deceleration (g's)
TangDecelG_Max = max(decel.TangG); %Maximum value
TangDecelG_Min = min(decel.TangG); %Minimum value

%Normal deceleration (g's)
NormDecelG_Max = max(decel.NormalG); %Maximum value
NormDecelG_Min = min(decel.NormalG); %Minimum value

%Deceleration magnitude (g's)
MagDecelG_Max = max(decel.Gs); %Maximum value
MagDecelG_Min = min(decel.Gs); %Minimum value

%%%
%% Heat Flux
%Atmospheric density (kg/km^3)
[PropOrb_Rho] = AtmosModel_PostAnalysis(PropOrb_h,2);

%Maximum velocity (km/s) -- Occurs at Perigee
VMax = max(PropOrb_V);

Emissivity = 0.8; %Emissivity
Tw_F = 0; %Wall temperature (deg F)
TMaxF = 1800; %Free-stream temperature (deg F)

%Heat transfer models
[HeatModel,Eta,T_KE] = HeatFluxModel(PropOrb_V,PropOrb_Rho,Emissivity, ...
 Tw_F,TMaxF,mass,S,Cd,Cl);

www.manaraa.com

221

%Average wall heat flux (non-dimensional)
Qw = HeatModel.Qw;
Qw_Max = max(Qw); %Maximum value

%Average stagnation heat flux (non-dimensional)
Qs = HeatModel.Qs;
Qs_Max = max(Qs); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Rao (2002)
Qdot = HeatModel.Qdot;
Qdot_Max = max(Qdot); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Havey (1982)
QHavey = HeatModel.QHavey;
QHavey_Max = max(QHavey);

%Stagnation heat flux (kW/m^2); Source: Galman (1961)
QGalman = HeatModel.QGalman;
QGalman_Max = max(QGalman);

%%%
% %Updated perigee altitude (km)
% if MinIndex == 1
% if LatArrival > Lat_Target
% if MissDistance > 100
% h_Perig = h_Perig + 2.0;
% elseif MissDistance > 20 && MissDistance <= 100
% h_Perig = h_Perig + 1.0;
% elseif MissDistance > 15 && MissDistance <= 20
% h_Perig = h_Perig + 0.1;
% elseif MissDistance > 5 && MissDistance <= 15
% h_Perig = h_Perig + 0.01;
% elseif MissDistance <= 5
% h_Perig = h_Perig + 0.001;
% end
%
% elseif LatArrival < Lat_Target
% if MissDistance > 100
% h_Perig = h_Perig - 2.0;
% elseif MissDistance > 20 && MissDistance <= 100
% h_Perig = h_Perig - 1.0;
% elseif MissDistance > 15 && MissDistance <= 20
% h_Perig = h_Perig - 0.1;
% elseif MissDistance > 5 && MissDistance <= 15
% h_Perig = h_Perig - 0.01;
% elseif MissDistance <= 5
% h_Perig = h_Perig - 0.001;
% end
% end
%

www.manaraa.com

222

% elseif MinIndex == 2
% if LonArrival > Lon_Target
% if MissDistance > 100
% h_Perig = h_Perig + 2.0;
% elseif MissDistance > 20 && MissDistance <= 100
% h_Perig = h_Perig + 1.0;
% elseif MissDistance > 15 && MissDistance <= 20
% h_Perig = h_Perig + 0.1;
% elseif MissDistance > 5 && MissDistance <= 15
% h_Perig = h_Perig + 0.01;
% elseif MissDistance <= 5
% h_Perig = h_Perig + 0.001;
% end
%
% elseif LonArrival < Lon_Target
% if MissDistance > 100
% h_Perig = h_Perig - 2.0;
% elseif MissDistance > 20 && MissDistance <= 100
% h_Perig = h_Perig - 1.0;
% elseif MissDistance > 15 && MissDistance <= 20
% h_Perig = h_Perig - 0.1;
% elseif MissDistance > 5 && MissDistance <= 15
% h_Perig = h_Perig - 0.01;
% elseif MissDistance <= 5
% h_Perig = h_Perig - 0.001;
% end
% end
% end
%
% % h_Perig = h_Perig
%
% WhileCount = WhileCount + 1; %Update to 'while'-loop iteration counter
%
% %Clearing of variables for targeting loop
% clear LonTGT_Crossing; clear LatTGT_Crossing; clear FlagVector_Lon;
% clear FlagVector_Lat; clear WithinIdent_Lon; clear WithinIdent_Lat;
% clear LonTGT_Jump; clear LatTGT_Jump; clear LonTGT_Interp;
% clear LatTGT_Interp;
%
% end

%%%
%% Determination of Total Skip Maneuver Delta-V
V_EndSkip = Skip_States(end,2); %Velocity where fpa = 0 (km/s)
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)

%Total delta-V for skip maneuver (km/s)
dV_SkipTotal = dV_Maneuver + dV_ReCirc;

%%%
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg
%Reference orbit
[Lon_RefOrb, Lat_RefOrb, LonSplit_RefOrb, LatSplit_RefOrb] = ...
 CoordinateJump(RefOrb_States);

www.manaraa.com

223

%Maneuver orbit
[Lon_Skip, Lat_Skip, LonSplit_Skip, LatSplit_Skip] = ...
 CoordinateJump(Skip_States);
%Propagated re-circularized orbit
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ...
 CoordinateJump(PropOrb_States);

%%%
%% Command Window Printing and Workspace Variable Definition
% fprintf('Minimum Miss Distance: %f km \n', MinDistance);
% fprintf('Time-of-Arrival: %f hr \n', TimeArrival);
% fprintf('Maneuver Delta-V: %f km/s \n', dV_Maneuver);
% fprintf('Total Delta-V: %f km/s \n', dV_SkipTotal);
%
% Trajectory_Analysis = [bank_Skip,Perigee_Altitude,h_Prop,TimeArrival, ...
% dV_Maneuver,dV_SkipTotal, ...
% -(min(PropOrb_Lat_deg)),MinDistance];
%
% Inclination_Analysis = [rad2deg(PSI_Ref),Perigee_Altitude,h_Prop, ...
% dV_Maneuver,dV_SkipTotal,MaxIncl];
%
% Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ...
% NormDecelG_Max,NormDecelG_Min, ...
% MagDecelG_Max, MagDecelG_Min];
%
% HeatFlux_Analysis = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max];
%
% Combined_Analysis = [Deceleration_Analysis,HeatFlux_Analysis];

% return

%%%
%% Plotting Commands
%Conversion of time units for plotting
[Skip_Time, time_string] = TimeUtility(Skip_t,2);
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2);

%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection
subplot(2,2,1); box on; grid off;
hold on;
h_Ref = cellfun(@plot,LonSplit_RefOrb,LatSplit_RefOrb);

set(h_Ref, 'LineStyle','-','Color','b');

xlim([-180 180]); ylim([-90 90]);
xlim([0 90]); ylim([30 70]);
% xlim([floor(Lon_Target)-30, ceil(Lon_Target)+30]);
% ylim([floor(Lat_Target)-20, ceil(Lat_Target)+20]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

%Coordinates (x,y) for target latitude, longitude end points
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target];
p1_Lon = [Lon_Target, -90]; p2_Lon = [Lon_Target, 90];

www.manaraa.com

224

 %Target latitude, longitude lines
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:');
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:');

if Map_Choice == 1
% hold on; %Plate Carree world map projection
% landareas = shaperead('landareas.shp','UseGeoCoords',true);
% geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

elseif Map_Choice == 2
 hold on; %Plate Carree world map projection
 landareas = shaperead('landareas.shp','UseGeoCoords',true);
 geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
end

%Target location
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ...
 'MarkerFaceColor','r','MarkerSize',5);

%%%
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection
subplot(2,2,2); box on; grid off;
hold on;
h_Skip = cellfun(@plot,LonSplit_PropOrb, LatSplit_PropOrb);
hold on;
h_Ref = cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);

set(h_Skip,'LineStyle','--','Color','r');
set(h_Ref, 'LineStyle','-','Color','b');

xlim([-180 180]); ylim([-90 90]);
xlim([0 90]); ylim([30 70]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

%Coordinates (x,y) for target latitude, longitude end points
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target];
p1_Lon = [Lon_Target, -90]; p2_Lon = [Lon_Target, 90];

% %Target latitude, longitude lines
% hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:');
% hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:');

if Map_Choice == 1
% hold on; %Plate Carree world map projection
% landareas = shaperead('landareas.shp','UseGeoCoords',true);
% geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

elseif Map_Choice == 2
 hold on; %Plate Carree world map projection
 landareas = shaperead('landareas.shp','UseGeoCoords',true);
 geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
end

www.manaraa.com

225

%Target location
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ...
 'MarkerFaceColor','r','MarkerSize',5);

%%%
%% Geodetic Altitude (km) vs. Time
[PropOrb_t, time_string] = TimeUtility(PropOrb_t,2); %Time unit conversion

subplot(2,2,3); box on; grid off;
plot(PropOrb_t,PropOrb_h,'b');
xlim([0 200]); ylim([0 1000]);
xlabel(['Time, ', time_string]);
ylabel('Altitude, km');

%%%
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection
subplot(2,2,4); box on; grid off;
hold on;
h_Skip = cellfun(@plot,LonSplit_PropOrb, LatSplit_PropOrb);
hold on;
h_Ref = cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);

set(h_Skip,'LineStyle','--','Color','r');
set(h_Ref, 'LineStyle','-','Color','b');

xlim([-180 180]); ylim([-90 90]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

%Coordinates (x,y) for target latitude, longitude end points
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target];
p1_Lon = [Lon_Target, -90]; p2_Lon = [Lon_Target, 90];

% %Target latitude, longitude lines
% hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:');
% hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:');

if Map_Choice == 1
% hold on; %Plate Carree world map projection
% landareas = shaperead('landareas.shp','UseGeoCoords',true);
% geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

elseif Map_Choice == 2
 hold on; %Plate Carree world map projection
 landareas = shaperead('landareas.shp','UseGeoCoords',true);
 geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

www.manaraa.com

226

BankManeuvers_Function.m

function
[Trajectory_Analysis,MaxIncl,Deceleration_Analysis,HeatFlux_Analysis] = ...
 BankManeuvers_Function(Target_Choice,h_Perig0,PSI_Ref,bank_Skip,lon_Ref)

global MU RE
global Lat_Denver Lon_Denver Lat_Gibraltar Lon_Gibraltar
global Lat_Glasgow Lon_Glasgow Lat_Grozny Lon_Grozny
global Lat_Moscow Lon_Moscow Lat_Ponti Lon_Ponti
global Lat_Pyong Lon_Pyong Lat_Reyk Lon_Reyk
global Lat_Tehran Lon_Tehran Lat_Tokyo Lon_Tokyo
global Lat_Brasil Lon_Brasil Lat_Buenos Lon_Buenos
global Lat_Canberra Lon_Canberra Lat_Cape Lon_Cape

WGS84Constants; %Loads global constants from external m-file
GroundTargets; %Loads ground target geographical coordinates (deg)

%%%
%% Target Selection and Targeting Loop Initialization
LatJump_Change = 1;
LonThreshold = 35;
LatThreshold = 35;
Map_Choice = 1;

if Target_Choice == 1 %Denver, United States
 Lat_Target = Lat_Denver; Lon_Target = Lon_Denver; dLat = 3;
elseif Target_Choice == 2 %Gibraltar, United Kingdom
 Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5;
elseif Target_Choice == 3 %Glasgow, Scotland
 Lat_Target = Lat_Glasgow; Lon_Target = Lon_Glasgow; dLat = 3;
elseif Target_Choice == 4 %Grozny, Chechnya
 Lat_Target = Lat_Grozny; Lon_Target = Lon_Grozny; dLat = 3;
elseif Target_Choice == 5 %Moscow, Russia
 Lat_Target = Lat_Moscow; Lon_Target = Lon_Moscow; dLat = 3;
elseif Target_Choice == 6 %Pontianak, Indonesia
 Lat_Target = Lat_Ponti; Lon_Target = Lon_Ponti; dLat = 7;
elseif Target_Choice == 7 %Pyongyang, North Korea
 Lat_Target = Lat_Pyong; Lon_Target = Lon_Pyong; dLat = 5;
elseif Target_Choice == 8 %Reykjavik, Iceland
 Lat_Target = Lat_Reyk; Lon_Target = Lon_Reyk; dLat = 3;
elseif Target_Choice == 9 %Tehran, Iran
 Lat_Target = Lat_Tehran; Lon_Target = Lon_Tehran; dLat = 5;
elseif Target_Choice == 10 %Tokyo, Japan
 Lat_Target = Lat_Tokyo; Lon_Target = Lon_Tokyo; dLat = 4;
elseif Target_Choice == 11 %Brasilia, Brazil
 Lat_Target = Lat_Brasil; Lon_Target = Lon_Brasil; dLat = 4;
elseif Target_Choice == 12 %Buenos Aires, Argentina
 Lat_Target = Lat_Buenos; Lon_Target = Lon_Buenos; dLat = 4;
elseif Target_Choice == 13 %Canberra, Australia
 Lat_Target = Lat_Canberra; Lon_Target = Lon_Canberra; dLat = 4;
elseif Target_Choice == 14 %Cape Town, South Africa
 Lat_Target = Lat_Cape; Lon_Target = Lon_Cape; dLat = 4;
end

www.manaraa.com

227

 h_Perig = h_Perig0;

%%%
%% Initial Reference Orbit Conditions
Vehicle_Choice = 1; %TAV selection
Time_Max = 1.0; %Maximum simulation time (days)
ecc_Ref = 0; %Orbit eccentricity
h_Apog = 1000; %Apogee altitude (km)
lat_Ref = 0; %Initial geodetic latitude (deg)
fpa_Ref = 0; %Flight-path angle (deg)
bank_Ref = 0; %Reference orbit bank angle (deg)

%Converts and overwrites initial angle variables
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref);
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);

%Reference orbit parameters
r_Apog = h_Apog + RE; %Apogee radial position (km)
r_Perig = h_Perig + RE; %Perigee radial position (km)
SMA_Ref = 0.5*(r_Apog + r_Apog); %Reference orbit semi-major axis (km)
SMA_Skip = 0.5*(r_Apog + r_Perig); %Skip orbit semi-major axis (km)
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_Rel,PSI_Rel] = RelativeStates(Vehicle_Choice,h_Apog,lat_Ref, ...
 fpa_Ref,PSI_Ref,bank_Ref);

%Apogee velocity for non-rotating frame (km/s)
V_Apog = sqrt((2*MU*r_Perig)/(r_Apog*(r_Apog + r_Perig)));

%Conversion of time units from days to seconds
Time_Max = Time_Max*(24)*(60)*(60);

SMA_Target0 = SMA_Ref; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check0(1,1) = V_Rel; %Initial guess for velocity (km/s)
PSI_Check0(1,1) = PSI_Ref; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref);

[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1));

%Semi-major axis (km)
SMA_Check0(1,1) = 0.5*(r_Apog + r_Check0(1,1));

%Iteration error (s)
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ...
 ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));

www.manaraa.com

228

%Updated velocity (km/s)
V_Check0(2,1) = (V_Check0(1,1) - V_Decrement) - ...
 ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1));

%Updated heading angle (rad)
PSI_Check0(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1));
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));

IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ...
 abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref);

 [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check0(ii,1) = 0.5*(r_Apog + r_Check0(ii,1));

 %Iteration error (sec)
 GuessError0(ii,1) = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ...
 (V_Check0(ii,1) - V_Check0(ii-1,1)));

 %Updated velocity (km/s)
 V_Check0(ii+1,1) = V_Check0(ii,1) - ...
 ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1));

 %Updated heading angle (rad)
 PSI_Check0(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1));
 IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ...
 PSI_Check0(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

www.manaraa.com

229

V_Rel0 = V_Check0(ii); %Velocity (km/s)
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad)

%Trajectory simulation for reference orbit
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_Apog,V_Rel0, ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref);

%%%
%% Data Manipulation for Reference Orbit
r_Data = RefOrb_States(:,1); %Radial position (km)
h_Data = r_Data - RE; %Altitude (km)
Lon_Data = RefOrb_States(:,3); %Longitude (rad)
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad)

%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180)
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180;

%Converts geodetic latitude from radians to degrees
Lat_Data = rad2deg(Lat_Data);

%%%
%% Determination of Descent Velocity
IterMax = 50; %Maximum number of iterations
SMA0 = SMA_Ref; %Initial guess for semi-major axis (km)
SMA_Target = SMA_Skip; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check(1,1) = .98*V_Apog; %Initial guess for descent velocity (km/s)
% Set 'V_Check' coeff. to 0.98 for over-flights; 0.96 for max. inclination
PSI_Check(1,1) = PSI_Ref; %Initial guess for heading angle (rad)

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[t_vec,traj_states] = Maneuver_MainFunction(Vehicle_Choice,1,2,1,1,1, ...
 0.5*RefPeriod,r_Apog,V_Check(1,1),lon_Ref, ...
 lat_Ref,fpa_Ref,PSI_Check(1,1),bank_Skip);

%Perigee radial position (km)
[r_Check(1,1),Perig_Index] = min(traj_states(:,1));

%Semi-major axis (km)
SMA_Check(1,1) = 0.5*(r_Apog + r_Check(1,1));

%Iteration error (s)
GuessError(1,1) = -((SMA_Check(1,1) - SMA0)/ ...
 ((V_Check(1,1) - V_Decrement) - V_Check(1,1)));

%Updated velocity (km/s)
V_Check(2,1) = (V_Check(1,1) - V_Decrement) - ...
 ((SMA_Target - SMA_Check(1,1))/GuessError(1,1));

%Updated heading angle (rad)
PSI_Check(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(2,1)));

www.manaraa.com

230

%Difference between calculated and target trajectory states
IterativeDiff_SMA(1,1) = abs(SMA_Target - SMA_Check(1,1));
IterativeDiff_PSI(1,1) = abs(PSI_Check(2,1) - PSI_Check(1,1));

IterCount = 1; %Initialization of iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target - SMA_Check(ii-1,1)) > 1E-6 && ...
 abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)) > 1E-8

 %Trajectory simulation [0:t:HalfPeriod]
 [t_vec,traj_states] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,2,1,1,1,0.5*RefPeriod,r_Apog, ...
 V_Check(ii,1),lon_Ref,lat_Ref,fpa_Ref, ...
 PSI_Check(ii,1),bank_Skip);

 %Current iteration perigee radial position (km)
 [r_Check(ii,1),Perig_Index] = min(traj_states(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check(ii,1) = 0.5*(r_Apog + r_Check(ii,1));

 %Iteration error (sec)
 GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ...
 (V_Check(ii,1) - V_Check(ii-1,1)));

 %Updated velocity (km/s)
 V_Check(ii+1,1) = V_Check(ii,1) - ...
 ((SMA_Target - SMA_Check(ii,1))/GuessError(ii,1));

 %Updated heading angle (rad)
 PSI_Check(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA(ii,1) = abs(SMA_Target - SMA_Check(ii,1));
 IterativeDiff_PSI(ii,1) = abs(PSI_Check(ii,1) - PSI_Check(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Maneuver = V_Check(ii,1); %Descent velocity for target SMA
dV_Maneuver = abs(V_Maneuver - V_Rel); %Maneuver delta-V (km/s)
PSI_Rel = rad2deg(PSI_Check(ii,1)); %Relative heading angle (deg)

www.manaraa.com

231

%Trajectory simulation for skip maneuver
[Skip_t,Skip_States] = SingleSkip_Maneuver(Vehicle_Choice,1,2,1,1,1, ...
 RefPeriod,r_Apog,V_Maneuver,lon_Ref, ...
 lat_Ref,fpa_Ref,deg2rad(PSI_Rel),bank_Skip);

Perigee_Altitude = min(Skip_States(:,1)) - RE;

%%%
%% Propagation of Re-Circularized Orbit
Time_Max = 80000; %Maximum simulation time (s)
ecc = 0; %Orbit eccentricity
r_Prop = Skip_States(end,1); %Orbit radial position (km)
h_Prop = r_Prop - RE; %Orbit altitude (km)
lon_Prop = Skip_States(end,3); %Initial longitude (rad)
lat_Prop = Skip_States(end,4); %Initial geodetic latitude (rad)
fpa_Prop = 0; %Flight-path angle (rad)
PSI_Prop = -(min(Skip_States(:,4))); %Heading angle (rad)
bank_Prop = bank_Skip; %Bank angle (deg)

%Re-circularized orbit parameters
SMA_Prop = 0.5*(r_Prop + r_Prop); %Semi-major axis (km)
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_RelProp,PSI_RelProp] = RelativeStates(Vehicle_Choice,h_Prop,lat_Prop, ...
 fpa_Prop,PSI_Prop,bank_Prop);

SMA_TargetProp = SMA_Prop;
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_CheckP(1,1) = V_RelProp; %Initial guess for velocity (km/s)
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_tP,Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop, ...
 V_CheckP(1,1),lon_Prop,lat_Prop, ...
 fpa_Prop,PSI_CheckP(1,1),bank_Prop);

[r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1));

%Semi-major axis (km)
SMA_CheckP(1,1) = 0.5*(r_Prop + r_CheckP(1,1));

%Iteration error (s)
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ...
 ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1)));

%Updated velocity (km/s)
V_CheckP(2,1) = (V_CheckP(1,1) - V_Decrement) - ...
 ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1));

www.manaraa.com

232

%Updated heading angle (rad)
PSI_CheckP(2,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp - SMA_CheckP(1,1));
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1));
IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_TargetProp - SMA_CheckP(ii-1,1)) > 1E-10 && ...
 abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_tP,Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1), ...
 lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii,1),bank_Prop);

 [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1));

 %Current iteration semi-major axis (km)
 SMA_CheckP(ii,1) = 0.5*(r_Prop + r_CheckP(ii,1));

 %Iteration error (sec)
 GuessErrorP(ii,1) = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ...
 (V_CheckP(ii,1) - V_CheckP(ii-1,1)));

 %Updated velocity (km/s)
 V_CheckP(ii+1,1) = V_CheckP(ii,1) - ...
 ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1));

 %Updated heading angle (rad)
 PSI_CheckP(ii+1,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp – ...
 SMA_CheckP(ii,1));
 IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ...
 PSI_CheckP(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

%Trajectory simulation for re-circularized orbit
[Orbit_t,Orbit_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_Prop,V_CheckP(ii), ...
 lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii),bank_Prop);

www.manaraa.com

233

%Re-defined propagated orbit states
PropOrb_t = [Skip_t ; Skip_t(end) + Orbit_t(2:end)];
PropOrb_States = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)];
PropOrb_h = PropOrb_States(:,1) - RE; %Altitude (km)
PropOrb_V = PropOrb_States(:,2); %Velocity (km/s)
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ...
 + 180),360) - 180; %Longitude (rad)
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad)

%%%
%% Determination of Propagated Trajectory Crossings of Target Coordinates
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lon_deg)
 mm = mm + 1;
 if abs(PropOrb_Lon_deg(ii) - Lon_Target) < LonThreshold
 LonTGT_Crossing(mm,1) = PropOrb_t(ii);
 LonTGT_Crossing(mm,2) = PropOrb_h(ii);
 LonTGT_Crossing(mm,3) = PropOrb_Lat_deg(ii);
 LonTGT_Crossing(mm,4) = PropOrb_Lon_deg(ii);
 else
 LonTGT_Crossing(mm,1:4) = 0;
 end
end

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lat_deg)
 mm = mm + 1;
 if abs(PropOrb_Lat_deg(ii) - Lat_Target) < LatThreshold
 LatTGT_Crossing(mm,1) = PropOrb_t(ii);
 LatTGT_Crossing(mm,2) = PropOrb_h(ii);
 LatTGT_Crossing(mm,3) = PropOrb_Lon_deg(ii);
 LatTGT_Crossing(mm,4) = PropOrb_Lat_deg(ii);
 else
 LatTGT_Crossing(mm,1:4) = 0;
 end
end

%%%
%% Determination of Indices Corresponding to Crossings
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(LonTGT_Crossing)
 if LonTGT_Crossing(ii) ~= 0
 mm = mm + 1;
 FlagVector_Lon(mm,1) = ii;
 WithinIdent_Lon(mm,:) = LonTGT_Crossing(ii,:);
 end
end
FlagVector_Lon = [FlagVector_Lon;0];

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero

www.manaraa.com

234

for ii = 1:length(LatTGT_Crossing)
 if LatTGT_Crossing(ii) ~= 0
 mm = mm + 1;
 FlagVector_Lat(mm,1) = ii;
 WithinIdent_Lat(mm,:) = LatTGT_Crossing(ii,:);
 end
end
FlagVector_Lat = [FlagVector_Lat;0];

%%%
%% Determination of Indices Corresponding to Jumps in Crossings
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector_Lon)-1
 if abs((FlagVector_Lon(ii+1) - FlagVector_Lon(ii))) > 1
 mm = mm + 1;
 LonTGT_Jump(mm,1) = ii;
 end
end
LonTGT_Jump = [0;LonTGT_Jump];

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector_Lat)-1
 if abs((FlagVector_Lat(ii+1) - FlagVector_Lat(ii))) > 1
 mm = mm + 1;
 LatTGT_Jump(mm,1) = ii;
 end
end

if LatJump_Change == 1 %Appropriate for 'mid-' to 'high-' latitudes
 LatTGT_Jump = [0; LatTGT_Jump];
elseif LatJump_Change == 2 %Appropriate for 'low-' latitudes
 LatTGT_Jump = [LatTGT_Jump];
end

%%%
%% Interpolation of Crossing Trajectories
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(LonTGT_Jump)
 mm = mm + 1;
 LonTGT_Interp(mm,:) = ...
 interp1(LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1): ...
 FlagVector_Lon(LonTGT_Jump(ii)),4), ...
 LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1): ...
 FlagVector_Lon(LonTGT_Jump(ii)),1:3), ...
 Lon_Target,'spline'); %Cubic spline interpolation
end

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(LatTGT_Jump)
 mm = mm + 1;
 LatTGT_Interp(mm,:) = ...

www.manaraa.com

235

 interp1(LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1): ...

 FlagVector_Lat(LatTGT_Jump(ii)),4), ...
 LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1): ...
 FlagVector_Lat(LatTGT_Jump(ii)),1:3), ...
 Lat_Target,'spline'); %Cubic spline interpolation
end

%Removal of negative perturbed periods
LatTGT_Interp(any(LatTGT_Interp(:,1)<0,2),:) = [];

%%%
%% Determination of Minimum Target Miss Distance
%Target miss distance for both spherical and oblate planetary models
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lon_deg)
 mm = mm + 1;
 SphereDist_Lon = CoordDist(Lon_Target,Lon_Target, ...
 Lat_Target,LonTGT_Interp(:,3),1);
end

%Longitudinal target miss distance (km)
[MinDistance_Lon,MinFlag_Lon] = min(SphereDist_Lon(:,1));

mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lat_deg)
 mm = mm + 1;
 SphereDist_Lat = CoordDist(Lon_Target,LatTGT_Interp(:,3), ...
 Lat_Target,Lat_Target,1);
end

%Latitudinal target miss distance (km)
[MinDistance_Lat,MinFlag_Lat] = min(SphereDist_Lat(:,1));

MinDist_Vec = [MinDistance_Lon, MinDistance_Lat];
MinFlag_Vec = [MinFlag_Lon, MinFlag_Lat];

[MinDistance, MinIndex] = min(MinDist_Vec);
MinFlag = MinFlag_Vec(MinIndex);
MissDistance = MinDistance;

if MinIndex == 1
 MinInterp = LonTGT_Interp;
elseif MinIndex == 2
 MinInterp = LatTGT_Interp;
end

%%%
%% Over-Flight Parameters
%Time-of-arrival at target (hr)
TimeArrival = (MinInterp(MinFlag,1))*(1/60)*(1/60);

www.manaraa.com

236

%Altitude-of-arrival at target (km)
AltArrival = MinInterp(MinFlag,2);

%Payload imager field-of-view (FOV) and resolution during over-flight
%Visible spectrum imager
[FOV_m2_Vis,FOV_km2_Vis,Resolution_Vis] = ...
 PayloadImager(AltArrival*(1.0E3),1.15,2.70,1.0E-6);

%Latitude-of-arrival at target (deg)
LatArrival = LonTGT_Interp(MinFlag_Lon,3);

%Longitude-of-arrival at target (deg)
LonArrival = LatTGT_Interp(MinFlag_Lat,3);

%Maximum inclination (deg)
MaxIncl = max(PropOrb_Lat_deg);

%%%
%% Deceleration
[Vehicle] = VehicleSpecs(Vehicle_Choice);

mass = Vehicle.mass; %Mass (kg)
S_m2 = Vehicle.S_m2; %Planform area (m^2)
S = S_m2/(1000^2); %Planform area (km^2)
Cd = Vehicle.Cd; %Drag coefficient
Cl = Vehicle.Cl; %Lift coefficient

[decel] = EntryDecel(1,mass,S,Cd,Cl, ...
 PropOrb_States(:,1),PropOrb_States(:,2), ...
 PropOrb_States(:,4),PropOrb_States(:,5));

%Tangential deceleration (g's)
TangDecelG_Max = max(decel.TangG); %Maximum value
TangDecelG_Min = min(decel.TangG); %Minimum value

%Normal deceleration (g's)
NormDecelG_Max = max(decel.NormalG); %Maximum value
NormDecelG_Min = min(decel.NormalG); %Minimum value

%Deceleration magnitude (g's)
MagDecelG_Max = max(decel.Gs); %Maximum value
MagDecelG_Min = min(decel.Gs); %Minimum value

%%%
%% Heat Flux
%Atmospheric density (kg/km^3)
[PropOrb_Rho] = AtmosModel_PostAnalysis(PropOrb_h,2);

%Maximum velocity (km/s) -- Occurs at Perigee
VMax = max(PropOrb_V);
Emissivity = 0.8; %Emissivity
Tw_F = 0; %Wall temperature (deg F)
TMaxF = 1800; %Free-stream temperature (deg F)

www.manaraa.com

237

%Heat transfer models
[HeatModel,Eta,T_KE] = HeatFluxModel(Vehicle_Choice,PropOrb_V, ...
 PropOrb_Rho,Emissivity,Tw_F,TMaxF);

%Average wall heat flux (non-dimensional)
Qw = HeatModel.Qw;
Qw_Max = max(Qw); %Maximum value

%Average stagnation heat flux (non-dimensional)
Qs = HeatModel.Qs;
Qs_Max = max(Qs); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Rao (2002)
Qdot = HeatModel.Qdot;
Qdot_Max = max(Qdot); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Havey (1982)
QHavey = HeatModel.QHavey;
QHavey_Max = max(QHavey);

%Stagnation heat flux (kW/m^2); Source: Galman (1961)
QGalman = HeatModel.QGalman;
QGalman_Max = max(QGalman);

%%%
%% Determination of Total Skip Maneuver Delta-V
V_EndSkip = Skip_States(end,2); %Velocity where fpa = 0 (km/s)
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)

%Total delta-V for skip maneuver (km/s)
dV_SkipTotal = dV_Maneuver + dV_ReCirc;

%%%
%% Workspace Variable Definition
Trajectory_Analysis = [bank_Skip,Perigee_Altitude,h_Prop,TimeArrival, ...
 dV_Maneuver,dV_SkipTotal, ...
 -(min(PropOrb_Lat_deg)),MinDistance];

Inclination_Analysis = [rad2deg(PSI_Ref),Perigee_Altitude,h_Prop, ...
 dV_Maneuver,dV_SkipTotal,MaxIncl];

Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ...
 NormDecelG_Max,NormDecelG_Min, ...
 MagDecelG_Max, MagDecelG_Min];

HeatFlux_Analysis = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max];

Combined_Analysis = [HeatFlux_Analysis,Deceleration_Analysis];

www.manaraa.com

238

BankManeuvers_fxnDOE.m

function
[Trajectory_Analysis,MaxIncl,Deceleration_Analysis,HeatFlux_Analysis] = ...
 BankManeuvers_fxnDOE(Vehicle_Choice,Target_Choice,lon_Ref, ...
 PSI_Ref,bank_Skip,Factor_mass,Factor_S,Factor_Cd, ...
 Factor_Cl,Factor_Perig,Factor_InitAlt)

global MU RE
global Lat_Denver Lon_Denver Lat_Gibraltar Lon_Gibraltar
global Lat_Glasgow Lon_Glasgow Lat_Grozny Lon_Grozny
global Lat_Moscow Lon_Moscow Lat_Ponti Lon_Ponti
global Lat_Pyong Lon_Pyong Lat_Reyk Lon_Reyk
global Lat_Tehran Lon_Tehran Lat_Tokyo Lon_Tokyo
global Lat_Brasil Lon_Brasil Lat_Buenos Lon_Buenos
global Lat_Canberra Lon_Canberra Lat_Cape Lon_Cape

WGS84Constants; %Loads global constants from external m-file
GroundTargets; %Loads ground target geographical coordinates (deg)

%%%
%% Target Selection and Targeting Loop Initialization
LatJump_Change = 1; LonThreshold = 35; LatThreshold = 35;

if Target_Choice == 1 %Denver, United States
 Lat_Target = Lat_Denver; Lon_Target = Lon_Denver; dLat = 3;
elseif Target_Choice == 2 %Gibraltar, United Kingdom
 Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5;
elseif Target_Choice == 3 %Glasgow, Scotland
 Lat_Target = Lat_Glasgow; Lon_Target = Lon_Glasgow; dLat = 3;
elseif Target_Choice == 4 %Grozny, Chechnya
 Lat_Target = Lat_Grozny; Lon_Target = Lon_Grozny; dLat = 3;
elseif Target_Choice == 5 %Moscow, Russia
 Lat_Target = Lat_Moscow; Lon_Target = Lon_Moscow; dLat = 3;
elseif Target_Choice == 6 %Pontianak, Indonesia
 Lat_Target = Lat_Ponti; Lon_Target = Lon_Ponti; dLat = 7;
elseif Target_Choice == 7 %Pyongyang, North Korea
 Lat_Target = Lat_Pyong; Lon_Target = Lon_Pyong; dLat = 5;
elseif Target_Choice == 8 %Reykjavik, Iceland
 Lat_Target = Lat_Reyk; Lon_Target = Lon_Reyk; dLat = 3;
elseif Target_Choice == 9 %Tehran, Iran
 Lat_Target = Lat_Tehran; Lon_Target = Lon_Tehran; dLat = 5;
elseif Target_Choice == 10 %Tokyo, Japan
 Lat_Target = Lat_Tokyo; Lon_Target = Lon_Tokyo; dLat = 4;
elseif Target_Choice == 11 %Brasilia, Brazil
 Lat_Target = Lat_Brasil; Lon_Target = Lon_Brasil; dLat = 4;
elseif Target_Choice == 12 %Buenos Aires, Argentina
 Lat_Target = Lat_Buenos; Lon_Target = Lon_Buenos; dLat = 4;
elseif Target_Choice == 13 %Canberra, Australia
 Lat_Target = Lat_Canberra; Lon_Target = Lon_Canberra; dLat = 4;
elseif Target_Choice == 14 %Cape Town, South Africa
 Lat_Target = Lat_Cape; Lon_Target = Lon_Cape; dLat = 4;
end

www.manaraa.com

239

%%%
%% Vehicle Model
if Vehicle_Choice == 99 %VEHICLE SELECTION OVERRIDE
 mass = Factor_mass; %Mass (kg)
 S_m2 = Factor_S; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Factor_Cd; %Drag coefficient
 Cl = Factor_Cl; %Lift coefficient
else
 [Vehicle] = VehicleSpecs(Vehicle_Choice);
 mass = Vehicle.mass; %Mass (kg)
 S_m2 = Vehicle.S_m2; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Vehicle.Cd; %Drag coefficient
 Cl = Vehicle.Cl; %Lift coefficient
end

%%%
%% Initial Reference Orbit Conditions
Time_Max = 1.0; %Maximum simulation time (days)
ecc_Ref = 0; %Orbit eccentricity
h_Perig = Factor_Perig; %Perigee altitude (km)
h_Apog = Factor_InitAlt; %Apogee altitude (km)
lat_Ref = 0; %Initial geodetic latitude (deg)
fpa_Ref = 0; %Flight-path angle (deg)
bank_Ref = 0; %Reference orbit bank angle (deg)

%Converts and overwrites initial angle variables
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref);
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);

%Reference orbit parameters
r_Apog = h_Apog + RE; %Apogee radial position (km)
r_Perig = h_Perig + RE; %Perigee radial position (km)
SMA_Ref = 0.5*(r_Apog + r_Apog); %Reference orbit semi-major axis (km)
SMA_Skip = 0.5*(r_Apog + r_Perig); %Skip orbit semi-major axis (km)
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Apog,lat_Ref, ...
 fpa_Ref,PSI_Ref,bank_Ref);

%Apogee velocity for non-rotating frame (km/s)
V_Apog = sqrt((2*MU*r_Perig)/(r_Apog*(r_Apog + r_Perig)));

%Conversion of time units from days to seconds
Time_Max = Time_Max*(24)*(60)*(60);

SMA_Target0 = SMA_Ref; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check0(1,1) = V_Rel; %Initial guess for velocity (km/s)
PSI_Check0(1,1) = PSI_Ref; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

www.manaraa.com

240

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_t0,Traj_States0] = Maneuver_MainFunctionDOE(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1), ...
 bank_Ref,Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1));

%Semi-major axis (km)
SMA_Check0(1,1) = 0.5*(r_Apog + r_Check0(1,1));

%Iteration error (s)
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ...
 ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));
%Updated velocity (km/s)
V_Check0(2,1) = (V_Check0(1,1) - V_Decrement) - ...
 ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1));

%Updated heading angle (rad)
PSI_Check0(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1));
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));

IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ...
 abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_t0,Traj_States0] = Maneuver_MainFunctionDOE(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Apog,V_Check0(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1), ...
 bank_Ref,Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

 [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check0(ii,1) = 0.5*(r_Apog + r_Check0(ii,1));

 %Iteration error (sec)
 GuessError0(ii,1) = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ...
 (V_Check0(ii,1) - V_Check0(ii-1,1)));

 %Updated velocity (km/s)
 V_Check0(ii+1,1) = V_Check0(ii,1) - ...
 ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1));

www.manaraa.com

241

 %Updated heading angle (rad)
 PSI_Check0(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1));
 IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ...
 PSI_Check0(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Rel0 = V_Check0(ii); %Velocity (km/s)
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad)

%Trajectory simulation for reference orbit
[RefOrb_t,RefOrb_States] = Maneuver_MainFunctionDOE(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_Apog,V_Rel0,lon_Ref, ...
 lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref, ...
 Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

%%%
%% Data Manipulation for Reference Orbit
r_Data = RefOrb_States(:,1); %Radial position (km)
h_Data = r_Data - RE; %Altitude (km)
Lon_Data = RefOrb_States(:,3); %Longitude (rad)
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad)

%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180)
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180;

%Converts geodetic latitude from radians to degrees
Lat_Data = rad2deg(Lat_Data);

%%%
%% Determination of Descent Velocity
IterMax = 20; %Maximum number of iterations
SMA0 = SMA_Ref; %Initial guess for semi-major axis (km)
SMA_Target = SMA_Skip; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check(1,1) = .95*V_Apog; %Initial guess for descent velocity (km/s)
%Set 'V_Check' coeff. to 0.98 for over-flights; 0.96 for max. inclination
PSI_Check(1,1) = PSI_Ref; %Initial guess for heading angle (rad)

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[t_vec,traj_states] = Maneuver_MainFunctionDOE(Vehicle_Choice,1,2,1,1,1, ...
 0.5*RefPeriod,r_Apog,V_Check(1,1),lon_Ref, ...
 lat_Ref,fpa_Ref,PSI_Check(1,1),bank_Skip, ...
 Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

www.manaraa.com

242

%Perigee radial position (km)
[r_Check(1,1),Perig_Index] = min(traj_states(:,1));

%Semi-major axis (km)
SMA_Check(1,1) = 0.5*(r_Apog + r_Check(1,1));

%Iteration error (s)
GuessError(1,1) = -((SMA_Check(1,1) - SMA0)/ ...
 ((V_Check(1,1) - V_Decrement) - V_Check(1,1)));

%Updated velocity (km/s)
V_Check(2,1) = (V_Check(1,1) - V_Decrement) - ...
 ((SMA_Target - SMA_Check(1,1))/GuessError(1,1));

%Updated heading angle (rad)
PSI_Check(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA(1,1) = abs(SMA_Target - SMA_Check(1,1));
IterativeDiff_PSI(1,1) = abs(PSI_Check(2,1) - PSI_Check(1,1));

IterCount = 1; %Initialization of iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target - SMA_Check(ii-1,1)) > 1E-6 && ...
 abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)) > 1E-8 && ...
 IterCount < IterMax

 %Trajectory simulation [0:t:HalfPeriod]
 [t_vec,traj_states] = Maneuver_MainFunctionDOE(Vehicle_Choice, ...
 1,2,1,1,1,0.5*RefPeriod,r_Apog, ...
 V_Check(ii,1),lon_Ref,lat_Ref,fpa_Ref, ...
 PSI_Check(ii,1),bank_Skip,Factor_mass, ...
 Factor_S,Factor_Cd,Factor_Cl);

 if traj_states(end,2) < 1
 traj_states(:,:) = 0;
 %Limits time vector length to length of traj. parameter matrix
 t_vec = zeros(length(traj_states(:,1)),1);
 break
 end

 %Current iteration perigee radial position (km)
 [r_Check(ii,1),Perig_Index] = min(traj_states(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check(ii,1) = 0.5*(r_Apog + r_Check(ii,1));

 %Iteration error (sec)
 GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ...
 (V_Check(ii,1) - V_Check(ii-1,1)));

www.manaraa.com

243

 %Updated velocity (km/s)
 V_Check(ii+1,1) = V_Check(ii,1) - ...
 ((SMA_Target - SMA_Check(ii,1))/GuessError(ii,1));

 %Updated heading angle (rad)
 PSI_Check(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Apog)*sin(PSI_Ref))/(86400*V_Check(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA(ii,1) = abs(SMA_Target - SMA_Check(ii,1));
 IterativeDiff_PSI(ii,1) = abs(PSI_Check(ii,1) - PSI_Check(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Maneuver = V_Check(ii,1); %Descent velocity for target SMA
dV_Maneuver = abs(V_Maneuver - V_Rel); %Maneuver delta-V (km/s)
PSI_Rel = rad2deg(PSI_Check(ii,1)); %Relative heading angle (deg)

if traj_states(end,1) == 0
 Skip_t = 0;
 Skip_States = zeros(1,8);
 Perigee_Altitude = 0;

else
%Trajectory simulation for skip maneuver
[Skip_t,Skip_States] = SingleSkip_ManeuverDOE(Vehicle_Choice,1,2,1,1,1, ...
 RefPeriod,r_Apog,V_Maneuver,lon_Ref, ...
 lat_Ref,fpa_Ref,deg2rad(PSI_Rel),bank_Skip, ...
 Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

Perigee_Altitude = min(Skip_States(:,1)) - RE;
end

%%%
if Perigee_Altitude > 50
%%%
%% Propagation of Re-Circularized Orbit
Time_Max = 7200; %Maximum simulation time (s)
ecc = 0; %Orbit eccentricity
r_Prop = Skip_States(end,1); %Orbit radial position (km)
h_Prop = r_Prop - RE; %Orbit altitude (km)
lon_Prop = Skip_States(end,3); %Initial longitude (rad)
lat_Prop = Skip_States(end,4); %Initial geodetic latitude (rad)
fpa_Prop = 0; %Flight-path angle (rad)
PSI_Prop = -(min(Skip_States(:,4))); %Heading angle (rad)
bank_Prop = bank_Skip; %Bank angle (deg)

%Re-circularized orbit parameters
SMA_Prop = 0.5*(r_Prop + r_Prop); %Semi-major axis (km)
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec)

www.manaraa.com

244

%Velocity relative to rotating frame (rotating planet)
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ...
 fpa_Prop,PSI_Prop,bank_Prop);

SMA_TargetProp = SMA_Prop;
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_CheckP(1,1) = V_RelProp; %Initial guess for velocity (km/s)
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations
%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_tP,Traj_StatesP] = Maneuver_MainFunctionDOE(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop, ...
 V_CheckP(1,1),lon_Prop,lat_Prop, ...
 fpa_Prop,PSI_CheckP(1,1),bank_Prop, ...
 Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

[r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1));

%Semi-major axis (km)
SMA_CheckP(1,1) = 0.5*(r_Prop + r_CheckP(1,1));

%Iteration error (s)
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ...
 ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1)));

%Updated velocity (km/s)
V_CheckP(2,1) = (V_CheckP(1,1) - V_Decrement) - ...
 ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1));

%Updated heading angle (rad)
PSI_CheckP(2,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp - SMA_CheckP(1,1));
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1));

IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_TargetProp - SMA_CheckP(ii-1,1)) > 1E-10 && ...
 abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ...
 IterCount < IterMax

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_tP,Traj_StatesP] = Maneuver_MainFunctionDOE(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop, ...
 V_CheckP(ii,1),lon_Prop,lat_Prop, ...
 fpa_Prop,PSI_CheckP(ii,1),bank_Prop, ...
 Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

www.manaraa.com

245

 [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1));

 %Current iteration semi-major axis (km)
 SMA_CheckP(ii,1) = 0.5*(r_Prop + r_CheckP(ii,1));

 %Iteration error (sec)
 GuessErrorP(ii,1) = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ...
 (V_CheckP(ii,1) - V_CheckP(ii-1,1)));

 %Updated velocity (km/s)
 V_CheckP(ii+1,1) = V_CheckP(ii,1) - ...
 ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1));

 %Updated heading angle (rad)
 PSI_CheckP(ii+1,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp - ...
 SMA_CheckP(ii,1));
 IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ...
 PSI_CheckP(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

%Trajectory simulation for re-circularized orbit
[Orbit_t,Orbit_States] = Maneuver_MainFunctionDOE(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_Prop,V_CheckP(ii), ...
 lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii), ...
 bank_Prop,Factor_mass,Factor_S,Factor_Cd,Factor_Cl);

%Re-defined propagated orbit states
PropOrb_t = [Skip_t ; Skip_t(end) + Orbit_t(2:end)];
PropOrb_States = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)];
PropOrb_h = PropOrb_States(:,1) - RE; %Altitude (km)
PropOrb_V = PropOrb_States(:,2); %Velocity (km/s)
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ...
 + 180),360) - 180; %Longitude (rad)
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad)

%Maximum inclination (deg)
[MaxIncl,MaxIndex] = max(PropOrb_Lat_deg);

%Time-of-flight to reach maximum inclination (hr)
TimeMaxIncl = PropOrb_t(MaxIndex)*(1/60)*(1/60);

www.manaraa.com

246

%%%
%% Deceleration
%Vehicle model
if Vehicle_Choice < 99
 [Vehicle] = VehicleSpecs(Vehicle_Choice);

 mass = Vehicle.mass; %Mass (kg)
 S_m2 = Vehicle.S_m2; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Vehicle.Cd; %Drag coefficient
 Cl = Vehicle.Cl; %Lift coefficient
elseif Vehicle_Choice == 99
 mass = Factor_mass; %Mass (kg)
 S_m2 = Factor_S; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Factor_Cd; %Drag coefficient
 Cl = Factor_Cl; %Lift coefficient
end

[decel] = EntryDecel(1,mass,S,Cd,Cl, ...
 PropOrb_States(:,1),PropOrb_States(:,2), ...
 PropOrb_States(:,4),PropOrb_States(:,5));

%Tangential deceleration (g's)
TangDecelG_Max = max(decel.TangG); %Maximum value
TangDecelG_Min = min(decel.TangG); %Minimum value
%Normal deceleration (g's)
NormDecelG_Max = max(decel.NormalG); %Maximum value
NormDecelG_Min = min(decel.NormalG); %Minimum value
%Deceleration magnitude (g's)
MagDecelG_Max = max(decel.Gs); %Maximum value
MagDecelG_Min = min(decel.Gs); %Minimum value

%%%
%% Heat Flux
%Atmospheric density (kg/km^3)
[PropOrb_Rho] = AtmosModel_PostAnalysis(PropOrb_h,2);

%Maximum velocity (km/s) -- Occurs at Perigee
VMax = max(PropOrb_V);
Emissivity = 0.8; %Emissivity
Tw_F = 0; %Wall temperature (deg F)
TMaxF = 1800; %Free-stream temperature (deg F)

%Heat transfer models
[HeatModel,Eta,T_KE] = HeatFluxModel(PropOrb_V,PropOrb_Rho,Emissivity, ...
 Tw_F,TMaxF,mass,S,Cd,Cl);

%Average wall heat flux (non-dimensional)
Qw = HeatModel.Qw;
Qw_Max = max(Qw); %Maximum value
%Average stagnation heat flux (non-dimensional)
Qs = HeatModel.Qs;
Qs_Max = max(Qs); %Maximum value

www.manaraa.com

247

%Stagnation heat flux (kW/m^2); Source: Rao (2002)
Qdot = HeatModel.Qdot;
Qdot_Max = max(Qdot); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Havey (1982)
QHavey = HeatModel.QHavey;
QHavey_Max = max(QHavey);

%Stagnation heat flux (kW/m^2); Source: Galman (1961)
QGalman = HeatModel.QGalman;
QGalman_Max = max(QGalman);

%%%
%% Determination of Total Skip Maneuver Delta-V
V_EndSkip = Skip_States(end,2); %Velocity where fpa = 0 (km/s)
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)

%Total delta-V for skip maneuver (km/s)
dV_SkipTotal = dV_Maneuver + dV_ReCirc;

%%%
%% Workspace Variable Definition
%Dimension (7x1)
Trajectory_Analysis = [bank_Skip,Perigee_Altitude,h_Prop,PropOrb_h(end), ...
 TimeMaxIncl,dV_Maneuver,dV_SkipTotal];
%Dimension (5x1)
Inclinaton_Analysis = [rad2deg(PSI_Ref),Perigee_Altitude,h_Prop, ...
 dV_Maneuver,dV_SkipTotal,MaxIncl];
%Dimension (6x1)
Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ...
 NormDecelG_Max,NormDecelG_Min, ...
 MagDecelG_Max, MagDecelG_Min];
%Dimension (5x1)
HeatFlux_Analysis = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max];

%Dimension (11x1)
Combined_Analysis = [Deceleration_Analysis,HeatFlux_Analysis];

%%%
elseif Perigee_Altitude <= 50
%Dimension (7x1)
Trajectory_Analysis = zeros(7,1);
%Dimension (5x1)
Inclinaton_Analysis = zeros(5,1);
%Dimension (1x1)
MaxIncl = zeros(1,1);
%Dimension (6x1)
Deceleration_Analysis = zeros(6,1);
%Dimension (5x1)
HeatFlux_Analysis = zeros(5,1);
%Dimension (11x1)
Combined_Analysis = zeros(11,1);
end

www.manaraa.com

248

BankManeuvers_fxnDOE_Hohmann.m

function
[Skip_t,Skip_States,Trajectory_States,RefOrb_States,Trajectory_Analysis] =...
 BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max,h_init, ...
 PSI_Ref,fpa_Descent,dV_Boost,bank_Skip)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Vehicle Model
if Vehicle_Choice == 9 %VEHICLE SELECTION OVERRIDE
 mass = 2000; %Mass (kg)
 S_m2 = 18.5; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = 0.5; %Drag coefficient
 Cl = 3.0; %Lift coefficient
else
 [Vehicle] = VehicleSpecs(Vehicle_Choice);
 mass = Vehicle.mass; %Mass (kg)
 S_m2 = Vehicle.S_m2; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Vehicle.Cd; %Drag coefficient
 Cl = Vehicle.Cl; %Lift coefficient
end

%%%
%% Initial Reference Orbit Conditions
h_atm = 120; %Altitude of upper limit of sensible atmosphere (km)
lon_Ref = 0; %Initial longitude (deg)
lat_Ref = 0; %Initial geodetic latitude (deg)
fpa_Ref = 0; %Flight-path angle (deg)
bank_Ref = 0; %Reference orbit bank angle (deg)

%Converts and overwrites initial angle variables
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref);
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);
fpa_Descent = deg2rad(fpa_Descent);

%Reference orbit parameters
r_init = h_init + RE; %Initial radial position (km)
SMA_Ref = 0.5*(r_init + r_init); %Reference orbit semi-major axis (km)
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_init,lat_Ref, ...
 fpa_Ref,PSI_Ref,bank_Ref);

%Conversion of time units from minutes to seconds
Time_Max = Time_Max*(60);
SMA_Target0 = SMA_Ref; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)

www.manaraa.com

249

V_Check0(1,1) = V_Rel; %Initial guess for velocity (km/s)
PSI_Check0(1,1) = PSI_Ref; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref);

[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1));

%Semi-major axis (km)
SMA_Check0(1,1) = 0.5*(r_init + r_Check0(1,1));

%Iteration error (s)
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ...
 ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));

%Updated velocity (km/s)
V_Check0(2,1) = (V_Check0(1,1) - V_Decrement) - ...
 ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1));

%Updated heading angle (rad)
PSI_Check0(2,1) = PSI_Ref + ...
 asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1));
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));

IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ...
 abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref);

 [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check0(ii,1) = 0.5*(r_init + r_Check0(ii,1));

 %Iteration error (sec)
 GuessError0(ii,1) = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ...
 (V_Check0(ii,1) - V_Check0(ii-1,1)));

www.manaraa.com

250

 %Updated velocity (km/s)
 V_Check0(ii+1,1) = V_Check0(ii,1) - ...
 ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1));

 %Updated heading angle (rad)
 PSI_Check0(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1));
 IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ...
 PSI_Check0(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Rel0 = V_Check0(ii); %Velocity (km/s)
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad)

%Trajectory simulation for reference orbit
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_init,V_Rel0, ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref);

%%%
%% Skip Entry Manuever
%Relative states descent-boost maneuver
[V_RelBoost,fpa_RelBoost,PSI_RelBoost] = ...
 RelativeStates_Entry(h_init,dV_Boost,lon_Ref, ...
 lat_Ref,fpa_Descent,PSI_Ref);

%Trajectory simulation for skip maneuvers
[Skip_t,Skip_States] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ...
 Time_Max,r_init,V_RelBoost,lon_Ref, ...
 lat_Ref,fpa_RelBoost,PSI_RelBoost,bank_Skip);

%Skip entry trajectory states
SkipTraj_h = (Skip_States(:,1)) - RE; %Altitude (km)
SkipTraj_V = Skip_States(:,2); %Velocity (km/s)

%Re-Circularized velocity relative to rotating frame (rotating planet)
[V_RelProp,PSI_RelProp] = ...
 RelativeStates(mass,S,Cd,Cl,SkipTraj_h(end),Skip_States(end,3), ...
 Skip_States(end,5),Skip_States(end,6),bank_Skip);

%%%
%% Deceleration
[decel] = EntryDecel(1,mass,S,Cd,Cl,Skip_States(:,1),Skip_States(:,2),...
 Skip_States(:,4),Skip_States(:,5));

www.manaraa.com

251

%Tangential deceleration (g's)
TangDecelG_Max = max(decel.TangG); %Maximum value
TangDecelG_Min = min(decel.TangG); %Minimum value

%Normal deceleration (g's)
NormDecelG_Max = max(decel.NormalG); %Maximum value
NormDecelG_Min = min(decel.NormalG); %Minimum value

%Deceleration magnitude (g's)
MagDecelG_Max = max(decel.Gs); %Maximum value
MagDecelG_Min = min(decel.Gs); %Minimum value

%%%
%% Heat Flux
%Atmospheric density (kg/km^3)
[SkipTraj_Rho] = AtmosModel_PostAnalysis(SkipTraj_h,2);

%Maximum velocity (km/s) -- Occurs at Perigee
VMax = max(SkipTraj_V);
Emissivity = 0.8; %Emissivity
Tw_F = 0; %Wall temperature (deg F)
TMaxF = 1800; %Free-stream temperature (deg F)

%Heat transfer models
[HeatModel,Eta,T_KE] = HeatFluxModel(SkipTraj_V,SkipTraj_Rho,Emissivity, ...
 Tw_F,TMaxF,mass,S,Cd,Cl);

%Average wall heat flux (non-dimensional)
Qw = HeatModel.Qw;
Qw_Max = max(Qw); %Maximum value

%Average stagnation heat flux (non-dimensional)
Qs = HeatModel.Qs;
Qs_Max = max(Qs); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Rao (2002)
Qdot = HeatModel.Qdot;
Qdot_Max = max(Qdot); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Havey (1982)
QHavey = HeatModel.QHavey;
QHavey_Max = max(QHavey);

%Stagnation heat flux (kW/m^2); Source: Galman (1961)
QGalman = HeatModel.QGalman;
QGalman_Max = max(QGalman);

%%%
%% Determination of Descent-Boost Delta-V
%Descent delta-V to alter flight-path angle (km/s)
[dV_Descent] = DescentDeltaV(h_init,h_atm,rad2deg(fpa_Descent));
dV_ReCirc = abs(Skip_States(end,2) - V_RelProp);

www.manaraa.com

252

%Descent-boost delta-V (km/s)
dV_DB = dV_Descent + dV_Boost + dV_ReCirc;

%%%
%% Workspace Variable Definition
Trajectory_Analysis = [rad2deg(fpa_Descent),dV_Descent,dV_DB];

Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ...
 NormDecelG_Max,NormDecelG_Min, ...
 MagDecelG_Max, MagDecelG_Min];

HeatFlux_Analysis = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max];

Trajectory_States = [Skip_t,Skip_States];

BankManeuvers_MultiAOT.m

function
[Skip_t,Skip_States,Trajectory_States,RefOrb_States,Trajectory_Analysis] = ...
 BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max,h_init, ...
 PSI_Ref,fpa_Descent,dV_Boost,bank_Skip)

global MU RE
WGS84Constants; %Loads global constants from external m-file

%%%
%% Vehicle Model
if Vehicle_Choice == 9 %VEHICLE SELECTION OVERRIDE
 mass = 2000; %Mass (kg)
 S_m2 = 18.5; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = 0.5; %Drag coefficient
 Cl = 3.0; %Lift coefficient
else
 [Vehicle] = VehicleSpecs(Vehicle_Choice);
 mass = Vehicle.mass; %Mass (kg)

 S_m2 = Vehicle.S_m2; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Vehicle.Cd; %Drag coefficient
 Cl = Vehicle.Cl; %Lift coefficient
end

%%%
%% Initial Reference Orbit Conditions
h_atm = 120; %Altitude of upper limit of sensible atmosphere (km)
lon_Ref = 0; %Initial longitude (deg)
lat_Ref = 0; %Initial geodetic latitude (deg)
fpa_Ref = 0; %Flight-path angle (deg)
bank_Ref = 0; %Reference orbit bank angle (deg)

www.manaraa.com

253

%Converts and overwrites initial angle variables
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref);
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);
fpa_Descent = deg2rad(fpa_Descent);

%Reference orbit parameters
r_init = h_init + RE; %Initial radial position (km)
SMA_Ref = 0.5*(r_init + r_init); %Reference orbit semi-major axis (km)
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_init,lat_Ref, ...
 fpa_Ref,PSI_Ref,bank_Ref);

%Conversion of time units from minutes to seconds
Time_Max = Time_Max*(60);

SMA_Target0 = SMA_Ref; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check0(1,1) = V_Rel; %Initial guess for velocity (km/s)
PSI_Check0(1,1) = PSI_Ref; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank_Ref);

[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1));

%Semi-major axis (km)
SMA_Check0(1,1) = 0.5*(r_init + r_Check0(1,1));

%Iteration error (s)
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ...
 ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));

%Updated velocity (km/s)
V_Check0(2,1) = (V_Check0(1,1) - V_Decrement) - ...
 ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1));

%Updated heading angle (rad)
PSI_Check0(2,1) = PSI_Ref + ...
 asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1));
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));
IterCount = 1; %Initializes iteration counter for Secant loop

www.manaraa.com

254

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ...
 abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_t0,Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_init,V_Check0(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank_Ref);

 [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check0(ii,1) = 0.5*(r_init + r_Check0(ii,1));

 %Iteration error (sec)
 GuessError0(ii,1) = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ...
 (V_Check0(ii,1) - V_Check0(ii-1,1)));

 %Updated velocity (km/s)
 V_Check0(ii+1,1) = V_Check0(ii,1) - ...
 ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1));

 %Updated heading angle (rad)
 PSI_Check0(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_init)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1));
 IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ...
 PSI_Check0(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Rel0 = V_Check0(ii); %Velocity (km/s)
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad)

%Trajectory simulation for reference orbit
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_init,V_Rel0, ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank_Ref);

%%%
%% Skip Entry Manuever
%Relative states descent-boost maneuver
[V_RelBoost,fpa_RelBoost,PSI_RelBoost] = ...
 RelativeStates_Entry(h_init,dV_Boost,lon_Ref, ...
 lat_Ref,fpa_Descent,PSI_Ref);

www.manaraa.com

255

%Trajectory simulation for skip maneuvers
[Skip_t,Skip_States] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ...
 Time_Max,r_init,V_RelBoost,lon_Ref, ...
 lat_Ref,fpa_RelBoost,PSI_RelBoost,bank_Skip);

%Skip entry trajectory states
SkipTraj_h = (Skip_States(:,1)) - RE; %Altitude (km)
SkipTraj_V = Skip_States(:,2); %Velocity (km/s)

%Re-Circularized velocity relative to rotating frame (rotating planet)
[V_RelProp,PSI_RelProp] =
RelativeStates(mass,S,Cd,Cl,SkipTraj_h(end),Skip_States(end,3), ...
 Skip_States(end,5),Skip_States(end,6),bank_Skip);

%%%
%% Deceleration
[decel] = EntryDecel(1,mass,S,Cd,Cl, ...
 Skip_States(:,1),Skip_States(:,2), ...
 Skip_States(:,4),Skip_States(:,5));

%Tangential deceleration (g's)
TangDecelG_Max = max(decel.TangG); %Maximum value
TangDecelG_Min = min(decel.TangG); %Minimum value

%Normal deceleration (g's)
NormDecelG_Max = max(decel.NormalG); %Maximum value
NormDecelG_Min = min(decel.NormalG); %Minimum value

%Deceleration magnitude (g's)
MagDecelG_Max = max(decel.Gs); %Maximum value
MagDecelG_Min = min(decel.Gs); %Minimum value

%%%
%% Heat Flux
%Atmospheric density (kg/km^3)
[SkipTraj_Rho] = AtmosModel_PostAnalysis(SkipTraj_h,2);

%Maximum velocity (km/s) -- Occurs at Perigee
VMax = max(SkipTraj_V);

Emissivity = 0.8; %Emissivity
Tw_F = 0; %Wall temperature (deg F)
TMaxF = 1800; %Free-stream temperature (deg F)

%Heat transfer models
[HeatModel,Eta,T_KE] = HeatFluxModel(SkipTraj_V,SkipTraj_Rho,Emissivity, ...
 Tw_F,TMaxF,mass,S,Cd,Cl);

%Average wall heat flux (non-dimensional)
Qw = HeatModel.Qw;
Qw_Max = max(Qw); %Maximum value

www.manaraa.com

256

%Average stagnation heat flux (non-dimensional)
Qs = HeatModel.Qs;
Qs_Max = max(Qs); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Rao (2002)
Qdot = HeatModel.Qdot;
Qdot_Max = max(Qdot); %Maximum value

%Stagnation heat flux (kW/m^2); Source: Havey (1982)
QHavey = HeatModel.QHavey;
QHavey_Max = max(QHavey);

%Stagnation heat flux (kW/m^2); Source: Galman (1961)
QGalman = HeatModel.QGalman;
QGalman_Max = max(QGalman);

%%%
%% Determination of Descent-Boost Delta-V
%Descent delta-V to alter flight-path angle (km/s)
[dV_Descent] = DescentDeltaV(h_init,h_atm,rad2deg(fpa_Descent));

dV_ReCirc = abs(Skip_States(end,2) - V_RelProp);

%Descent-boost delta-V (km/s)
dV_DB = dV_Descent + dV_Boost + dV_ReCirc;

%%%
%% Workspace Variable Definition
Trajectory_Analysis = [rad2deg(fpa_Descent),dV_Descent,dV_DB];

Deceleration_Analysis = [TangDecelG_Max,TangDecelG_Min, ...
 NormDecelG_Max,NormDecelG_Min, ...
 MagDecelG_Max, MagDecelG_Min];

HeatFlux_Analysis = [Qw_Max,Qs_Max,Qdot_Max,QHavey_Max,QGalman_Max];

Trajectory_States = [Skip_t,Skip_States];

www.manaraa.com

257

BiElliptic.m

function [dV_BiElliptic,TOF,TOF1] = BiElliptic(h_Init,h_b,h_Final)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Calculation of Transfer Orbit Parameters
r_Init = h_Init + RE; %Initial orbit radius (km)
r_b = h_b + RE; %Intermediate orbit radius (km)
r_Final = h_Final + RE; %Final orbit radius (km)

%Transfer orbit semi-major axes (km)
sma_trans1 = 0.5.*(r_Init + r_b);
sma_trans2 = 0.5.*(r_b + r_Final);

%%%
%% Velocity Parameters for Initial Orbit/Transfer Orbit #1
V_Init = sqrt(MU./r_Init);
Vt1a = sqrt(((2*MU)./r_Init)-(MU/sma_trans1));
dV_a = Vt1a - V_Init;

%%%
%% Velocity Parameters for Transfer Orbits #1,2 Transition
Vt1b = sqrt(((2*MU)./r_b)-(MU/sma_trans1));
Vt2b = sqrt(((2*MU)./r_b)-(MU/sma_trans2));
dV_b = Vt2b - Vt1b;

%%%
%% Velocity Parameters for Transfer Orbit #2/Final Orbit
Vt2c = sqrt(((2*MU)./r_Final)-(MU/sma_trans2));
V_Final = sqrt(MU./r_Final);
dV_c = V_Final - Vt2c;

%%%
%% Time-of-Flight and Total Delta-V Required for Bi-Elliptic Transfer
TOF1 = (pi*sqrt((sma_trans1.^3)./MU));
TOF = (pi*sqrt((sma_trans1.^3)./MU)) + (pi*sqrt((sma_trans2.^3)./MU));
dV_BiElliptic = abs(dV_a) + abs(dV_b) + abs(dV_c); %(km/s)

www.manaraa.com

258

BiElliptic_VelInput.m

function [dV_BiElliptic,TOF,TOF1] = ...
 BiElliptic_VelInput(h_Init,h_b,h_Final,V_Final)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Calculation of Transfer Orbit Parameters
r_Init = h_Init + RE; %Initial orbit radius (km)
r_b = h_b + RE; %Intermediate orbit radius (km)
r_Final = h_Final + RE; %Final orbit radius (km)

%Transfer orbit semi-major axes (km)
sma_trans1 = 0.5.*(r_Init + r_b);
sma_trans2 = 0.5.*(r_b + r_Final);

%%%
%% Velocity Parameters for Initial Orbit/Transfer Orbit #1
V_Init = sqrt(MU./r_Init);
Vt1a = sqrt(((2*MU)./r_Init)-(MU/sma_trans1));
dV_a = Vt1a - V_Init;

%%%
%% Velocity Parameters for Transfer Orbits #1,2 Transition
Vt1b = sqrt(((2*MU)./r_b)-(MU/sma_trans1));
Vt2b = sqrt(((2*MU)./r_b)-(MU/sma_trans2));
dV_b = Vt2b - Vt1b;

%%%
%% Velocity Parameters for Transfer Orbit #2/Final Orbit
Vt2c = sqrt(((2*MU)./r_Final)-(MU/sma_trans2));
dV_c = V_Final - Vt2c;

%%%
%% Time-of-Flight and Total Delta-V Required for Bi-Elliptic Transfer
TOF1 = (pi*sqrt((sma_trans1.^3)./MU));
TOF = (pi*sqrt((sma_trans1.^3)./MU)) + (pi*sqrt((sma_trans2.^3)./MU));
dV_BiElliptic = abs(dV_a) + abs(dV_b) + abs(dV_c); %(km/s)

www.manaraa.com

259

DescentBoost_Molniya.m

clear all; clc; close all;

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Maneuver Simulation
Vehicle_Choice = 1; %Vehicle selection
Map_Choice = 1; %Map plotting selection
h_Target = 502; %Target altitude (km)
h_Init = 1000; %Initial altitude (km)
AltThreshold = 150; %Altitude threshold for interpolation (km)
PSI_Init = 70; %Heading angle (deg)
fpa_Descent = -12.5; %Flight-path angle (deg)
dV_Boost = 0.5; %Boost delta-V (km/s)
bank_Skip = 0; %Bank angle (deg)
Time_Max = 720; %Maximum simulation time (min)

[Skip_t1,Skip_States,Traj_States,RefOrb_States,Traj_Analysis] ...
 = BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max, ...
 h_Init,PSI_Init,fpa_Descent,dV_Boost,bank_Skip);

Skip_t = Traj_States(:,1)./60; %Time (min)
Skip_h = Traj_States(:,2) - RE; %Altitude (km)
Skip_V = Traj_States(:,3); %Velocity (km/s)
Skip_lon = Traj_States(:,4); %Longitude (rad)
Skip_lat = Traj_States(:,5); %Latitude (rad)
Skip_fpa = Traj_States(:,6); %Flight-path angle (rad)
Skip_psi = Traj_States(:,7); %Heading angle (rad)

%%%
%% Vehicle Model
[Vehicle] = VehicleSpecs(Vehicle_Choice);
mass = Vehicle.mass; %Mass (kg)
S_m2 = Vehicle.S_m2; %Planform area (m^2)
S = S_m2/(1000^2); %Planform area (km^2)
Cd = Vehicle.Cd; %Drag coefficient
Cl = Vehicle.Cl; %Lift coefficient

%%%
%% Molniya Orbit Parameters
SMA_Molniya = 26562; %Molniya orbit semi-major axis (km)

%Perigee
h_perig = h_Target; %Altitude (km)
r_perig = h_perig + RE; %Radius (km)

%Apogee
r_apog = (2*SMA_Molniya) - r_perig; %Radius (km)
h_apog = r_apog - RE; %Altitude (km)

www.manaraa.com

260

%Molniya orbit eccentricity
ecc = Eccentricity(r_apog,r_perig);

%Orbit velocity
V_perig = OrbitVelocity(h_perig + RE,ecc,0); %Perigee
V_apog = OrbitVelocity(h_apog + RE,ecc,180); %Apogee

%%%
%% Determination of Trajectory Crossings of Target Altitude
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(Skip_h)
 mm = mm + 1;
 if abs(Skip_h(ii) - h_Target) < AltThreshold
 AltTGT_Crossing(mm,1) = Skip_h(ii);
 AltTGT_Crossing(mm,2) = Skip_t(ii);
 AltTGT_Crossing(mm,3) = Skip_V(ii);
 AltTGT_Crossing(mm,4) = Skip_lon(ii);
 AltTGT_Crossing(mm,5) = Skip_lat(ii);
 AltTGT_Crossing(mm,6) = Skip_fpa(ii);
 AltTGT_Crossing(mm,7) = Skip_psi(ii);
 else
 AltTGT_Crossing(mm,1:7) = 0;
 end
end

%%%
%% Determination of Indices Corresponding to Crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(AltTGT_Crossing)
 if AltTGT_Crossing(ii) ~= 0
 mm = mm + 1;
 FlagVector_Alt(mm,1) = ii;
 WithinIdent_Alt(mm,:) = AltTGT_Crossing(ii,:);
 end
end
FlagVector_Alt = [FlagVector_Alt;0];

%%%
%% Determination of Indices Corresponding to Jumps in Crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector_Alt)-1
 if abs((FlagVector_Alt(ii+1) - FlagVector_Alt(ii))) > 1
 mm = mm + 1;
 AltTGT_Jump(mm,1) = ii;
 end
end
AltTGT_Jump = [0;AltTGT_Jump];

%%%
%% Interpolation of Crossing Trajectories
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(AltTGT_Jump)
 mm = mm + 1;

www.manaraa.com

261

 AltTGT_Interp(mm,:) = ...
 interp1(AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ...
 FlagVector_Alt(AltTGT_Jump(ii)),1), ...
 AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ...
 FlagVector_Alt(AltTGT_Jump(ii)),2:7), ...
 h_Target,'spline'); %Cubic spline interpolation
end

%Removal of negative interpolated points
AltTGT_Interp(any(AltTGT_Interp(:,1)<0,2),:) = [];

AltTGT_Vector = h_Target.*ones(length(AltTGT_Interp(:,1)),1);
AltCrossings = [AltTGT_Interp(:,1),AltTGT_Vector,AltTGT_Interp(:,2:6)];

%Removal of extremely large interpolated points
AltCrossings(any(AltCrossings(:,1)>(5*Time_Max),2),:) = [];

%%%
%% Determination of Minimum Re-Circularization Delta-V
mm = 0; %Initializes loop index at zero
nn = 1; %Initializes vector concatenation counter at one

for mm = 1:length(AltCrossings(:,1))

%Re-Circularized velocity relative to rotating frame (rotating planet)
[V_Rel_ReCirc(nn,1),PSI_Rel_ReCirc(nn,2)] = RelativeStates(mass,S,Cd,Cl, ...
 h_Target,AltCrossings(mm,5),AltCrossings(mm,6), ...
 AltCrossings(mm,7),bank_Skip);

 mm = mm + 1; %Update to index counter
 nn = nn + 1; %Update to solution matrix concatenation counter
end

%Re-circularization delta-V (km/s)
dV_ReCirc_Vec = abs(AltCrossings(:,3) - V_perig);

%Concatenation of re-circ. delta-V vector with crossings solutions
AltCrossings_withdV = [AltCrossings,dV_ReCirc_Vec];

%Minimum re-circularization delta-V and related states
[Min_dV,Min_Flag] = min(AltCrossings_withdV(2:end,end));
Min_States = AltCrossings_withdV(Min_Flag+1,:);
%NOTE: 'Min' search starts with Row 2 so as to prevent orbit insertion
%occurring at the first crossing of the target altitude and thus ensuring
%at least one skip in atmosphere.

%Maneuver simulation constrained by elapsed time of minimum delta-V
[Skip_t_MOD,Skip_States_MOD,Traj_States_MOD,RefOrb_States_MOD, ...
 Traj_Analysis_MOD] = BankManeuvers_MultiAOT(Vehicle_Choice, ...
 Min_States(1,1),h_Init,PSI_Init, ...
 fpa_Descent,dV_Boost,bank_Skip);

www.manaraa.com

262

%%%
%% Propagation of Re-Circularized Orbit
Time_Prop = (Time_Max - Min_States(1,1))*60; %Maximum simulation time (s)
ecc = 0; %Orbit eccentricity
r_Prop = Skip_States_MOD(end,1); %Orbit radial position (km)
h_Prop = r_Prop - RE; %Orbit altitude (km)
lon_Prop = Skip_States_MOD(end,3); %Initial longitude (rad)
lat_Prop = Skip_States_MOD(end,4); %Initial latitude (rad)
fpa_Prop = 0; %Flight-path angle (rad)
bank_Prop = bank_Skip; %Bank angle (deg)

if bank_Skip ~= 0
 PSI_Prop = -(min(Skip_States_MOD(:,4))); %Heading angle (rad)
else
 PSI_Prop = ((Skip_States_MOD(end,6))); %Heading angle (rad)
end

%Re-circularized orbit parameters
SMA_Prop = 0.5*(r_Prop + r_Prop); %Semi-major axis (km)
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ...
 fpa_Prop,PSI_Prop,bank_Prop);

SMA_TargetProp = SMA_Prop;
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_CheckP(1,1) = V_RelProp; %Initial guess for velocity (km/s)
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop, ...
 V_CheckP(1,1),lon_Prop,lat_Prop, ...
 fpa_Prop,PSI_CheckP(1,1),bank_Prop);
 [r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1));

%Semi-major axis (km)
SMA_CheckP(1,1) = 0.5*(r_Prop + r_CheckP(1,1));

%Iteration error (s)
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ...
 ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1)));

%Updated velocity (km/s)
V_CheckP(2,1) = (V_CheckP(1,1) - V_Decrement) - ...
 ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1));

%Updated heading angle (rad)
PSI_CheckP(2,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1)));

www.manaraa.com

263

%Difference between calculated and target trajectory states
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp - SMA_CheckP(1,1));
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1));

IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_TargetProp - SMA_CheckP(ii-1,1)) > 1E-10 && ...
 abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ...
 IterCount < IterMax

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1), ...
 lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii,1),bank_Prop);

 [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1));

 %Current iteration semi-major axis (km)
 SMA_CheckP(ii,1) = 0.5*(r_Prop + r_CheckP(ii,1));

 %Iteration error (sec)
 GuessErrorP(ii,1) = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ...
 (V_CheckP(ii,1) - V_CheckP(ii-1,1)));

 %Updated velocity (km/s)
 V_CheckP(ii+1,1) = V_CheckP(ii,1) - ...
 ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1));

 %Updated heading angle (rad)
 PSI_CheckP(ii+1,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp - ...
 SMA_CheckP(ii,1));
 IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ...
 PSI_CheckP(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

%Trajectory simulation for re-circularized orbit
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Prop,r_Prop,V_CheckP(ii), ...

lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii),bank_Prop);

www.manaraa.com

264

%Re-defined propagated orbit states
PropOrb_t = [Skip_t_MOD ; Skip_t_MOD(end) + Orbit_t(2:end)];
PropOrb_States = [Skip_States_MOD(:,1:6) ; Orbit_States(2:end,1:6)];
PropOrb_h = PropOrb_States(:,1) - RE; %Altitude (km)
PropOrb_V = PropOrb_States(:,2); %Velocity (km/s)
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ...
 + 180),360) - 180; %Longitude (rad)
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad)

%Maximum inclination (deg)
MaxIncl = max(PropOrb_Lat_deg);

%Inclination change (deg)
dIncl = MaxIncl - PSI_Init;

%%%
%% Determination of Total Delta-V
dV_Descent = Traj_Analysis_MOD(2); %Descent delta-V (km/s)
dV_ReCirc = Min_dV; %Re-circularization delta-V (km/s)

%Total delta-V for descent-boost skip maneuver (km/s)
dV_Total = dV_Descent + dV_Boost + dV_ReCirc;

%Hohmann transfer delta-V (km/s)
[dV_Hohmann_perig,TOF_Hohmann_perig] =
Hohmann_VelInput(h_Init,h_perig,V_perig);
[dV_Hohmann_apog,TOF_Hohmann_apog] = Hohmann_VelInput(h_Init,h_apog, V_apog);

%Combined Hohmann transfer delta-V (km/s)
[dV_Combined_perig,TOF_Combined_perig] = ...
 Hohmann_Combined_VelInput(h_Init,h_perig,dIncl,V_perig);
[dV_Combined_apog, TOF_Combined_apog] = ...
 Hohmann_Combined_VelInput(h_Init,h_apog,dIncl,V_apog);

%%%
%% Maneuver Time-of-Flight
%Descent-boost maneuver
TOF_Skip = (Skip_t_MOD(end))/60;

%Hohmann transfer
TOF_Hohmann_perig = TOF_Hohmann_perig/60;
TOF_Hohmann_apog = TOF_Hohmann_apog/60;

%Combined Hohmann transfer
TOF_Combined_perig = TOF_Combined_perig/60;
TOF_Combined_apog = TOF_Combined_apog/60;

%%%
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg
%Reference orbit
[Lon_RefOrb, Lat_RefOrb, LonSplit_RefOrb, LatSplit_RefOrb] = ...
 CoordinateJump(RefOrb_States);

www.manaraa.com

265

%Propagated re-circularized orbit
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ...
 CoordinateJump(PropOrb_States);

%%%
%% Plotting Commands
%Conversion of time units for plotting
Skip_Time = Skip_t;
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2);

%%%
%% Geodetic Altitude (km) v. Time
subplot(2,2,1); box on; grid off;
hold on; plot(Skip_Time,Skip_States(:,1)-RE,'b');
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_Target,h_Target],'k-.');
hold on; plot(AltCrossings(:,1),AltCrossings(:,2),'go','LineWidth',2);
xlabel('Time, min');
ylabel('Geodetic Altitude, km');

h_atm = 120; %Altitude of upper limit of sensible atmosphere (km)
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');

legend('Descent-Boost Trajectory','Target Altitude','Altitude Crossings', ...
 'Upper Limit of Sensible Atmosphere','Location','NorthEast');

%%%
%% Geodetic Altitude (km) v. Time
subplot(2,2,2); box on; grid on;
hold on; plot(PropOrb_Time,PropOrb_h,'b');
xlabel('Time, min');
ylabel('Geodetic Altitude, km');

h_atm = 120; %Altitude of upper limit of sensible atmosphere (km)
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');

%%%
%% Total Delta-V (km/s) v. Maneuver Type
subplot(2,2,3); box on; grid off;
dV_Bar = [dV_Descent,dV_Boost,dV_ReCirc,dV_Total, ...
 dV_Hohmann_perig,dV_Hohmann_apog];
bar(dV_Bar);
set(gca,'XTickLabel',{'Descent +','Boost +','Re-Circ.=','Total Skip', ...
 'Hohmann (Perig.)','Hohmann (Apog.)'},'FontSize',8);
hold on; bar(5,dV_Hohmann_perig,'r');
hold on; bar(6,dV_Hohmann_apog,'g');
set(gca,'YTick',0:0.25:3.5);
n = get(gca,'Ytick'); set(gca,'Yticklabel',sprintf('%.2f |',n'));
xlabel('Maneuver and/or Maneuver Segment','FontSize',10);
ylabel('\it\DeltaV\rm, km/s','FontSize',10);

www.manaraa.com

266

%%%
%% Time-of-Flight v. Maneuver Type
subplot(2,2,4); box on; grid off;
TOF_Bar = [TOF_Skip,TOF_Hohmann_perig,TOF_Hohmann_apog];
bar(TOF_Bar);
set(gca,'XTickLabel',{'Descent-Boost','Hohmann (Perig.)',...
 'Hohmann (Apog.)'},'FontSize',8);
hold on; bar(2,TOF_Hohmann_perig,'r');
hold on; bar(3,TOF_Hohmann_apog,'g');
xlabel('Maneuver','FontSize',10);
ylabel('Time-of-Flight, min','FontSize',10);

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

DescentBoost_ReCirc.m

clear all; clc; close all;

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Maneuver Simulation
Vehicle_Choice = 1; %Vehicle selection
Map_Choice = 1; %Map plotting selection
h_Target = 500; %Target altitude (km)
h_Init = 500; %Initial altitude (km)
AltThreshold = 100; %Altitude threshold for interpolation (km)
PSI_Init = 70; %Heading angle (deg)
fpa_Descent = -7.9; %Flight-path angle (deg)
dV_Boost = 0.5; %Boost delta-V (km/s)
bank_Skip = 0; %Bank angle (deg)
Time_Max = 720; %Maximum simulation time (min)

[Skip_t1,Skip_States,Traj_States,RefOrb_States,Traj_Analysis] ...
 = BankManeuvers_MultiAOT(Vehicle_Choice,Time_Max, ...
 h_Init,PSI_Init,fpa_Descent,dV_Boost,bank_Skip);

Skip_t = Traj_States(:,1)./60; %Time (min)
Skip_h = Traj_States(:,2) - RE; %Altitude (km)
Skip_V = Traj_States(:,3); %Velocity (km/s)
Skip_lon = Traj_States(:,4); %Longitude (rad)
Skip_lat = Traj_States(:,5); %Latitude (rad)
Skip_fpa = Traj_States(:,6); %Flight-path angle (rad)
Skip_psi = Traj_States(:,7); %Heading angle (rad)

www.manaraa.com

267

%%%
%% Vehicle Model
[Vehicle] = VehicleSpecs(Vehicle_Choice);
mass = Vehicle.mass; %Mass (kg)
S_m2 = Vehicle.S_m2; %Planform area (m^2)
S = S_m2/(1000^2); %Planform area (km^2)
Cd = Vehicle.Cd; %Drag coefficient
Cl = Vehicle.Cl; %Lift coefficient

%%%
%% Determination of Trajectory Crossings of Target Altitude
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(Skip_h)
 mm = mm + 1;
 if abs(Skip_h(ii) - h_Target) < AltThreshold
 AltTGT_Crossing(mm,1) = Skip_h(ii);
 AltTGT_Crossing(mm,2) = Skip_t(ii);
 AltTGT_Crossing(mm,3) = Skip_V(ii);
 AltTGT_Crossing(mm,4) = Skip_lon(ii);
 AltTGT_Crossing(mm,5) = Skip_lat(ii);
 AltTGT_Crossing(mm,6) = Skip_fpa(ii);
 AltTGT_Crossing(mm,7) = Skip_psi(ii);
 else
 AltTGT_Crossing(mm,1:7) = 0;
 end
end

%%%
%% Determination of Indices Corresponding to Crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(AltTGT_Crossing)
 if AltTGT_Crossing(ii) ~= 0
 mm = mm + 1;
 FlagVector_Alt(mm,1) = ii;
 WithinIdent_Alt(mm,:) = AltTGT_Crossing(ii,:);
 end
end
FlagVector_Alt = [FlagVector_Alt;0];

%%%
%% Determination of Indices Corresponding to Jumps in Crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector_Alt)-1
 if abs((FlagVector_Alt(ii+1) - FlagVector_Alt(ii))) > 1
 mm = mm + 1;
 AltTGT_Jump(mm,1) = ii;
 end
end
AltTGT_Jump = [0;AltTGT_Jump];

www.manaraa.com

268

%%%
%% Interpolation of Crossing Trajectories
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(AltTGT_Jump)
 mm = mm + 1;
 AltTGT_Interp(mm,:) = ...
 interp1(AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ...
 FlagVector_Alt(AltTGT_Jump(ii)),1), ...
 AltTGT_Crossing(FlagVector_Alt(AltTGT_Jump(ii-1)+1): ...
 FlagVector_Alt(AltTGT_Jump(ii)),2:7), ...
 h_Target,'spline'); %Cubic spline interpolation
end

%Removal of negative interpolated points
AltTGT_Interp(any(AltTGT_Interp(:,1)<0,2),:) = [];

AltTGT_Vector = h_Target.*ones(length(AltTGT_Interp(:,1)),1);
AltCrossings = [AltTGT_Interp(:,1),AltTGT_Vector,AltTGT_Interp(:,2:6)];

%Removal of extremely large interpolated points
AltCrossings(any(AltCrossings(:,1)>(5*Time_Max),2),:) = [];

%%%
%% Determination of Minimum Re-Circularization Delta-V
mm = 0; %Initializes loop index at zero
nn = 1; %Initializes vector concatenation counter at one

for mm = 1:length(AltCrossings(:,1))

%Re-Circularized velocity relative to rotating frame (rotating planet)
[V_Rel_ReCirc(nn,1),PSI_Rel_ReCirc(nn,2)] = RelativeStates(mass,S,Cd,Cl, ...
 h_Target,AltCrossings(mm,5),AltCrossings(mm,6), ...
 AltCrossings(mm,7),bank_Skip);

 mm = mm + 1; %Update to index counter
 nn = nn + 1; %Update to solution matrix concatenation counter
end

%Re-circularization delta-V (km/s)
dV_ReCirc_Vec = abs(AltCrossings(:,3) - V_Rel_ReCirc);

%Concatenation of re-circ. delta-V vector with crossings solutions
AltCrossings_withdV = [AltCrossings,dV_ReCirc_Vec];

%Minimum re-circularization delta-V and related states
[Min_dV,Min_Flag] = min(AltCrossings_withdV(:,end));
Min_States = AltCrossings_withdV(Min_Flag,:);

%Maneuver simulation constrained by elapsed time of minimum delta-V
[Skip_t_MOD,Skip_States_MOD,Traj_States_MOD,RefOrb_States_MOD, ...
 Traj_Analysis_MOD] = BankManeuvers_MultiAOT(Vehicle_Choice, ...
 Min_States(1,1),h_Init,PSI_Init, ...
 fpa_Descent,dV_Boost,bank_Skip);

www.manaraa.com

269

%%%
%% Propagation of Re-Circularized Orbit
Time_Prop = (Time_Max - Min_States(1,1))*60; %Maximum simulation time (s)
ecc = 0; %Orbit eccentricity
r_Prop = Skip_States_MOD(end,1); %Orbit radial position (km)
h_Prop = r_Prop - RE; %Orbit altitude (km)
lon_Prop = Skip_States_MOD(end,3); %Initial longitude (rad)
lat_Prop = Skip_States_MOD(end,4); %Initial latitude (rad)
fpa_Prop = 0; %Flight-path angle (rad)
bank_Prop = bank_Skip; %Bank angle (deg)

if bank_Skip ~= 0
 PSI_Prop = -(min(Skip_States_MOD(:,4))); %Heading angle (rad)
else
 PSI_Prop = ((Skip_States_MOD(end,6))); %Heading angle (rad)
end

%Re-circularized orbit parameters
SMA_Prop = 0.5*(r_Prop + r_Prop); %Semi-major axis (km)
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_RelProp,PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ...
 fpa_Prop,PSI_Prop,bank_Prop);

SMA_TargetProp = SMA_Prop;
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_CheckP(1,1) = V_RelProp; %Initial guess for velocity (km/s)
PSI_CheckP(1,1) = PSI_RelProp; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop, ...
 V_CheckP(1,1),lon_Prop,lat_Prop, ...
 fpa_Prop,PSI_CheckP(1,1),bank_Prop);
 [r_CheckP(1,1),ApogFlag] = min(Traj_StatesP(:,1));

%Semi-major axis (km)
SMA_CheckP(1,1) = 0.5*(r_Prop + r_CheckP(1,1));

%Iteration error (s)
GuessErrorP(1,1) = -((SMA_CheckP(1,1) - SMA_Prop)/ ...
 ((V_CheckP(1,1) - V_Decrement) - V_CheckP(1,1)));

%Updated velocity (km/s)
V_CheckP(2,1) = (V_CheckP(1,1) - V_Decrement) - ...
 ((SMA_TargetProp - SMA_CheckP(1,1))/GuessErrorP(1,1));

%Updated heading angle (rad)
PSI_CheckP(2,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(2,1)));

www.manaraa.com

270

%Difference between calculated and target trajectory states
IterativeDiff_SMA_Prop(1,1) = abs(SMA_TargetProp - SMA_CheckP(1,1));
IterativeDiff_PSI_Prop(1,1) = abs(PSI_CheckP(2,1) - PSI_CheckP(1,1));

IterCount = 1; %Initializes iteration counter for Secant loop

%% Secant Iteration
for ii = 2:IterMax
 while abs(SMA_TargetProp - SMA_CheckP(ii-1,1)) > 1E-10 && ...
 abs(PSI_CheckP(ii,1) - PSI_CheckP(ii-1,1)) > 1E-10 && ...
 IterCount < IterMax

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckP(ii,1), ...

lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii,1),bank_Prop);

 [r_CheckP(ii,1),ApogFlag] = max(Traj_StatesP(:,1));

 %Current iteration semi-major axis (km)
 SMA_CheckP(ii,1) = 0.5*(r_Prop + r_CheckP(ii,1));

 %Iteration error (sec)
 GuessErrorP(ii,1) = -((SMA_CheckP(ii,1) - SMA_CheckP(ii-1,1))/ ...
 (V_CheckP(ii,1) - V_CheckP(ii-1,1)));

 %Updated velocity (km/s)
 V_CheckP(ii+1,1) = V_CheckP(ii,1) - ...
 ((SMA_TargetProp - SMA_CheckP(ii,1))/GuessErrorP(ii,1));

 %Updated heading angle (rad)
 PSI_CheckP(ii+1,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckP(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp – ...
 SMA_CheckP(ii,1));
 IterativeDiff_PSI_Prop(ii,1) = abs(PSI_CheckP(ii,1) – ...
 PSI_CheckP(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

%Trajectory simulation for re-circularized orbit
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Prop,r_Prop,V_CheckP(ii), ...

lon_Prop,lat_Prop,fpa_Prop,PSI_CheckP(ii),bank_Prop);

www.manaraa.com

271

%Re-defined propagated orbit states
PropOrb_t = [Skip_t_MOD ; Skip_t_MOD(end) + Orbit_t(2:end)];
PropOrb_States = [Skip_States_MOD(:,1:6) ; Orbit_States(2:end,1:6)];
PropOrb_h = PropOrb_States(:,1) - RE; %Altitude (km)
PropOrb_V = PropOrb_States(:,2); %Velocity (km/s)
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ...
 + 180),360) - 180; %Longitude (rad)
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad)

%Maximum inclination (deg)
MaxIncl = max(PropOrb_Lat_deg);

%Inclination change (deg)
dIncl = MaxIncl - PSI_Init;

%Maximum apogee (km)
[ApogMax,ApogFlag] = max(Skip_h);

%Elapsed time corresponding to maximum apogee (min)
ApogTime = (Skip_t(ApogFlag));
Apogee_Output = [ApogTime,ApogMax];

%%%
%% Determination of Total Delta-V
dV_Descent = Traj_Analysis_MOD(2); %Descent delta-V (km/s)
dV_ReCirc = Min_dV; %Re-circularization delta-V (km/s)

%Total delta-V for descent-boost skip maneuver (km/s)
dV_Total = dV_Descent + dV_Boost + dV_ReCirc;

%Hohmann transfer delta-V (km/s)
[dV_Hohmann,TOF_Hohmann] = Hohmann_Geocentric(h_Init,max(Skip_h));

%Combined Hohmann transfer delta-V (km/s)
[dV_Combined,TOF_Combined] = Hohmann_Combined_dI(h_Init,max(Skip_h),dIncl);

%Bi-elliptic transfer delta-V (km/s)
[dV_BiElliptic,TOF_BiElliptic] = BiElliptic(h_Init,max(Skip_h),h_Target);

%Two-perigee Hohmann transfer delta-V (km/s)
[dV_2Perig,TOF_2Perig] = Hohmann_2Perig(h_Init,max(Skip_h));

%%%
%% Maneuver Time-of-Flight
%Descent-boost maneuver
TOF_Skip = (Skip_t_MOD(end))/60;

%Hohmann transfer
TOF_Hohmann = TOF_Hohmann/60;

%Combined Hohmann transfer
TOF_Combined = TOF_Combined/60;

www.manaraa.com

272

%Bi-elliptic transfer
TOF_BiElliptic = TOF_BiElliptic/60;

%Two-Perigee Hohmann transfer
TOF_2Perig = TOF_2Perig/60;

%Special Output
Output = ...
 [h_Target, dV_Descent, dV_Boost,dV_ReCirc, dV_Total, ...
 dV_Combined,dV_BiElliptic,TOF_Skip,TOF_Combined,TOF_BiElliptic]';

%%%
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg
%Reference orbit
[Lon_RefOrb, Lat_RefOrb, LonSplit_RefOrb, LatSplit_RefOrb] = ...
 CoordinateJump(RefOrb_States);

%Propagated re-circularized orbit
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ...
 CoordinateJump(PropOrb_States);

%%%
%% Plotting Commands
%Conversion of time units for plotting
Skip_Time = Skip_t;
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2);

%%%
%% Geodetic Altitude (km) v. Time
subplot(2,2,1); box on; grid off;
hold on; plot(Skip_Time,Skip_States(:,1)-RE,'b');
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_Target,h_Target],'k-.');
hold on; plot(AltCrossings(:,1),AltCrossings(:,2),'go','LineWidth',2);
xlabel('Time, min');
ylabel('Altitude, km');

h_atm = 120; %Altitude of upper limit of sensible atmosphere (km)
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');

legend('Descent-Boost Trajectory','Target Altitude','Altitude Crossings', ...
 'Upper Atmosphere Limit','Location','NorthEast');

%%%
%% Geodetic Altitude (km) v. Time
subplot(2,2,2); box on; grid off;
hold on; plot(PropOrb_Time,PropOrb_h,'b');
xlabel('Time, min');
ylabel('Altitude, km');

h_atm = 120; %Altitude of upper limit of sensible atmosphere (km)
hold on; plot([Skip_Time(1),Skip_Time(end)],[h_atm,h_atm],'r--');

www.manaraa.com

273

%%%
%% Total Delta-V (km/s) v. Maneuver Type
subplot(2,2,3); box on; grid off;
dV_Bar = [dV_Descent, dV_Boost, dV_ReCirc, dV_Total, ...
 dV_Combined,dV_BiElliptic];
bar(dV_Bar);
set(gca,'XTickLabel',{'Descent +','Boost +','Inject =','Total Skip', ...
 'Combined','Bi-Elliptic'},'FontSize',8);
hold on; bar(5,dV_Combined,'r');
hold on; bar(6,dV_BiElliptic,'g');
% hold on; bar(7,dV_Hohmann,'m');
% hold on; bar(8,dV_2Perig,'c');
set(gca,'YTick',0:0.25:2.0);
n = get(gca,'Ytick'); set(gca,'Yticklabel',sprintf('%.2f |',n'));
xlabel('Maneuver and/or Maneuver Segment','FontSize',10);
ylabel('\it\DeltaV\rm, km/s','FontSize',10);

%%%
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection
subplot(2,2,4); box on; grid off;
hold on;
h_Skip = cellfun(@plot,LonSplit_PropOrb, LatSplit_PropOrb);
hold on;
h_Ref = cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);

set(h_Skip,'LineStyle','--','Color','r');
set(h_Ref, 'LineStyle','-','Color','b');

xlim([-180 180]); ylim([-90 90]);
% xlim([0 90]); ylim([30 70]);
% xlim([floor(Lon_Target)-30, ceil(Lon_Target)+30]);
% ylim([floor(Lat_Target)-20, ceil(Lat_Target)+20]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

if Map_Choice == 1
% hold on; %Plate Carree world map projection
% landareas = shaperead('landareas.shp','UseGeoCoords',true);
% geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

elseif Map_Choice == 2
 hold on; %Plate Carree world map projection
 landareas = shaperead('landareas.shp','UseGeoCoords',true);
 geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

www.manaraa.com

274

%%%
%% Time-of-Flight v. Maneuver Type
figure; subplot(2,2,1); box on; grid off;
TOF_Bar = [TOF_Skip,TOF_Combined,TOF_BiElliptic];
bar(TOF_Bar);
set(gca,'XTickLabel',{'Descent-Boost','Combined', ...
 'Bi-Elliptic'},'FontSize',8);
hold on; bar(2,TOF_Combined,'r');
hold on; bar(3,TOF_BiElliptic,'g');
% hold on; bar(4,TOF_Hohmann,'m');
% hold on; bar(5,TOF_2Perig,'c');
set(gca,'YTick',0:50:600);
% n = get(gca,'Ytick'); set(gca,'Yticklabel',sprintf('%.2f |',n'));
xlabel('Maneuver','FontSize',10);
ylabel('Time-of-Flight, min','FontSize',10);

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

Hohmann_Analysis_Molniya.m

clear all; clc; close all;

global RE

WGS84Constants; %Loads global constants from external m-file

Simulation_Choice = 1;

%%%
if Simulation_Choice == 1

%%%
%% Skip Maneuver Analysis
perig_Skip = 84.7675; %Perigee altitude (km)
PSI_Skip = 58.8; %Initial heading angle (deg)
h_Skip = 1000; %Initial altitude (km)
Bank_Skip = -90; %Bank angle (deg)
[Traj_Analysis,Incl_Analysis,Combined_Analysis] = ...
 BankManeuvers_fxnAltTGT(1,h_Skip,perig_Skip,PSI_Skip,Bank_Skip);

Skip_Time = Traj_Analysis(1,1); %Elapsed time for single skip maneuver (sec)
dI_Skip = Incl_Analysis(1,3); %Inclination change for skip maneuver (deg)

%%%
%% Molniya Orbit Parameters
SMA_Molniya = 26562; %Molniya orbit semi-major axis (km)

www.manaraa.com

275

%Perigee
h_perig = Traj_Analysis(1,3); %Altitude (km)
r_perig = h_perig + RE; %Radius (km)

%Apogee
r_apog = (2*SMA_Molniya) - r_perig; %Radius (km)
h_apog = r_apog - RE; %Altitude (km)

%Molniya orbit eccentricity
ecc = Eccentricity(r_apog,r_perig);

%Orbit velocity
V_perig = OrbitVelocity(h_perig + RE,ecc,0); %Perigee
V_apog = OrbitVelocity(h_apog + RE,ecc,180); %Apogee

%%%
%% Determination of Total Skip Maneuver Delta-V
dV_Maneuver = Traj_Analysis(1,5); %Delta-V for skip w/o re-circ (km/s)
V_EndSkip = Traj_Analysis(1,4); %Velocity at skip apogee (km/s)
dV_Insert = abs(V_perig - V_EndSkip); %Molniya insertion delta-V (km/s)

%Total delta-V for skip maneuver (km/s)
dV_Skip = dV_Maneuver + dV_Insert;

%%%
%% Hohmann Transfer Analysis
h_init = [300:1:5000]'; %Initial altitude (km)
dI = (linspace(0.5,30,length(h_init)))'; %Inclination change (deg)

[dV_perig,TOF_perig] = Hohmann_VelInput(h_init,h_perig,V_perig);
[dV_apog, TOF_apog] = Hohmann_VelInput(h_init,h_apog, V_apog);

%Combined Hohmann transfer simulations
[dV_Combined_0300,TOF_Combined_0300] = ...
 Hohmann_Combined_VelInput(300,h_perig,dI,V_perig);
[dV_Combined_0504,TOF_Combined_0504] = ...

Hohmann_Combined_VelInput(h_perig,h_perig,dI,V_perig);
[dV_Combined_1000,TOF_Combined_1000] = ...
 Hohmann_Combined_VelInput(1000,h_perig,dI,V_perig);
[dV_Combined_5000,TOF_Combined_5000] = ...
 Hohmann_Combined_VelInput(5000,h_perig,dI,V_perig);

TOF_Combined_0300 = TOF_Combined_0300.*ones(length(dV_Combined_0300),1);
TOF_Combined_0504 = TOF_Combined_0504.*ones(length(dV_Combined_0504),1);
TOF_Combined_1000 = TOF_Combined_1000.*ones(length(dV_Combined_1000),1);
TOF_Combined_5000 = TOF_Combined_5000.*ones(length(dV_Combined_5000),1);

%%%
%% Delta-V (km/s) v. Initial Altitude (km)
subplot(2,2,1); box on; grid off;
hold on; plot(h_init,dV_perig,'b-');

www.manaraa.com

276

hold on; plot(h_init,dV_apog,'r-');
hold on; plot(h_Skip,dV_Skip,'kd','LineWidth',2);
xlabel('Initial Altitude, km');
ylabel('\it\DeltaV\rm, km/s');
legend('Perigee Transfer','Apogee Transfer', ...
 'Skip Entry, \it\sigma\rm = -90^o','Location','SouthWest');

%%%
%% Delta-V (km/s) v. Inclination Change (deg)
subplot(2,2,2); box on; grid off;
hold on; plot(dI,dV_Combined_0300,'k-');
hold on; plot(dI,dV_Combined_0504,'b-');
hold on; plot(dI,dV_Combined_1000,'r-');
hold on; plot(dI,dV_Combined_5000,'g-');
hold on; plot(dI_Skip,dV_Skip,'kd','LineWidth',2);
xlabel('Inclination Change, deg');
ylabel('\it\DeltaV\rm, km/s');
legend('\ith_i\rm = 300 km', ...
 ['\ith_i\rm = ',num2str(floor(h_perig)),' km'], ...
 '\ith_i\rm = 1000 km','\ith_i\rm = 5000 km', ...
 'Skip Entry, \it\sigma\rm = -90^o','Location','NorthWest');

%%%
%% Delta-V (km/s) v. Time-of-Flight
subplot(2,2,3); box on; grid off;
hold on; plot(TOF_perig./60,dV_perig,'b-');
hold on; plot(TOF_apog./60,dV_apog,'r-');
hold on; plot(Skip_Time./60,dV_Skip,'kd','LineWidth',2);
xlabel('Time-of-Flight to Orbit Injection, min');
ylabel('\it\DeltaV\rm, km/s');
legend('Perigee Transfer','Apogee Transfer', ...
 'Skip Entry, \it\sigma\rm = -90^o','Location','SouthWest');

%%%
%% Delta-V (km/s) v. Time-of-Flight
subplot(2,2,4); box on; grid off;
hold on; plot3(TOF_Combined_0300./60,dI,dV_Combined_0300,'k-');
hold on; plot3(TOF_Combined_0504./60,dI,dV_Combined_0504,'b-');
hold on; plot3(TOF_Combined_1000./60,dI,dV_Combined_1000,'r-');
hold on; plot3(TOF_Combined_5000./60,dI,dV_Combined_5000,'g-');
hold on; plot3(Skip_Time./60,dI_Skip,dV_Skip,'kd','LineWidth',2);
xlabel('Time-of-Flight to Orbit Injection, min');
ylabel('Inclination Change, deg');
zlabel('\it\DeltaV\rm, km/s');
legend('\ith_i\rm = 300 km', ...
 ['\ith_i\rm = ',num2str(floor(h_perig)),' km'], ...
 '\ith_i\rm = 1000 km','\ith_i\rm = 5000 km', ...
 'Skip Entry, \it\sigma\rm = -90^o','Location','NorthEastOutSide');

www.manaraa.com

277

%%%
elseif Simulation_Choice == 2

%%%
%% Hohmann Transfer Analysis
h_init = [300:1:5000]'; %Initial altitude (km)
h_perig = 504; %Molniya perigee altitude (km)
h_apog = 39834; %Molniya apogee altitude (km)
dI = (linspace(1,30,length(h_init)))'; %Inclination change (deg)

%Molniya orbit eccentricity
ecc = Eccentricity(h_apog + RE,h_perig + RE);

%Orbit velocity
V_perig = OrbitVelocity(h_perig + RE,ecc,0); %Perigee
V_apog = OrbitVelocity(h_apog + RE,ecc,180); %Apogee

% %Hohmann transfer simulation
[dV_perig,TOF_perig] = Hohmann_VelInput(h_init,h_perig,V_perig);
[dV_apog, TOF_apog] = Hohmann_VelInput(h_init,h_apog, V_apog);

%Combined Hohmann transfer simulations
[dV_Combined_0300,TOF_Combined_0300] = ...
 Hohmann_Combined_VelInput(300,h_perig,dI,V_perig);
[dV_Combined_0504,TOF_Combined_0504] = ...
 Hohmann_Combined_VelInput(504,h_perig,dI,V_perig);
[dV_Combined_1000,TOF_Combined_1000] = ...
 Hohmann_Combined_VelInput(1000,h_perig,dI,V_perig);
[dV_Combined_5000,TOF_Combined_5000] = ...
 Hohmann_Combined_VelInput(5000,h_perig,dI,V_perig);

%%%
%% Delta-V (km/s) v. Initial Altitude (km)
subplot(1,2,1); box on; grid off;
hold on; plot(h_init,dV_perig,'b-');
hold on; plot(h_init,dV_apog,'r-');
xlabel('Initial Altitude, km');
ylabel('\it\DeltaV\rm, km/s');
legend('Perigee Transfer','Apogee Transfer','Location','SouthWest');

%%%
%% Delta-V (km/s) v. Inclination Change (deg)
subplot(1,2,2); box on; grid off;
hold on; plot(dI,dV_Combined_0300,'k-');
hold on; plot(dI,dV_Combined_0504,'b-');
hold on; plot(dI,dV_Combined_1000,'r-');
hold on; plot(dI,dV_Combined_5000,'g-');
xlabel('Inclination Change, deg');
ylabel('\it\DeltaV\rm, km/s');
legend('\ith_i\rm = 300 km', '\ith_i\rm = 504 km', ...
 '\ith_i\rm = 1000 km','\ith_i\rm = 5000 km','Location','NorthWest');

end

www.manaraa.com

278

Hohmann_Combined.m

function [dV_Combined,TOF] = Hohmann_Combined(h1,h2,i1_deg,i2_deg)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Calculation of Transfer Orbit Parameters
r1 = h1 + RE; r2 = h2 + RE;

TOF = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec)
sma_t = (r1 + r2)./2; %Semi-major axis (km)
e_t = -MU./(2.*sma_t); %Specific mech. energy (km^2/s^2)

%%%
%% Calculation of Inclination-Change Parameters
i1 = deg2rad(i1_deg); i2 = deg2rad(i2_deg);
dI = i2 - i1;

%Estimation method
R = r2./r1;
s = (1./dI).*atan(sin(dI)./((R.^(3/2)) + cos(dI)));
dI_init = s.*dI;
dI_final = (1 - s).*dI;

%%%
%% Velocity Parameters for Orbit #1
Vc1 = sqrt(MU./r1);
Vp = sqrt(2.*((MU./r1) + e_t));

dV_1 = sqrt((Vc1.^2) + (Vp.^2) - (2.*Vc1.*Vp.*cos(dI_init)));

%%%
%% Velocity Parameters for Orbit #2
Vc2 = sqrt(MU./r2);
Va = sqrt(2.*((MU./r2) + e_t));

dV_2 = sqrt((Vc2.^2) + (Va.^2) - (2.*Vc2.*Va.*cos(dI_final)));

%%%
%% Total Delta-V Required for Combined Hohmann Transfer
dV_Combined = dV_1 + dV_2;

www.manaraa.com

279

Hohmann_Combined_dI.m

function [dV_Combined,TOF] = Hohmann_Combined_dI(h1,h2,dI_deg)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Calculation of Transfer Orbit Parameters
r1 = h1 + RE; r2 = h2 + RE;

TOF = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec)
sma_t = (r1 + r2)./2; %Semi-major axis (km)
e_t = -MU./(2.*sma_t); %Specific mech. energy (km^2/s^2)

%%%
%% Calculation of Inclination Change Parameters
dI = deg2rad(dI_deg);

%Estimation method
R = r2./r1;
s = (1./dI).*atan(sin(dI)./((R.^(3/2)) + cos(dI)));
dI_init = s.*dI;
dI_final = (1 - s).*dI;

%%%
%% Velocity Parameters for Orbit #1
Vc1 = sqrt(MU./r1);
Vp = sqrt(2.*((MU./r1) + e_t));
dV1 = sqrt((Vc1.^2) + (Vp.^2) - (2.*Vc1.*Vp.*cos(dI_init)));

%%%
%% Velocity Parameters for Orbit #2
Vc2 = sqrt(MU./r2);
Va = sqrt(2.*((MU./r2) + e_t));
dV2 = sqrt((Vc2.^2) + (Va.^2) - (2.*Vc2.*Va.*cos(dI_final)));

%%%
%% Total Delta-V Required for Combined Hohmann Transfer
dV_Combined = dV1 + dV2;

www.manaraa.com

280

Hohmann_Combined_VelInput.m

function [dV_Combined,TOF] = Hohmann_Combined_VelInput(h1,h2,dI_deg,V2)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Calculation of Transfer Orbit Parameters
r1 = h1 + RE; r2 = h2 + RE;

TOF = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec)
sma_t = (r1 + r2)./2; %Semi-major axis (km)
e_t = -MU./(2.*sma_t); %Specific mech. energy (km^2/s^2)

%%%
%% Calculation of Inclination Change Parameters
dI = deg2rad(dI_deg);

%Estimation method
R = r2./r1;
s = (1./dI).*atan(sin(dI)./((R.^(3/2)) + cos(dI)));
dI_init = s.*dI;
dI_final = (1 - s).*dI;

%%%
%% Velocity Parameters for Orbit #1
V1 = sqrt(MU./r1);
Vt1 = sqrt(2.*((MU./r1) + e_t));
dV1 = sqrt((V1.^2) + (Vt1.^2) - (2.*V1.*Vt1.*cos(dI_init)));

%%%
%% Velocity Parameters for Orbit #2
%Note: The velocity 'V2' is a function input representing either:
% (a) Circular orbit velocity
% (b) Apogee orbit velocity
% (c) Perigee orbit velocity
Vt2 = sqrt(2.*((MU./r2) + e_t));
dV2 = sqrt((V2.^2) + (Vt2.^2) - (2.*V2.*Vt2.*cos(dI_final)));

%%%
%% Total Delta-V Required for Combined Hohmann Transfer
dV_Combined = dV1 + dV2;

www.manaraa.com

281

Hohmann_Geocentric.m

function [dV_Total,TOF,ecc_t,sma_t] = Hohmann_Geocentric(h1,h2)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Conversion from Altitude to Geocentric Radius
r1 = h1 + RE; r2 = h2 + RE;

%%%
%% Transfer Orbit
ecc_t = abs(((r2 - r1)./(r2 + r1))); %Eccentricity
sma_t = (r1 + r2)./2; %Semi-major axis (km)
e_t = -MU./(2.*sma_t); %Specific mech. energy (km^2/s^2)
TOF = pi.*sqrt(((r1 + r2).^3)./(8.*MU)); %Time-of-flight (s)

%%%
%% Velocity Parameters for Orbit #1
V1 = sqrt(MU./r1); %Circular orbit velocity (km/s)
Vt1 = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s)
dV1 = abs(V1 - Vt1); %Delta-V to enter transfer orbit (km/s)

%%%
%% Velocity Parameters for Orbit #2
V2 = sqrt(MU./r2); %Circular orbit velocity (km/s)
Vt2 = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s)
dV2 = abs(V2 - Vt2); %Delta-V to re-circularize at r2 (km/s)

%%%
%% Total Delta-V Required for Combined Hohmann Transfer
dV_Total = dV1 + dV2;

www.manaraa.com

282

Hohmann_Geodetic.m

function [dV_Total,TOF,ecc_t,sma_t] = Hohmann_Geodetic(h_gd1,h_gd2)

global MU RE FlatE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Conversion from Geodetic to Geocentric Coordinates
[r1, lat1] = Geodetic2Geocentric(h_gd1,0,RE,FlatE);
[r2, lat2] = Geodetic2Geocentric(h_gd2,0,RE,FlatE);

%%%
%% Transfer Orbit
ecc_t = abs(((r2 - r1)./(r2 + r1))); %Eccentricity
sma_t = (r1 + r2)./2; %Semi-major axis (km)
e_t = -MU./(2.*sma_t); %Specific mech. energy (km^2/s^2)
TOF = pi.*sqrt(((r1 + r2).^3)./(8.*MU)); %Time-of-flight (s)

%%%
%% Velocity Parameters for Orbit #1
V1 = sqrt(MU./r1); %Circular orbit velocity (km/s)
Vt1 = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s)
dV1 = abs(V1 - Vt1); %Delta-V to enter transfer orbit (km/s)

%%%
%% Velocity Parameters for Orbit #2
V2 = sqrt(MU./r2); %Circular orbit velocity (km/s)
Vt2 = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s)
dV2 = abs(V2 - Vt2); %Delta-V to re-circularize at r2 (km/s)

%%%
%% Total Delta-V Required for Combined Hohmann Transfer
dV_Total = dV1 + dV2;

www.manaraa.com

283

Hohmann_SkipReCirc.m

function [dV_Total,TOF,ecc_t,sma_t] = Hohmann_SkipReCirc(V1,r1,r2)

global MU

WGS84Constants; %Loads global constants from external m-file

%%%
%% Transfer Orbit
ecc_t = abs(((r2 - r1)./(r2 + r1))); %Eccentricity
sma_t = (r1 + r2)./2; %Semi-major axis (km)
e_t = -MU./(2.*sma_t); %Specific mech. energy (km^2/s^2)
TOF = pi.*sqrt(((r1 + r2).^3)./(8.*MU)); %Time-of-flight (s)

%%%
%% Velocity Parameters for Orbit #1
Vt1 = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s)
dV1 = abs(V1 - Vt1); %Delta-V to enter transfer orbit (km/s)

%%%
%% Velocity Parameters for Orbit #2
V2 = sqrt(MU./r2); %Circular orbit velocity (km/s)
Vt2 = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s)
dV2 = abs(V2 - Vt2); %Delta-V to recircularize at r2 (km/s)

%%%
%% Total Delta-V Required for Combined Hohmann Transfer
dV_Total = dV1 + dV2;

www.manaraa.com

284

Hohmann_VelInput.m

function [dV_Total,TOF] = Hohmann_VelInput(h1,h2,V2)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Calculation of Transfer Orbit Parameters
r1 = h1 + RE; r2 = h2 + RE;

TOF = pi*sqrt(((r1 + r2).^3)./(8*MU)); %Time-of-flight (sec)
sma_t = (r1 + r2)./2; %Semi-major axis (km)
e_t = -MU./(2.*sma_t); %Specific mech. energy (km^2/s^2)

%%%
%% Velocity Parameters for Orbit #1
V1 = sqrt(MU./r1); %Circular orbit velocity (km/s)
Vt1 = sqrt(2.*((MU./r1) + e_t)); %Transfer orbit velocity at r1 (km/s)
dV1 = abs(V1 - Vt1); %Delta-V to enter transfer orbit (km/s)

%%%
%% Velocity Parameters for Orbit #2
%Note: The velocity 'V2' is a function input representing either:
% (a) Circular orbit velocity
% (b) Apogee orbit velocity
% (c) Perigee orbit velocity
Vt2 = sqrt(2.*((MU./r2) + e_t)); %Transfer orbit velocity at r2 (km/s)
dV2 = abs(V2 - Vt2); %Delta-V to recircularize at r2 (km/s)

%%%
%% Total Delta-V Required for Combined Hohmann Transfer
dV_Total = dV1 + dV2;

www.manaraa.com

285

PlanarManeuvers.m

% function [Trajectory_Analysis] = PlanarManeuvers(Target_Choice,Xing)
clear all; clc; close all;

global MU RE
global Lat_Denver Lon_Denver Lat_Gibraltar Lon_Gibraltar
global Lat_Glasgow Lon_Glasgow Lat_Grozny Lon_Grozny
global Lat_Moscow Lon_Moscow Lat_Ponti Lon_Ponti
global Lat_Pyong Lon_Pyong Lat_Reyk Lon_Reyk
global Lat_Tehran Lon_Tehran Lat_Tokyo Lon_Tokyo
global Lat_Brasil Lon_Brasil Lat_Buenos Lon_Buenos
global Lat_Canberra Lon_Canberra Lat_Cape Lon_Cape

WGS84Constants; %Loads global constants from external m-file
GroundTargets; %Loads ground target geographical coordinates (deg)

%%%
%% Target Selection
Vehicle_Choice = 1;
Target_Choice = 5;
Xing = 24;
VCoeff = .965; %Fraction coefficient to modify velocity guess

if Target_Choice == 1 %Denver, United States
 Lat_Target = Lat_Denver; Lon_Target = Lon_Denver; dLat = 3;
elseif Target_Choice == 2 %Gibraltar, United Kingdom
 Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5;
elseif Target_Choice == 3 %Glasgow, Scotland
 Lat_Target = Lat_Glasgow; Lon_Target = Lon_Glasgow; dLat = 3;
elseif Target_Choice == 4 %Grozny, Chechnya
 Lat_Target = Lat_Grozny; Lon_Target = Lon_Grozny; dLat = 3;
elseif Target_Choice == 5 %Moscow, Russia
 Lat_Target = Lat_Moscow; Lon_Target = Lon_Moscow; dLat = 5;
elseif Target_Choice == 6 %Pontianak, Indonesia
 Lat_Target = Lat_Ponti; Lon_Target = Lon_Ponti; dLat = 7;
elseif Target_Choice == 7 %Pyongyang, North Korea
 Lat_Target = Lat_Pyong; Lon_Target = Lon_Pyong; dLat = 5;
elseif Target_Choice == 8 %Reykjavik, Iceland
 Lat_Target = Lat_Reyk; Lon_Target = Lon_Reyk; dLat = 3;
elseif Target_Choice == 9 %Tehran, Iran
 Lat_Target = Lat_Tehran; Lon_Target = Lon_Tehran; dLat = 5;
elseif Target_Choice == 10 %Tokyo, Japan
 Lat_Target = Lat_Tokyo; Lon_Target = Lon_Tokyo; dLat = 4;
elseif Target_Choice == 11 %Brasilia, Brazil
 Lat_Target = Lat_Brasil; Lon_Target = Lon_Brasil; dLat = 4;
elseif Target_Choice == 12 %Buenos Aires, Argentina
 Lat_Target = Lat_Buenos; Lon_Target = Lon_Buenos; dLat = 4;
elseif Target_Choice == 13 %Canberra, Australia
 Lat_Target = Lat_Canberra; Lon_Target = Lon_Canberra; dLat = 4;
elseif Target_Choice == 14 %Cape Town, South Africa
 Lat_Target = Lat_Cape; Lon_Target = Lon_Cape; dLat = 4;
end

www.manaraa.com

286

%%%
%% Vehicle Model
if Vehicle_Choice == 9 %VEHICLE SELECTION OVERRIDE
 mass = 2000; %Mass (kg)
 S_m2 = 18.5; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = 0.5; %Drag coefficient
 Cl = 3.0; %Lift coefficient
else
 [Vehicle] = VehicleSpecs(Vehicle_Choice);
 mass = Vehicle.mass; %Mass (kg)
 S_m2 = Vehicle.S_m2; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Vehicle.Cd; %Drag coefficient
 Cl = Vehicle.Cl; %Lift coefficient
end

%%%
%% Initial Reference Orbit Conditions
Time_Max = 1; %Maximum simulation time (days)
ecc_Ref = 0; %Orbit eccentricity
h_Ref = 1000; %Orbit geodetic altitude (km)
lon_Ref = 0; %Initial longitude (deg)
lat_Ref = 0; %Initial geodetic latitude (deg)
fpa_Ref = 0; %Flight-path angle (deg)
PSI_Ref = 70; %Heading angle (deg)
bank = 0; %Bank angle (deg)

%Converts and overwrites initial angle variables from (deg) to (rad)
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref);
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);

%Reference orbit parameters
r_Ref = h_Ref + RE; %Radial position (km)
SMA_Ref = 0.5*(r_Ref + r_Ref); %Semi-major axis (km)
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec)
V_Ref = sqrt(MU*((2/r_Ref) - (1/SMA_Ref))); %Orbit velocity (km/s)

%Velocity relative to rotating frame (rotating planet)
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Ref,lat_Ref, ...
 fpa_Ref,PSI_Ref,bank);

%Conversion of time units from days to seconds
Time_Max = Time_Max*(24)*(60)*(60);

SMA_Target0 = SMA_Ref; %Target semi-major axis for iteration (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check0(1,1) = V_Rel; %Initial guess for velocity (km/s)
PSI_Check0(1,1) = PSI_Ref; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

www.manaraa.com

287

%% First Iteration
%Trajectory simulation [0:t: 0.5*RefPeriod]
[Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Ref,V_Check0(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank);

[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1));

%Semi-major axis (km)
SMA_Check0(1,1) = 0.5*(r_Ref + r_Check0(1,1));

%Iteration error (s)
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ...
 ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));

%Updated velocity (km/s)
V_Check0(2,1) = (V_Check0(1,1) - V_Decrement) - ...
 ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1));

%Updated heading angle (rad)
PSI_Check0(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(2,1)));

%Difference between calculated and target trajectory states
IterDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1));
IterDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));

IterCount0 = 1; %Initializes iteration counter for Newton-Raphson loop

%% Newton-Raphson Iteration
for ii = 2:IterMax
 while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-20 && ...
 abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-20

 %Trajectory simulation [0:t: 0.5*RefPeriod]
 [Traj_t0, Traj_States0] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*RefPeriod,r_Ref,V_Check0(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank);

 [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check0(ii,1) = 0.5*(r_Ref + r_Check0(ii,1));

 %Iteration error (sec)
 GuessError0(ii,1) = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ...
 (V_Check0(ii,1) - V_Check0(ii-1,1)));

 %Updated velocity (km/s)
 V_Check0(ii+1,1) = V_Check0(ii,1) - ...
 ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1));

www.manaraa.com

288

 %Updated heading angle (rad)
 PSI_Check0(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1));
 IterDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount0 = IterCount0 + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Rel0 = V_Check0(ii); %Orbital velocity (km/s)
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad)

%Trajectory simulation for reference orbit
[RefOrb_t, RefOrb_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_Ref,V_Rel0, ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank);

%%%
%% Manipulation of Reference Orbit Trajectory Solutions
r_Data = RefOrb_States(:,1); %Radial position (km)
h_Data = r_Data - RE; %Altitude (km)
Lon_Data = RefOrb_States(:,3); %Longitude (rad)
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad)

%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180)
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180;

%Converts geodetic latitude from radians to degrees
Lat_Data = rad2deg(Lat_Data);

%%%
%% Determination of Trajectory Crossings of Target Latitude
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(Lon_Data)
 mm = mm + 1;
 if abs(Lat_Data(ii) - Lat_Target) < 10
 LatCrossing(mm,1) = RefOrb_t(ii); %Time (sec)
 LatCrossing(mm,2) = h_Data(ii); %Altitude (km)
 LatCrossing(mm,3) = Lon_Data(ii); %Longitude (deg)
 LatCrossing(mm,4) = Lat_Data(ii); %Geocentric latitude (deg)
 else
 LatCrossing(mm,1:4) = 0; %Arbitrary value for non-crossings
 end
end

www.manaraa.com

289

%%%
%% Determination of Indices Corresponding to Latitude Crossings
mm = 0; %Initializes vector concatenation counter at zero

for ii = 1:length(LatCrossing)
 if LatCrossing(ii) ~= 0
 mm = mm + 1;
 FlagVector(mm,1) = ii;
 CrossingIdent(mm,:) = LatCrossing(ii,:);
 end
end
FlagVector = [FlagVector;0]; %Indices corresponding to latitude crossings

%%%
%% Determination of Indices Corresponding to Jumps in Latitude Crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector)-1
 if abs((FlagVector(ii+1) - FlagVector(ii))) > 1
 mm = mm + 1;
 CrossingJump(mm,1) = ii;
 end
end
CrossingJump = [0;CrossingJump]; %Indices of jumps in latitude crossings

%%%
%% Interpolation of Latitude Crossing Trajectories
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(CrossingJump)
 mm = mm + 1;
 CrossInterp(mm,:) = ...
 interp1(LatCrossing(FlagVector(CrossingJump(ii-1)+1): ...
 FlagVector(CrossingJump(ii)),4), ...
 LatCrossing(FlagVector(CrossingJump(ii-1)+1): ...
 FlagVector(CrossingJump(ii)),1:3), ...
 Lat_Target,'spline'); %Cubic spline interpolation
end

%%%
%% Identifies whether Crossing is East or West of Target Longitude
mm = 0; %Initializes vector concatenation counter for East crossings
nn = 0; %Initializes vector concatenation counter for West crossings
for ii = 1:length(CrossInterp(:,3))
 if CrossInterp(ii,3) > Lon_Target && CrossInterp(ii,3) < 180
 mm = mm + 1;
 CrossingEast(mm,1) = CrossInterp(ii,1); %Time (sec)
 CrossingEast(mm,2) = CrossInterp(ii,3); %Longitude (deg)
 elseif CrossInterp(ii,3) < Lon_Target && CrossInterp(ii,3) > -180
 nn = nn + 1;
 CrossingWest(nn,1) = CrossInterp(ii,1); %Time (sec)
 CrossingWest(nn,2) = CrossInterp(ii,3); %Longitude (deg)
 end
end

EastFlag = 1.*ones(length(CrossingEast),1); %Flag indicating 'East' crossing
WestFlag = 2.*ones(length(CrossingWest),1); %Flag indicating 'West' crossing

www.manaraa.com

290

%%%
%% Determination of Latitude Crossing Data
%Difference between interpolated and target longitudes
dLonEast = abs(CrossingEast(:,2) - Lon_Target);
dLonWest = abs(CrossingWest(:,2) - Lon_Target);

%Number of perturbed orbits ('fix' truncation yields integer values)
OrbNumEast = fix(CrossingEast(:,1)./RefPeriod);
OrbNumWest = fix(CrossingWest(:,1)./RefPeriod);

%Array components: Time, longitude, longitude difference, number of orbits
Crossings = [CrossingEast, dLonEast, OrbNumEast, EastFlag; ...
 CrossingWest, dLonWest, OrbNumWest, WestFlag];

%Removal of rows with zero reference orbits
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(Crossings)
 if Crossings(ii,4) ~= 0
 mm = mm + 1;
 Crossings_States(mm,:) = Crossings(ii,:);
 end
end

%%%
%% Determination of Perturbed Orbit Parameters
%Delta-period between crossings and target per orbit (sec/orbit)
dPeriod = Crossings_States(:,3).*(1/15).*(3600).*(1./Crossings_States(:,4));

%Perturbed orbit periods (sec)
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(Crossings_States)
 if Crossings_States(ii,end) == 1 %East Crossing (Increase SMA)
 mm = mm + 1;
 Period_Skip0(mm,:) = [RefPeriod + dPeriod(ii,1), ...
 Crossings_States(ii,end)];

 elseif Crossings_States(ii,end) == 2 %West Crossing (Decrease SMA)
 mm = mm + 1;
 Period_Skip0(mm,:) = [RefPeriod - dPeriod(ii,1), ...
 Crossings_States(ii,end)];
 end
end

%Perturbed orbit semi-major axes (km)
SMA_Skip0 = [(MU.*((Period_Skip0(:,1)./(2*pi)).^2)).^(1/3), ...
 Crossings_States(:,end)];

%Array components: Time, longitude, longitude difference,
% number of orbits, skip period, skip SMA
Crossings_FullStates = [Crossings_States(:,1:4),Period_Skip0(:,1),SMA_Skip0];

www.manaraa.com

291

%%%
%% Transformation of 'Impacting' Perturbed Orbits
mm = 0; nn = 0; %Initializes vector concatenation counters at zero
for ii = 1:length(Crossings_FullStates(:,1))
 if Crossings_FullStates(ii,6) < 7000 %(km)
 mm = mm + 1;
 GroundImpact(mm,:) = Crossings_FullStates(ii,:);
 elseif Crossings_FullStates(ii,6) > 7000 %(km)
 nn = nn + 1;
 NoImpact(nn,:) = Crossings_FullStates(ii,:);
 end
end

%Updated longitude difference, crossing time, and number of reference orbits
dLonWest_Update0 = 360 - (GroundImpact(:,3));
dLonWest_Time0 = GroundImpact(:,1) + (dLonWest_Update0/360);
OrbNumWest_Update0 = fix(dLonWest_Time0(:,1)./RefPeriod);

%Removal of rows with zero reference orbits
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(OrbNumWest_Update0)
 if OrbNumWest_Update0(ii,1) ~= 0
 mm = mm + 1;
 dLonWest_Update(mm,:) = dLonWest_Update0(ii,:);
 OrbNumWest_Update(mm,:) = OrbNumWest_Update0(ii,:);
 end
end

%Updated delta-periods (sec)
dPeriod_Update = dLonWest_Update(:,1).*(1/15).*(60).*(60).* ...
 (1./OrbNumWest_Update(:,1));

%Updated perturbed orbit periods (sec)
Period_Skip_Update = RefPeriod + dPeriod_Update;

%Assignment of 'East' crossing flag since maneuver is now 'ascending'
EastFlag_Update = 1.*ones(length(dLonWest_Update),1);

%Updated perturbed orbit semi-major axes (km)
SMA_Skip_Update = (MU.*((Period_Skip_Update(:,1)./(2*pi)).^2)).^(1/3);

%Unsorted perturbed orbit parameters
SMA_Skip_UnSort = [NoImpact(:,5), NoImpact(:,6), NoImpact(:,4), ...
 NoImpact(:,2), NoImpact(:,end); ...
 Period_Skip_Update(:,1), SMA_Skip_Update(:,1), ...
 OrbNumWest_Update(:,1), GroundImpact(:,2), ...
 EastFlag_Update(:,1)];

%Sorting of perturbed orbit parameters according to crossing flag
[SMA_Sort,I] = sort(SMA_Skip_UnSort(:,5));
SMA_Skip = SMA_Skip_UnSort(I,:);

%Removal of negative perturbed periods
SMA_Skip(any(SMA_Skip(:,1)<0,2),:) = [];

www.manaraa.com

292

%%%
%% Determination of Maneuver (Descent or Ascent) Velocity
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(SMA_Skip)
 mm = mm + 1;
 if SMA_Skip(ii,end) == 1 %East Crossing, Reference Orbit = Perigee
 SMA_Target(mm,:) = [SMA_Skip(ii,2),SMA_Skip(ii,end)];
 r_Perig(mm,1) = r_Ref;
 r_Apog(mm,1) = (2.*SMA_Target(mm,1)) - r_Perig(mm,1);
 HalfPeriod(mm,1) = (0.5).*SMA_Skip(ii,1);
 V_Initial(mm,1) = sqrt((2.*MU.*r_Apog(mm,1))./ ...
 (r_Perig(mm,1).*(r_Apog(mm,1) + r_Perig(mm,1))));
 elseif SMA_Skip(ii,end) == 2 %West Crossing, Reference Orbit = Apogee
 SMA_Target(mm,:) = [SMA_Skip(ii,2),SMA_Skip(ii,end)];
 r_Apog(mm,1) = r_Ref;
 r_Perig(mm,1) = (2.*SMA_Target(mm,1)) - r_Apog(mm,1);
 HalfPeriod(mm,1) = (0.5).*SMA_Skip(ii,1);
 V_Initial(mm,1) = sqrt((2.*MU.*r_Perig(mm,1))./ ...
 (r_Apog(mm,1).*(r_Apog(mm,1) + r_Perig(mm,1))));
 end
end

V_Decrement = 1 - 0.9999; %Decrement value for velocity
V_Check(1,1) = VCoeff.*V_Initial(Xing,1); %Guess for velocity (km/s)
PSI_Check(1,1) = PSI_Ref; %Guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_t, Traj_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,HalfPeriod(Xing),r_Ref,V_Check(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check(1,1),bank);

if SMA_Target(Xing,2) == 1 %Find: Apogee radial position (km)
 [r_Check(1,1),ApogFlag] = max(Traj_States(:,1));
elseif SMA_Target(Xing,2) == 2 %Find: Perigee radial position (km)
 [r_Check(1,1),PerigFlag] = min(Traj_States(:,1));
end

%Semi-major axis (km)
SMA_Check(1,1) = 0.5*(r_Ref + r_Check(1,1));

%Iteration error (s)
GuessError(1,1) = -((SMA_Check(1,1) - SMA_Ref)/ ...
 ((V_Check(1,1) - V_Decrement) - V_Check(1,1)));

%Updated velocity (km/s)
V_Check(2,1) = (V_Check(1,1) - V_Decrement) - ...
 ((SMA_Target(Xing,1) - SMA_Check(1,1))/GuessError);

%Updated heading angle (rad)
PSI_Check(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check(2,1)));

www.manaraa.com

293

%Difference between calculated and target trajectory states
IterDiff_SMA(1,1) = abs(SMA_Target(Xing,1) - SMA_Check(1,1));
IterDiff_PSI(1,1) = abs(PSI_Check(2,1) - PSI_Check(1,1));

IterCount = 1; %Initializes iteration counter for Newton-Raphson loop

%% Newton-Raphson Iteration
for ii = 2:IterMax
 while abs(SMA_Target(Xing,1) - SMA_Check(ii-1,1)) > 1E-10 && ...
 abs(PSI_Check(ii,1) - PSI_Check(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_t, Traj_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,HalfPeriod(Xing),r_Ref,V_Check(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check(ii,1),bank);

 if SMA_Target(Xing,2) == 1 %Find: Perigee radial position (km)
 [r_Check(ii,1),PerigFlag] = max(Traj_States(:,1));

 elseif SMA_Target(Xing,2) == 2 %Find: Apogee radial position (km)
 [r_Check(ii,1),ApogFlag] = min(Traj_States(:,1));
 end

 %Current iteration semi-major axis (km)
 SMA_Check(ii,1) = 0.5*(r_Ref + r_Check(ii,1));

 %Iteration error (sec)
 GuessError(ii,1) = -((SMA_Check(ii,1) - SMA_Check(ii-1,1))/ ...
 (V_Check(ii,1) - V_Check(ii-1,1)));

 %Updated velocity (km/s)
 V_Check(ii+1,1) = V_Check(ii,1) - ...
 ((SMA_Target(Xing,1) - SMA_Check(ii,1))/GuessError(ii,1));

 %Updated heading angle (rad)
 PSI_Check(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterDiff_SMA(ii,1) = abs(SMA_Target(Xing,1) - SMA_Check(ii,1));
 IterDiff_PSI(ii,1) = abs(PSI_Check(ii,1) - PSI_Check(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Maneuver = V_Check(ii,1); %Maneuver velocity for target SMA
dV_Maneuver = abs(V_Maneuver - V_Rel); %Maneuver delta-V (km/s)
PSI_Maneuver = PSI_Check(ii,1); %Maneuver heading angle (deg)

www.manaraa.com

294

%Trajectory simulation for skip maneuver
[Skip_t, Skip_States] = Maneuver_MainFunction(Vehicle_Choice,1,1,1,1,1, ...
 SMA_Skip(Xing,1)*(SMA_Skip(Xing,3)),r_Ref, ...
 V_Maneuver,lon_Ref,lat_Ref,fpa_Ref,PSI_Maneuver,bank);

%%%
%% Propagation of Re-Circularized Orbit
Time_Max = 5000; %Maximum simulation time (s)
ecc = 0; %Orbit eccentricity
r_Prop = Skip_States(end,1); %Orbit radial position (km)
h_Prop = r_Prop - RE; %Orbit altitude (km)
lon_Prop = Skip_States(end,3); %Initial longitude (rad)
lat_Prop = Skip_States(end,4); %Initial geodetic latitude (rad)
fpa_Prop = 0; %Flight-path angle (rad)
PSI_Prop = PSI_Ref; %Heading angle (rad)
bank = 0; %Bank angle (deg)

%Re-circularized orbit parameters
SMA_Prop = 0.5*(r_Prop + r_Prop); %Semi-major axis (km)
Period_Prop = (2*pi)*sqrt((SMA_Prop^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_RelProp, PSI_RelProp] = RelativeStates(mass,S,Cd,Cl,h_Prop,lat_Prop, ...
 fpa_Prop,PSI_Prop,bank);

SMA_TargetProp = SMA_Prop; %Target semi-major axis for iteration (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_CheckProp(1,1) = V_RelProp; %Initial guess for velocity (km/s)
PSI_CheckProp(1,1) = PSI_Prop; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckProp(1,1), ...
 lon_Prop,lat_Prop,fpa_Prop,PSI_CheckProp(1,1),bank);
 [r_CheckProp(1,1),ApogFlag] = max(Traj_StatesP(:,1));

%Semi-major axis (km)
SMA_CheckProp(1,1) = 0.5*(r_Prop + r_CheckProp(1,1));

%Iteration error (s)
GuessError_Prop(1,1) = -((SMA_CheckProp(1,1) - SMA_Prop)/ ...
 ((V_CheckProp(1,1) - V_Decrement) - V_CheckProp(1,1)));

%Updated velocity (km/s)
V_CheckProp(2,1) = (V_CheckProp(1,1) - V_Decrement) - ...
 ((SMA_TargetProp - SMA_CheckProp(1,1))/GuessError_Prop(1,1));

%Updated heading angle (rad)
PSI_CheckProp(2,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckProp(2,1)));

www.manaraa.com

295

%Difference between calculated and target trajectory states
IterDiff_SMA_Prop(1,1) = abs(SMA_TargetProp - SMA_CheckProp(1,1));
IterDiff_PSI_Prop(1,1) = abs(PSI_CheckProp(2,1) - PSI_CheckProp(1,1));
IterCount_Prop = 1; %Initializes iteration counter for Newton-Raphson loop

%% Newton-Raphson Iteration
for ii = 2:IterMax
 while abs(SMA_TargetProp - SMA_CheckProp(ii-1,1)) > 1E-10 && ...
 abs(PSI_CheckProp(ii,1) - PSI_CheckProp(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_tP, Traj_StatesP] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,0.5*Period_Prop,r_Prop,V_CheckProp(ii,1), ...
 lon_Prop,lat_Prop,fpa_Prop,PSI_CheckProp(ii,1),bank);

 [r_CheckProp(ii,1),ApogFlag] = max(Traj_StatesP(:,1));

 %Current iteration semi-major axis (km)
 SMA_CheckProp(ii,1) = 0.5*(r_Prop + r_CheckProp(ii,1));

 %Iteration error (sec)
 GuessError_Prop(ii,1) = -((SMA_CheckProp(ii,1) – ...
 SMA_CheckProp(ii-1,1))/ ...
 (V_CheckProp(ii,1) - V_CheckProp(ii-1,1)));

 %Updated velocity (km/s)
 V_CheckProp(ii+1,1) = V_CheckProp(ii,1) - ...
 ((SMA_TargetProp - SMA_CheckProp(ii,1))/GuessError_Prop(ii,1));

 %Updated heading angle (rad)
 PSI_CheckProp(ii+1,1) = PSI_Prop + ...
 asin((2*pi*(r_Prop)*sin(PSI_Prop))/(86400*V_CheckProp(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterDiff_SMA_Prop(ii,1) = abs(SMA_TargetProp - SMA_CheckProp(ii,1));
 IterDiff_PSI_Prop(ii,1) = abs(PSI_CheckProp(ii,1) – ...
 PSI_CheckProp(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount_Prop = IterCount_Prop + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

%Trajectory simulation for re-circularized orbit
[Orbit_t, Orbit_States] = Maneuver_MainFunction(Vehicle_Choice, ...
 1,1,1,1,1,Time_Max,r_Prop,V_CheckProp(ii), ...
 lon_Prop,lat_Prop,fpa_Prop,PSI_CheckProp(ii),bank);

%Concatenation of maneuver and orbit propagation time vectors
PropOrb_t = [Skip_t ; Skip_t(end) + Orbit_t(2:end)];

www.manaraa.com

296

%Concatenation of maneuver and orbit propagation states
PropOrb_States = [Skip_States(:,1:6) ; Orbit_States(2:end,1:6)];
PropOrb_h = PropOrb_States(:,1) - RE; %Altitude (km)
PropOrb_Lon_deg = rem((rad2deg(PropOrb_States(:,3)) ...
 + 180),360) - 180; %Longitude (rad)
PropOrb_Lat_deg = rad2deg(PropOrb_States(:,4)); %Geocentric latitude (rad)

%%%
%% Determination of Propagated Trajectory Crossings of Target Coordinates
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lon_deg)
 mm = mm + 1;
 if abs(PropOrb_Lon_deg(ii) - Lon_Target) < 20
 LonTGT_Crossing(mm,1) = PropOrb_t(ii);
 LonTGT_Crossing(mm,2) = PropOrb_h(ii);
 LonTGT_Crossing(mm,3) = PropOrb_Lat_deg(ii);
 LonTGT_Crossing(mm,4) = PropOrb_Lon_deg(ii);
 else
 LonTGT_Crossing(mm,1:4) = 0;
 end
end

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lat_deg)
 mm = mm + 1;
 if abs(PropOrb_Lat_deg(ii) - Lat_Target) < 20
 LatTGT_Crossing(mm,1) = PropOrb_t(ii);
 LatTGT_Crossing(mm,2) = PropOrb_h(ii);
 LatTGT_Crossing(mm,3) = PropOrb_Lon_deg(ii);
 LatTGT_Crossing(mm,4) = PropOrb_Lat_deg(ii);
 else
 LatTGT_Crossing(mm,1:4) = 0;
 end
end

%%%
%% Determination of Indices Corresponding to Crossings
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(LonTGT_Crossing)
 if LonTGT_Crossing(ii) ~= 0
 mm = mm + 1;
 FlagVector_Lon(mm,1) = ii;
 WithinIdent_Lon(mm,:) = LonTGT_Crossing(ii,:);
 end
end
FlagVector_Lon = [FlagVector_Lon;0];

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(LatTGT_Crossing)
 if LatTGT_Crossing(ii) ~= 0
 mm = mm + 1;

www.manaraa.com

297

 FlagVector_Lat(mm,1) = ii;
 WithinIdent_Lat(mm,:) = LatTGT_Crossing(ii,:);
 end
end
FlagVector_Lat = [FlagVector_Lat;0];

%%%
%% Determination of Indices Corresponding to Jumps in Crossings
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector_Lon)-1
 if abs((FlagVector_Lon(ii+1) - FlagVector_Lon(ii))) > 1
 mm = mm + 1;
 LonTGT_Jump(mm,1) = ii;
 end
end
LonTGT_Jump = [0;LonTGT_Jump];

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector_Lat)-1
 if abs((FlagVector_Lat(ii+1) - FlagVector_Lat(ii))) > 1
 mm = mm + 1;
 LatTGT_Jump(mm,1) = ii;
 end
end
LatTGT_Jump = [0;LatTGT_Jump];

%%%
%% Interpolation of Crossing Trajectories
%Longitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(LonTGT_Jump)
 mm = mm + 1;
 LonTGT_Interp(mm,:) = ...
 interp1(LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1): ...
 FlagVector_Lon(LonTGT_Jump(ii)),4), ...
 LonTGT_Crossing(FlagVector_Lon(LonTGT_Jump(ii-1)+1): ...
 FlagVector_Lon(LonTGT_Jump(ii)),1:3), ...
 Lon_Target,'spline'); %Cubic spline interpolation
end

%Latitude crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(LatTGT_Jump)
 mm = mm + 1;
 LatTGT_Interp(mm,:) = ...
 interp1(LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1): ...
 FlagVector_Lat(LatTGT_Jump(ii)),4), ...
 LatTGT_Crossing(FlagVector_Lat(LatTGT_Jump(ii-1)+1): ...
 FlagVector_Lat(LatTGT_Jump(ii)),1:3), ...
 Lat_Target,'spline'); %Cubic spline interpolation
end

www.manaraa.com

298

%Removal of negative perturbed periods
LatTGT_Interp(any(LatTGT_Interp(:,1)<0,2),:) = [];

%%%
%% Determination of Minimum Target Miss Distance
%Target miss distance for both spherical and oblate planetary models
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lon_deg)
 mm = mm + 1;
 SphereDist_Lon = CoordDist(Lon_Target,Lon_Target, ...
 Lat_Target,LonTGT_Interp(:,3),1);
end

%Longitudinal target miss distance (km)
[MinDistance_Lon,MinFlag_Lon] = min(SphereDist_Lon(:,1));

mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(PropOrb_Lat_deg)
 mm = mm + 1;
 SphereDist_Lat = CoordDist(Lon_Target,LatTGT_Interp(:,3), ...
 Lat_Target,Lat_Target,1);
end

%Latitudinal target miss distance (km)
[MinDistance_Lat,MinFlag_Lat] = min(SphereDist_Lat(:,1));

MinDist_Vec = [MinDistance_Lon, MinDistance_Lat]; %Miss distance vector
MinFlag_Vec = [MinFlag_Lon, MinFlag_Lat]; %Minimum flag vector

[MinDistance, MinIndex] = min(MinDist_Vec); %Minimum miss distance
MinFlag = MinFlag_Vec(MinIndex); %Flag for minimum miss distance

%Determination of interpolated data set associated with min. miss distance
if MinIndex == 1
 MinInterp = LonTGT_Interp; %Interpolated data for longitude crossing
elseif MinIndex == 2
 MinInterp = LatTGT_Interp; %Interpolated data for latitude crossing
end

%%%
%% Determination of Total Skip Maneuver Delta-V
V_EndSkip = Skip_States(end,2); %Velocity where fpa = 0 (km/s)
dV_ReCirc = abs(V_EndSkip - V_RelProp); %Re-circularization delta-V (km/s)

%Total delta-V for skip maneuver (km/s)
dV_SkipTotal = dV_Maneuver + dV_ReCirc;

%%%
%% Target Arrival and Trajectory Parameters
%Time-of-arrival at target (hr)
TimeArrival = (MinInterp(MinFlag,1))*(1/60)*(1/60);

%Altitude-of-arrival at target (km)
AltArrival = MinInterp(MinFlag,2);

www.manaraa.com

299

PertOrbNum = SMA_Skip(Xing,3); %Number of perturbed orbits
TypeFlag = SMA_Target(Xing,2); %Type of maneuver flag

h_Apog = r_Apog(Xing) - RE; %Skip apogee altitude (km)
h_Perig = r_Perig(Xing) - RE; %Skip perigee altitude (km)
SkipEcc = ((r_Apog(Xing) - r_Perig(Xing))/ ...
 (r_Apog(Xing) + r_Perig(Xing))); %Eccentricity

%Payload imager field-of-view (FOV) and resolution during over-flight
%Visible spectrum imager
[FOV_m2_Vis, FOV_km2_Vis, Resolution_Vis] = ...
 PayloadImager(AltArrival*(1.0E3),1.15,2.70,1.0E-6);
%Infrared spectrum imager
[FOV_m2_IR, FOV_km2_IR, Resolution_IR] = ...
 PayloadImager(AltArrival*(1.0E3),1.15,2.70,11.0E-6);

%Over-flight parameter matrix
Trajectory_Analysis = [TypeFlag, TimeArrival, AltArrival, ...
 SMA_Skip(Xing,4), PertOrbNum, h_Apog, h_Perig, ...
 SkipEcc, Resolution_Vis, dV_SkipTotal, ...
 MinDistance, dV_Maneuver, dV_ReCirc, Resolution_IR];

%Prints notification of maneuver simulation completion to command window
fprintf('Simulation Run: %d \n',Xing);

%%%
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg
%Reference orbit
[Lon_RefOrb, Lat_RefOrb, LonSplit_RefOrb, LatSplit_RefOrb] = ...
 CoordinateJump(RefOrb_States);
%Maneuver orbit
[Lon_Skip, Lat_Skip, LonSplit_Skip, LatSplit_Skip] = ...
 CoordinateJump(Skip_States);
%Propagated re-circularized orbit
[Lon_PropOrb, Lat_PropOrb, LonSplit_PropOrb, LatSplit_PropOrb] = ...
 CoordinateJump(PropOrb_States);

%%%
%% Command Window Printing
fprintf('Maneuver Velocity: %f km/s \n', V_Maneuver);
fprintf('Maneuver Heading Angle: %f deg \n', rad2deg(PSI_Maneuver));
fprintf('Number of Iterations: %d \n', IterCount);
fprintf('Minimum Miss Distance: %f km \n', MinDistance);
fprintf('Time-of-Arrival: %f hr \n', TimeArrival);
fprintf('Maneuver Delta-V: %f km/s \n', dV_Maneuver);
fprintf('Total Delta-V: %f km/s \n', dV_SkipTotal);

%%%
%% Plotting Commands
%Conversion of time units for plotting
[Skip_Time, time_string] = TimeUtility(Skip_t,2);
[PropOrb_Time, time_string] = TimeUtility(PropOrb_t,2);

www.manaraa.com

300

%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection
subplot(2,2,1); box on; grid off;
hold on; cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);
xlim([-180 180]); ylim([-90 90]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

%Coordinates (x,y) for target latitude, longitude end points
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target];
p1_Lon = [Lon_Target, -90]; p2_Lon = [Lon_Target, 90];

%Target latitude, longitude lines
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:');
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:');

hold on; %Plate Carree world map projection
landareas = shaperead('landareas.shp','UseGeoCoords',true);
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

%Target location
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ...
 'MarkerFaceColor','r','MarkerSize',5);

%%%
%% Geocentric Latitude (deg) v. Longitude (deg)
subplot(2,2,2); box on; grid off;
hold on; cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);
% xlim([-180 180]); ylim([-90 90]);
xlim([-180 180]);
ylim([floor(Lat_Target)-5, ceil(Lat_Target)+5]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

%Coordinates (x,y) for target latitude, longitude end points
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target];
p1_Lon = [Lon_Target, -90]; p2_Lon = [Lon_Target, 90];

%Trajectory crossings of target latitude
hold on;
plot(CrossingIdent(:,3),CrossingIdent(:,4),'ko');
hold on;
plot(CrossInterp(:,3),Lat_Target,'gs','LineWidth',2);

%Target latitude, longitude lines
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r--');
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r--');

%Target location
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ...
 'MarkerFaceColor','r','MarkerSize',5);

www.manaraa.com

301

%%%
%% Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection
subplot(2,2,3); box on; grid off;
hold on;
h_Ref = cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);
hold on;
h_Prop = cellfun(@plot,LonSplit_PropOrb,LatSplit_PropOrb);

set(h_Ref, 'LineStyle','-','Color','b');
set(h_Prop,'LineStyle','--','Color','r');

xlim([-180 180]); ylim([-90 90]);
% xlim([floor(Lon_Target)-10, ceil(Lon_Target)+10]);
% ylim([floor(Lat_Target)-10, ceil(Lat_Target)+10]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

% legend('Reference Orbit','Perturbed Orbit','Location','NorthEast');

%Coordinates (x,y) for target latitude, longitude end points
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target];
p1_Lon = [Lon_Target, -90]; p2_Lon = [Lon_Target, 90];

%Target latitude, longitude lines
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:');
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:');

hold on; %Plate Carree world map projection
landareas = shaperead('landareas.shp','UseGeoCoords',true);
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

%Target location
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ...
 'MarkerFaceColor','r','MarkerSize',5);

%%%
%% Geodetic Altitude (km) vs. Time (sec)
[PropOrb_t, time_string] = TimeUtility(PropOrb_t,2); %Time unit conversion
subplot(2,2,4); box on; grid on;

plot(PropOrb_t,PropOrb_h,'b');
xlabel(['Time, ', time_string]);
ylabel('Geodetic Altitude, km');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

www.manaraa.com

302

RefOrb_Targeting.m

clear all; clc; close all;

global MU RE
global Lat_Denver Lon_Denver Lat_Gibraltar Lon_Gibraltar
global Lat_Glasgow Lon_Glasgow Lat_Grozny Lon_Grozny
global Lat_Moscow Lon_Moscow Lat_Ponti Lon_Ponti
global Lat_Pyong Lon_Pyong Lat_Reyk Lon_Reyk
global Lat_Tehran Lon_Tehran Lat_Tokyo Lon_Tokyo
global Lat_Brasil Lon_Brasil Lat_Buenos Lon_Buenos
global Lat_Canberra Lon_Canberra Lat_Cape Lon_Cape

WGS84Constants; %Loads global constants from external m-file
GroundTargets; %Loads ground target geographical coordinates (deg)

%%%
%% Target Selection and Targeting Loop Initialization
Vehicle_Choice = 1;
Target_Choice = 12;

if Target_Choice == 1 %Denver, United States
 Lat_Target = Lat_Denver; Lon_Target = Lon_Denver; dLat = 3;
elseif Target_Choice == 2 %Gibraltar, United Kingdom
 Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5;
elseif Target_Choice == 3 %Glasgow, Scotland
 Lat_Target = Lat_Glasgow; Lon_Target = Lon_Glasgow; dLat = 3;
elseif Target_Choice == 4 %Grozny, Chechnya
 Lat_Target = Lat_Grozny; Lon_Target = Lon_Grozny; dLat = 3;
elseif Target_Choice == 5 %Moscow, Russia
 Lat_Target = Lat_Moscow; Lon_Target = Lon_Moscow; dLat = 3;
elseif Target_Choice == 6 %Pontianak, Indonesia
 Lat_Target = Lat_Ponti; Lon_Target = Lon_Ponti; dLat = 7;
elseif Target_Choice == 7 %Pyongyang, North Korea
 Lat_Target = Lat_Pyong; Lon_Target = Lon_Pyong; dLat = 5;
elseif Target_Choice == 8 %Reykjavik, Iceland
 Lat_Target = Lat_Reyk; Lon_Target = Lon_Reyk; dLat = 3;
elseif Target_Choice == 9 %Tehran, Iran
 Lat_Target = Lat_Tehran; Lon_Target = Lon_Tehran; dLat = 5;
elseif Target_Choice == 10 %Tokyo, Japan
 Lat_Target = Lat_Tokyo; Lon_Target = Lon_Tokyo; dLat = 4;
elseif Target_Choice == 11 %Brasilia, Brazil
 Lat_Target = Lat_Brasil; Lon_Target = Lon_Brasil; dLat = 4;
elseif Target_Choice == 12 %Buenos Aires, Argentina
 Lat_Target = Lat_Buenos; Lon_Target = Lon_Buenos; dLat = 4;
elseif Target_Choice == 13 %Canberra, Australia
 Lat_Target = Lat_Canberra; Lon_Target = Lon_Canberra; dLat = 4;
elseif Target_Choice == 14 %Cape Town, South Africa
 Lat_Target = Lat_Cape; Lon_Target = Lon_Cape; dLat = 4;
end

www.manaraa.com

303

%%%
%% Vehicle Model
if Vehicle_Choice == 9 %VEHICLE SELECTION OVERRIDE
 mass = 2000; %Mass (kg)
 S_m2 = 18.5; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = 0.5; %Drag coefficient
 Cl = 3.0; %Lift coefficient
else
 [Vehicle] = VehicleSpecs(Vehicle_Choice);
 mass = Vehicle.mass; %Mass (kg)
 S_m2 = Vehicle.S_m2; %Planform area (m^2)
 S = S_m2/(1000^2); %Planform area (km^2)
 Cd = Vehicle.Cd; %Drag coefficient
 Cl = Vehicle.Cl; %Lift coefficient
end

%%%
PSI_Ref0 = 60; %Initial reference orbit heading angle (deg)
PSI_Ref = PSI_Ref0; %Initial estimate for heading angle (deg)
MissDistance = 9999; %Initializes 'MissDistance' variable for targeting loop
WhileCount = 0; %Initializes 'while'-loop iteration counter

while MissDistance > 2

%%%
%% Initial Reference Orbit Conditions
Time_Max = 1; %Maximum simulation time (days)
ecc_Ref = 0; %Orbit eccentricity
h_Ref = 1000; %Orbit geodetic altitude (km)
lon_Ref = 0; %Initial longitude (deg)
lat_Ref = 0; %Initial geodetic latitude (deg)
fpa_Ref = 0; %Flight-path angle (deg)
bank = 0; %Bank angle (deg)

%Converts and overwrites initial angle variables
lon_Ref = deg2rad(lon_Ref); lat_Ref = deg2rad(lat_Ref);
fpa_Ref = deg2rad(fpa_Ref); PSI_Ref = deg2rad(PSI_Ref);

%Reference orbit parameters
r_Ref = h_Ref + RE; %Radial position (km)
SMA_Ref = 0.5*(r_Ref + r_Ref); %Semi-major axis (km)
RefPeriod = (2*pi)*sqrt((SMA_Ref^3)/MU); %Orbit period (sec)

%Velocity relative to rotating frame (rotating planet)
[V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Ref,lat_Ref, ...
 fpa_Ref,PSI_Ref,bank);

%Conversion of time units from days to seconds
Time_Max = Time_Max*(24)*(60)*(60);
SMA_Target0 = SMA_Ref; %Target semi-major axis (km)
V_Decrement = 1 - 0.9999; %Decrement value for velocity (km/s)
V_Check0(1,1) = V_Rel; %Initial guess for velocity (km/s)
PSI_Check0(1,1) = PSI_Ref; %Initial guess for heading angle (rad)
IterMax = 50; %Maximum number of iterations

www.manaraa.com

304

%% First Iteration
%Trajectory simulation [0:t:HalfPeriod]
[Traj_t0, Traj_States0] = Maneuver_MainFunction(1,1,1,1,1,1, ...
 0.5*RefPeriod,r_Ref,V_Check0(1,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(1,1),bank);

[r_Check0(1,1),ApogFlag] = max(Traj_States0(:,1));

%Semi-major axis (km)
SMA_Check0(1,1) = 0.5*(r_Ref + r_Check0(1,1));

%Iteration error (s)
GuessError0(1,1) = -((SMA_Check0(1,1) - SMA_Ref)/ ...
 ((V_Check0(1,1) - V_Decrement) - V_Check0(1,1)));

%Updated velocity (km/s)
V_Check0(2,1) = (V_Check0(1,1) - V_Decrement) - ...
 ((SMA_Target0 - SMA_Check0(1,1))/GuessError0(1,1));

%Updated heading angle (rad)
PSI_Check0(2,1) = PSI_Ref + ...
 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(2,1)));

%Difference between calculated and target trajectory states
IterativeDiff_SMA0(1,1) = abs(SMA_Target0 - SMA_Check0(1,1));
IterativeDiff_PSI0(1,1) = abs(PSI_Check0(2,1) - PSI_Check0(1,1));

IterCount = 1; %Initializes iteration counter for Newton-Raphson loop

%% Newton-Raphson Iteration
for ii = 2:IterMax
 while abs(SMA_Target0 - SMA_Check0(ii-1,1)) > 1E-10 && ...
 abs(PSI_Check0(ii,1) - PSI_Check0(ii-1,1)) > 1E-10

 %Trajectory simulation [0:t:HalfPeriod]
 [Traj_t0, Traj_States0] = Maneuver_MainFunction(1,1,1,1,1,1, ...
 0.5*RefPeriod,r_Ref,V_Check0(ii,1), ...
 lon_Ref,lat_Ref,fpa_Ref,PSI_Check0(ii,1),bank);

 [r_Check0(ii,1),ApogFlag] = max(Traj_States0(:,1));

 %Current iteration semi-major axis (km)
 SMA_Check0(ii,1) = 0.5*(r_Ref + r_Check0(ii,1));

 %Iteration error (sec)
 GuessError0(ii,1) = -((SMA_Check0(ii,1) - SMA_Check0(ii-1,1))/ ...
 (V_Check0(ii,1) - V_Check0(ii-1,1)));

 %Updated velocity (km/s)
 V_Check0(ii+1,1) = V_Check0(ii,1) - ...
 ((SMA_Target0 - SMA_Check0(ii,1))/GuessError0(ii,1));

www.manaraa.com

305

 %Updated heading angle (rad)
 PSI_Check0(ii+1,1) = PSI_Ref + ...
 asin((2*pi*(r_Ref)*sin(PSI_Ref))/(86400*V_Check0(ii+1,1)));

 %Difference between calculated and target trajectory states
 IterativeDiff_SMA0(ii,1) = abs(SMA_Target0 - SMA_Check0(ii,1));
 IterativeDiff_PSI0(ii,1) = abs(PSI_Check0(ii,1) – ...
 PSI_Check0(ii-1,1));

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

V_Rel0 = V_Check0(ii); %Velocity (km/s)
PSI_Rel0 = PSI_Check0(ii); %Heading angle (rad)

%Trajectory simulation for reference orbit
[RefOrb_t,RefOrb_States] = Maneuver_MainFunction(1,1,1,1,1,1,Time_Max, ...
 r_Ref,V_Rel0,lon_Ref,lat_Ref,fpa_Ref,PSI_Rel0,bank);

%%%
%% Data Manipulation
r_Data = RefOrb_States(:,1); %Radial position (km)
h_Data = r_Data - RE; %Altitude (km)
Lon_Data = RefOrb_States(:,3); %Longitude (rad)
Lat_Data = RefOrb_States(:,4); %Geocentric latitude (rad)

%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180)
Lon_Data = rem((rad2deg(Lon_Data) + 180),360) - 180;

%Converts geodetic latitude from radians to degrees
Lat_Data = rad2deg(Lat_Data);

%%%
%% Determination of Trajectory Crossings of Target Longitude
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(Lon_Data)
 mm = mm + 1;
 if abs(Lon_Data(ii) - Lon_Target) < 10
 LonCrossing(mm,1) = RefOrb_t(ii);
 LonCrossing(mm,2) = h_Data(ii);
 LonCrossing(mm,3) = Lat_Data(ii);
 LonCrossing(mm,4) = Lon_Data(ii);
 else
 LonCrossing(mm,1:4) = 0;
 end
end

www.manaraa.com

306

%%%
%% Determination of Indices Corresponding to Longitude Crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(LonCrossing)
 if LonCrossing(ii) ~= 0
 mm = mm + 1;
 FlagVector(mm,1) = ii;
 WithinIdent(mm,:) = LonCrossing(ii,:);
 end
end
FlagVector = [FlagVector;0];

%%%
%% Determination of Indices Corresponding to Jumps in Longitude Crossings
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(FlagVector)-1
 if abs((FlagVector(ii+1) - FlagVector(ii))) > 1
 mm = mm + 1;
 LonJump(mm,1) = ii;
 end
end
LonJump = [0;LonJump];

%%%
%% Interpolation of Longitude Crossing Trajectories
mm = 0; %Initializes vector concatenation counter at zero
for ii = 2:length(LonJump)
 mm = mm + 1;
 LonInterp(mm,:) = ...
 interp1(LonCrossing(FlagVector(LonJump(ii-1)+1): ...
 FlagVector(LonJump(ii)),4), ...
 LonCrossing(FlagVector(LonJump(ii-1)+1): ...
 FlagVector(LonJump(ii)),1:3), ...
 Lon_Target,'spline'); %Cubic spline interpolation
end

%%%
%% Determination of Minimum Target Miss Distance
%Target miss distance for both spherical and oblate planetary models
mm = 0; %Initializes vector concatenation counter at zero
for ii = 1:length(Lat_Data)
 mm = mm + 1;
 SphereDist = ...
 CoordDist(Lon_Target,Lon_Target,Lat_Target,LonInterp(:,3),1);
end

%Target miss distance (km)
[MinDistance,MinFlag] = min(SphereDist(:,1));
MissDistance = MinDistance

%Time-of-arrival at target (hr)
TimeArrival = (LonInterp(MinFlag,1))*(1/60)*(1/60);

%Latitude-of-arrival at target (deg)
LatArrival = LonInterp(MinFlag,3);

www.manaraa.com

307

if LatArrival > Lat_Target
 if MissDistance > 1000
 PSI_Ref = rad2deg(PSI_Ref) + 1.0;
 elseif MissDistance > 100 && MissDistance <= 1000
 PSI_Ref = rad2deg(PSI_Ref) + 0.5;
 elseif MissDistance > 20 && MissDistance <= 100
 PSI_Ref = rad2deg(PSI_Ref) + 0.1;
 elseif MissDistance > 3 && MissDistance <= 20
 PSI_Ref = rad2deg(PSI_Ref) + 0.01;
 elseif MissDistance <= 3
 PSI_Ref = rad2deg(PSI_Ref) + 0.001;
 end

elseif LatArrival < Lat_Target
 if MissDistance > 1000
 PSI_Ref = rad2deg(PSI_Ref) - 1.0;
 elseif MissDistance > 100 && MissDistance <= 1000
 PSI_Ref = rad2deg(PSI_Ref) - 0.5;
 elseif MissDistance > 20 && MissDistance <= 100
 PSI_Ref = rad2deg(PSI_Ref) - 0.1;
 elseif MissDistance > 3 && MissDistance <= 20
 PSI_Ref = rad2deg(PSI_Ref) - 0.01;
 elseif MissDistance <= 3
 PSI_Ref = rad2deg(PSI_Ref) - 0.001;
 end
end

WhileCount = WhileCount + 1; %Update to 'while'-loop iteration counter

%Clearing of variables for targeting loop
clear LonCrossing; clear FlagVector; clear WithinIdent;
clear LonJump; clear LonInterp;

end

%Payload imager field-of-view (FOV) and resolution during over-flight
%Visible spectrum imager
[FOV_m2_Vis,FOV_km2_Vis,Resolution_Vis] = ...
 PayloadImager(h_Ref*(1.0E3),1.15,2.70,1.0E-6);

%%%
%% Determination of Simple Plane Change Delta-V
%Initial velocity relative to rotating frame (rotating planet)
[V_Rel_Init,PSI_Rel_Init] = RelativeStates(mass,S,Cd,Cl,h_Ref,lat_Ref, ...
 fpa_Ref,deg2rad(PSI_Ref0),bank);

dV_Simple = InclinationChange(V_Rel_Init,fpa_Ref,abs(PSI_Ref0 - PSI_Ref));

%%%
%% Re-Defines Data to Reflect Jumps in Data between 180 and -180 deg
%Reference orbit
[Lon_RefOrb, Lat_RefOrb, LonSplit_RefOrb,LatSplit_RefOrb] = ...
 CoordinateJump(RefOrb_States);

www.manaraa.com

308

%%%
%% Command Window Printing
fprintf('Minimum Miss Distance: %f km \n', MinDistance);
fprintf('Time-of-Arrival: %f hr \n', TimeArrival);
fprintf('Simple Plane Change Delta-V: %f km/s \n', dV_Simple);

return

%%%
%% Plotting Commands
%Geocentric Latitude (deg) v. Longitude (deg) with Plate Carree Projection
figure; box on; grid on;
hold on; cellfun(@plot,LonSplit_RefOrb, LatSplit_RefOrb);
xlim([-180 180]); ylim([-90 90]);
xlabel('Longitude, deg');
ylabel('Geocentric Latitude, deg');

%Coordinates (x,y) for target latitude, longitude end points
p1_Lat = [-180, Lat_Target]; p2_Lat = [180, Lat_Target];
p1_Lon = [Lon_Target, -90]; p2_Lon = [Lon_Target, 90];

%Target latitude, longitude lines
hold on; plot([p1_Lat(1),p2_Lat(1)],[p1_Lat(2),p2_Lat(2)],'r:');
hold on; plot([p1_Lon(1),p2_Lon(1)],[p1_Lon(2),p2_Lon(2)],'r:');

% hold on; %Plate Carree world map projection
% landareas = shaperead('landareas.shp','UseGeoCoords',true);
% geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);

%Target location
hold on; plot(Lon_Target,Lat_Target,'o','MarkerEdgeColor','r', ...
 'MarkerFaceColor','r','MarkerSize',5);

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

www.manaraa.com

309

Trajectory_3DPlotting.m

global RE
global Lat_Denver Lon_Denver Lat_Gibraltar Lon_Gibraltar
global Lat_Glasgow Lon_Glasgow Lat_Grozny Lon_Grozny
global Lat_Moscow Lon_Moscow Lat_Ponti Lon_Ponti
global Lat_Pyong Lon_Pyong Lat_Reyk Lon_Reyk
global Lat_Tehran Lon_Tehran Lat_Tokyo Lon_Tokyo
global Lat_Brasil Lon_Brasil Lat_Buenos Lon_Buenos
global Lat_Canberra Lon_Canberra Lat_Cape Lon_Cape

WGS84Constants; %Loads global constants from external m-file
GroundTargets; %Loads ground target geographical coordinates (deg)

%%%
%% Target Selection
Target_Choice = 5;

if Target_Choice == 1 %Denver, United States
 Lat_Target = Lat_Denver; Lon_Target = Lon_Denver; dLat = 3;
elseif Target_Choice == 2 %Gibraltar, United Kingdom
 Lat_Target = Lat_Gibraltar; Lon_Target = Lon_Gibraltar; dLat = 5;
elseif Target_Choice == 3 %Glasgow, Scotland
 Lat_Target = Lat_Glasgow; Lon_Target = Lon_Glasgow; dLat = 3;
elseif Target_Choice == 4 %Grozny, Chechnya
 Lat_Target = Lat_Grozny; Lon_Target = Lon_Grozny; dLat = 3;
elseif Target_Choice == 5 %Moscow, Russia
 Lat_Target = Lat_Moscow; Lon_Target = Lon_Moscow; dLat = 3;
elseif Target_Choice == 6 %Pontianak, Indonesia
 Lat_Target = Lat_Ponti; Lon_Target = Lon_Ponti; dLat = 7;
elseif Target_Choice == 7 %Pyongyang, North Korea
 Lat_Target = Lat_Pyong; Lon_Target = Lon_Pyong; dLat = 5;
elseif Target_Choice == 8 %Reykjavik, Iceland
 Lat_Target = Lat_Reyk; Lon_Target = Lon_Reyk; dLat = 3;
elseif Target_Choice == 9 %Tehran, Iran
 Lat_Target = Lat_Tehran; Lon_Target = Lon_Tehran; dLat = 5;
elseif Target_Choice == 10 %Tokyo, Japan
 Lat_Target = Lat_Tokyo; Lon_Target = Lon_Tokyo; dLat = 4;
elseif Target_Choice == 11 %Brasilia, Brazil
 Lat_Target = Lat_Brasil; Lon_Target = Lon_Brasil; dLat = 4;
elseif Target_Choice == 12 %Buenos Aires, Argentina
 Lat_Target = Lat_Buenos; Lon_Target = Lon_Buenos; dLat = 4;
elseif Target_Choice == 13 %Canberra, Australia
 Lat_Target = Lat_Canberra; Lon_Target = Lon_Canberra; dLat = 4;
elseif Target_Choice == 14 %Cape Town, South Africa
 Lat_Target = Lat_Cape; Lon_Target = Lon_Cape; dLat = 4;
end

%%%
%% 3-D Globe Model
figure; clf reset;
Earth = referenceSphere('earth','km');
Earth.Radius = RE;

www.manaraa.com

310

ax = axesm('globe','Geoid',Earth,'Grid','off', ...
 'GLineWidth',1,'GLineStyle','-', ...
 'Gcolor',[0.9 0.9 0.1],'Galtitude',100);

set(ax,'Position',[0 0 1 1]);
axis equal off; view(3); load topo;
geoshow(topo,topolegend,'DisplayType','texturemap');
demcmap(topo);
land = shaperead('landareas', 'UseGeoCoords',true);
plotm([land.Lat],[land.Lon],'Color','black'); hold on;
rivers = shaperead('worldrivers','UseGeoCoords',true);
plotm([rivers.Lat],[rivers.Lon],'Color','blue'); hold on;

%%%
%% 3-D Ground Track Trajectory
%Initial maneuver and propagated trajectory
VecEnd = 341;
LatProp_Data = PropOrb_States(1:VecEnd,4);
LonProp_Data = PropOrb_States(1:VecEnd,3);
AltProp_Data = PropOrb_h(1:VecEnd,1);

% plotm(rad2deg(Lat_Data),rad2deg(Lon_Data),'k-','MarkerSize',2); hold on;
X_Prop = (RE + 1.*AltProp_Data).*sin((pi/2) -
LatProp_Data).*cos(LonProp_Data);
Y_Prop = (RE + 1.*AltProp_Data).*sin((pi/2) -
LatProp_Data).*sin(LonProp_Data);
Z_Prop = (RE + 1.*AltProp_Data).*cos((pi/2) - LatProp_Data);
plot3(X_Prop,Y_Prop,Z_Prop,'y-','LineWidth',1.5);

%%%
%Molniya 3-42 Orbit Trajectory
load PropOrb_States_342;
load PropOrb_h_342;
load PropOrb_t_342;

VecEnd2 = 131;
LatProp_Data342 = PropOrb_States_342(1:VecEnd2,4);
LonProp_Data342 = PropOrb_States_342(1:VecEnd2,3);
AltProp_Data342 = PropOrb_h_342(1:VecEnd2,1);

X_Prop342 = (RE + 1.*AltProp_Data342).*sin((pi/2) -
LatProp_Data342).*cos(LonProp_Data342);
Y_Prop342 = (RE + 1.*AltProp_Data342).*sin((pi/2) -
LatProp_Data342).*sin(LonProp_Data342);
Z_Prop342 = (RE + 1.*AltProp_Data342).*cos((pi/2) - LatProp_Data342);
plot3(X_Prop342,Y_Prop342,Z_Prop342,'g-','LineWidth',1.5);

%%%
%Maneuver trajectory
LatSkip_Data = Skip_States(:,4);
LonSkip_Data = Skip_States(:,3);
AltSkip_Data = Skip_States(:,1) - RE;

www.manaraa.com

311

X_Skip = (RE + 1.*AltSkip_Data).*sin((pi/2) -
LatSkip_Data).*cos(LonSkip_Data);
Y_Skip = (RE + 1.*AltSkip_Data).*sin((pi/2) -
LatSkip_Data).*sin(LonSkip_Data);
Z_Skip = (RE + 1.*AltSkip_Data).*cos((pi/2) - LatSkip_Data);
plot3(X_Skip,Y_Skip,Z_Skip,'r-','LineWidth',1.5);

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','k'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

www.manaraa.com

312

Appendix G. MATLAB® Code for Support Functions and Utilities

Table G.1. m-File Classification for Support Functions and Utilities

Filename File Type Description

COE2RV Function Converts COEs to 𝑟,𝑉�⃗
CoordDist Function Calculates geodesies

CoordinateJump Function Shifts data to −180° < 𝜃 < 180°

DescentDeltaV Function Calculates impulse to alter 𝛾

Eccentricity Function Calculates orbit eccentricity

EntryDecel Function Calculates re-entry deceleration

FirstSkip Function Calculates single skip parameters

Geocentric2Geodetic Function Calculates geodetic coordinates

Geodetic2Geocentric Function Calculates geocentric coordinates

GroundTargets Function Coordinates of sample targets

HeatFluxModel Function Convective and radiative models

InclinationChange Function Simple plane change

KeplerAnomalies Function Calculates eccentric/true anomalies

OrbitVelocity Function For circular/elliptical orbits

PayloadImager Function Calculates FOV and resolution

RelativeStates Function States relative to rotating frame

RelativeStates_Entry Function States relative to rotating frame

ROT Function Rotation matrices

SingleSkip_Maneuver Function Calculates single skip maneuver

SMARadii Function Calculates apogee and perigee

TimeUtility Function User-defined time scale for plotting

TLE2RV Function Converts TLE to 𝑟,𝑉�⃗

www.manaraa.com

313

COE2RV.m

function [r,V] = COE2RV(MU,a,ecc,inc,raan,omega,nu,Angle_Choice)

%Conversion of classical elements from degrees to radians
if Angle_Choice == 1 %Angle conversion NOT required
 inc = inc; %Inclination (rad)
 raan = raan; %Right ascension of the ascending node (rad)
 omega = omega; %Argument of perigee (rad)
 nu = nu; %True anomaly (rad)
elseif Angle_Choice == 2 %Angle conversion required
 inc = deg2rad(inc);
 raan = deg2rad(raan);
 omega = deg2rad(omega);
 nu = deg2rad(nu);
end

%Semi-parameter (km)
p = a*(1 - (ecc^2));

%Radial position vector in PQW-frame
Rpqw = [((p*cos(nu))/(1 + ecc*cos(nu))); ...
 ((p*sin(nu))/(1 + ecc*cos(nu))); 0];

%Velocity vector in PQW-frame
Vpqw = [-(sqrt(MU/p))*sin(nu); ...
 (sqrt(MU/p))*(ecc + cos(nu)); 0];

%Rotation from PQW-frame to IJK-frame
Rijk = ROT(3,-raan,1)*ROT(1,-inc,1)*ROT(3,-omega,1)*Rpqw;
Vijk = ROT(3,-raan,1)*ROT(1,-inc,1)*ROT(3,-omega,1)*Vpqw;

%Re-assignment of vector variable names
r = Rijk; %(km)
V = Vijk; %(km/s)

www.manaraa.com

314

CoordDist.m

function [GeoDist] = CoordDist(Lon1,Lon2,Lat1,Lat2,Model_Choice)

global RE FlatE

WGS84Constants; %Loads global constants FlatErom external m-FlatEile

%%%
%Conversion from degrees to radians
%Note: Longitude range = [0:theta:360] or [0:theta:2*pi]
Lon1 = deg2rad(Lon1); Lat1 = deg2rad(Lat1);
Lon2 = deg2rad(Lon2); Lat2 = deg2rad(Lat2);

a2 = RE^2; %Square of semi-major axis (km)
b = RE*(1-FlatE); %Semi-minor axis (km)
b2 = b^2; %Square of semi-minor axis (km)

%%%
if Model_Choice == 1
%% Spherical Planet Model: Distance between Two Coordinates (Great Circle)
GeoDist = RE*acos(sin(Lat1)*sin(Lat2) + ...
 cos(Lat1)*cos(Lat2)*cos(Lon1 - Lon2));

%%%
elseif Model_Choice == 2
%% Oblate Planet Model: Distance between Two Coordinates (Vincenty's Method)

%Reduced latitude (rad)
U1 = atan((1-FlatE)*tan(Lat1));
U2 = atan((1-FlatE)*tan(Lat2));

%Longitude difference (rad)
L = Lon2 - Lon1;
Lam = L; %Initial longitude diff. guess on auxiliary sphere (rad)
Old_Lam = 0; %Initialization of preceding iteration variable (rad)
IterCount = 0; %Initialization of iteration counter
IterMax = 50; %Maximum number of iterations

for ii = 1:IterMax
 while abs(Lam - Old_Lam) > 1E-12
 Old_Lam = Lam;

 SIN_Sigma = sqrt(((cos(U2)*sin(Old_Lam))^2) + ...
 ((cos(U1)*sin(U2) - sin(U1)*cos(U2)*cos(Old_Lam))^2));
 COS_Sigma = sin(U1)*sin(U2) + cos(U1)*cos(U2)*cos(Old_Lam);
 AngularDist = atan2(SIN_Sigma,COS_Sigma);

 SIN_Alpha = ((cos(U1)*cos(U2)*sin(Old_Lam))/sin(AngularDist));
 COS_Alpha2 = 1 - (SIN_Alpha^2);
 COS_2Sigma_m = cos(AngularDist) - ((2*sin(U1)*sin(U2))/COS_Alpha2);
 C = (FlatE/16)*COS_Alpha2*(4 + FlatE*(4 - 3*COS_Alpha2));

www.manaraa.com

315

 Lam = L + (1-C)*FlatE*SIN_Alpha*(AngularDist + ...
 C*SIN_Sigma*(COS_2Sigma_m + ...
 C*COS_Sigma*(-1 + 2*(COS_2Sigma_m^2))));

 %Difference between current and preceding longitude difference
 IterativeDiff_Lam(ii,1) = abs(Lam - Old_Lam);

 ii = ii + 1; %Update to row-index counter
 IterCount = IterCount + 1; %Update to iteration counter
 end
 break %Breaks row-index loop once tolerance is fulfilled
end

u2 = ((a2 - b2)/b2)*COS_Alpha2;
A = 1 + (u2/16384)*(4096 + u2*(-768 + u2*(320 - 175*u2)));

B = (u2/1024)*(256 + u2*(-128 + u2*(74 - 47*u2)));
dAngularDist = B*SIN_Sigma*(COS_2Sigma_m + ...
 (1/4)*B*(-1 + 2*(COS_2Sigma_m^2) - ...
 (1/6)*B*COS_2Sigma_m*(-3 + 4*(SIN_Sigma^2))* ...
 (-3 + 4*(COS_2Sigma_m^2))));
GeoDist = abs(b*A*(AngularDist - dAngularDist));

end

CoordinateJump.m

function [Lon_Data,Lat_Data,Lon_Split,Lat_Split] = ...
 CoordinateJump(traj_states)

lon = traj_states(:,3); %Longitude (rad)
lat = traj_states(:,4); %Latitude (rad)

%Transforms longitude from (0 <= lon < 360) to (-180 < lon <= 180)
Lon_Data = rem((rad2deg(lon') + 180),360) - 180;

%Converts geocentric latitude from radians to degrees
Lat_Data = rad2deg(lat');

%Re-defines data to reflect jumps in data between 180 and -180 deg
Lon_Jumps = [0 find(abs(diff(Lon_Data))> 90) length(Lon_Data)];
Lon_Split = mat2cell(Lon_Data,1,diff(Lon_Jumps));
Lat_Split = mat2cell(Lat_Data,1,diff(Lon_Jumps));

www.manaraa.com

316

DescentDeltaV.m

function [dV1,V1] = DescentDeltaV(h_orbit,h_atm,fpa0_deg)

global MU RE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Initial Conditions
r0 = h_orbit + RE; %Radius of initial circular orbit (km)
r_atm = h_atm + RE; %Radius of sensible atmosphere limit (km)
V0 = sqrt(MU./r0); %Circular orbit velocity (km/s)
r_ratio = r_atm./r0; %Radius ratio
fpa0 = deg2rad(fpa0_deg); %Flight-path angle (rad)
cfpa0 = cos(fpa0); %Variable simplification
%%%
%% Descent Impulse Determination
%Equation components
Radicand_num = 2.*(1 - r_ratio);
Radicand_denom = r_ratio.*(1 - ((r_ratio.^2).*(cfpa0.^2)));
Radicand = Radicand_num./Radicand_denom;

%Descent trajectory impulse (km/s)
dV1 = V0.*(1 - ((r_ratio.*cfpa0).*sqrt(Radicand)));
V1 = V0.*sqrt(Radicand); %Entry velocity (km/s)

Eccentricity.m

function ecc = Eccentricity(r_apogee,r_perigee)

 ecc = ((r_apogee - r_perigee)/(r_apogee + r_perigee)); %Eccentricity

www.manaraa.com

317

EntryDecel.m

function [decel] = EntryDecel(Gravity_Choice,mass,S,Cd,Cl,r,V,lat,fpa)

global RE FlatE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Planetary Model
[GravModel] = GravityModel(r,lat);
g = GravModel.g; %Spherical gravity model (km/s^2)

if Gravity_Choice == 1 %Spherical gravity model
 h_gd = r - RE;
elseif Gravity_Choice == 2 %J2 gravity model
 [h_gd,lat_gd] = Geocentric2Geodetic(r,lat,RE,FlatE);
end

%Atmospheric density (kg/km^3)
[Rho] = AtmosModel_PostAnalysis(h_gd,2);

%%%
%% Vehicle Dynamics
D = 0.5.*Rho.*Cd.*S.*(V.^2); %Drag force
L = 0.5.*Rho.*Cl.*S.*(V.^2); %Lift force

%%%
%% Deceleration
%Tangential component (along velocity vector)
decel.Tang = (D./mass) + (g.*sin(fpa));
decel.TangG = decel.Tang./g; %(g's)

%Normal component (along lift vector)
decel.Normal = -(L./mass) - (((V.^2)./r) - g).*cos(fpa);
decel.NormalG = decel.Normal./g; %(g's)

%Magnitude of deceleration
decel.Mag = sqrt((decel.Tang.^2) + (decel.Normal.^2));

%Magnitude of deceleration (g's)
decel.Gs = decel.Mag./g;

www.manaraa.com

318

FirstSkip.m

function [FirstMin,FirstMax,FirstSkip_States] = FirstSkip(t,traj_states)

global RE FlatE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Variable Assignment of States (x)
%Radial position (km)
r = traj_states(:,1);
%Velocity (km/s)
V = traj_states(:,2);
%Longitude (rad)
lon = traj_states(:,3);
%Latitude (rad)
lat = traj_states(:,4);
%Flight-path angle (rad)
fpa = traj_states(:,5);
%Heading angle (rad)
heading = traj_states(:,6);

%%%
%% Determination of First Perigee States in Skip Trajectory
for ctr_min = 2:length(r)
 if r(ctr_min) < r(ctr_min - 1)
 ctr_min = ctr_min + 1;
 else
 %First perigee
 ctr_FirstMin = ctr_min - 1; %Counter value for first perigee
 FirstMin.t = t(ctr_FirstMin); %Time (user-specified units)
 FirstMin.r = r(ctr_FirstMin); %Radial position (km)
 break
 end
end

%States associated with first perigee
FirstMin.V = V(ctr_FirstMin); %Velocity (km/s)
FirstMin.lon = lon(ctr_FirstMin); %Longitude (rad)
FirstMin.lat = lat(ctr_FirstMin); %Geocentric latitude (rad)
FirstMin.fpa = fpa(ctr_FirstMin); %Flight-path angle (rad)
FirstMin.heading = heading(ctr_FirstMin); %Heading angle (rad)

%Geodetic altitude (km), geodetic latitude (rad) of first perigee
[FirstMin.h_gd, FirstMin.lat_gd] = ...
 Geocentric2Geodetic(FirstMin.r,FirstMin.lat,RE,FlatE);

%%%
%% Determination of First Apogee States in Skip Trajectory
for ctr_max = (ctr_FirstMin + 1):length(r)
 if r(ctr_max) > r(ctr_max - 1) && ctr_max < length(r)
 ctr_max = ctr_max + 1;
 else

www.manaraa.com

319

 %First apogee
 ctr_FirstMax = ctr_max - 1; %Counter value for first apogee
 FirstMax.t = t(ctr_FirstMax); %Time (user-specified units)
 FirstMax.r = r(ctr_FirstMax); %Radial position (km)
 break
 end
end

%States associated with first perigee
FirstMax.V = V(ctr_FirstMax); %Velocity (km/s)
FirstMax.lon = lon(ctr_FirstMax); %Longitude (rad)
FirstMax.lat = lat(ctr_FirstMax); %Geocentric latitude (rad)
FirstMax.fpa = fpa(ctr_FirstMax); %Flight-path angle (rad)
FirstMax.heading = heading(ctr_FirstMax); %Heading angle (rad)

%Geodetic altitude (km), geodetic latitude (rad) of first apogee
[FirstMax.h_gd, FirstMax.lat_gd] = ...
 Geocentric2Geodetic(FirstMax.r,FirstMax.lat,RE,FlatE);

%%%
%% States Associated with First Skip (from Initial Descent to First Apogee)
FirstSkip_States.t = t(1:ctr_FirstMax,1); %Time
FirstSkip_States.r = r(1:ctr_FirstMax,1); %Radial position (km)
FirstSkip_States.V = V(1:ctr_FirstMax,1); %Velocity (km/s)
FirstSkip_States.lon = lon(1:ctr_FirstMax,1); %Longitude (rad)
FirstSkip_States.lat = lat(1:ctr_FirstMax,1); %Geocentric lat. (rad)
FirstSkip_States.fpa = fpa(1:ctr_FirstMax,1); %FPA (rad)
FirstSkip_States.heading = heading(1:ctr_FirstMax,1); %Heading angle (rad)

%Geodetic altitude (km), geodetic latitude (rad) of first skip
[FirstSkip_States.h_gd, FirstSkip_States.lat_gd] = ...
 Geocentric2Geodetic(FirstSkip_States.r,FirstSkip_States.lat,RE,FlatE);

www.manaraa.com

320

Geocentric2Geodetic.m

function [h_gd, lat_gd] = Geocentric2Geodetic(r,lat,RE,FlatE)

rho = r/RE;

%Geodetic altitude
h_Component1 = (rho - 1);
h_Component2 = (0.5.*(1 - cos(2.*lat))).*FlatE;
h_Component3 = (((1./(4.*rho)) - (1/16)).*(1 - cos(4.*lat))).*(FlatE.^2);
h_gd = (h_Component1 + h_Component2 + h_Component3) * RE;

%Geodetic latitude
lat_Component1 = ((sin(2.*lat))./rho).*FlatE;
lat_Component2 = (((1./(rho.^2)) - (1./(4.*rho))).*sin(4.*lat)).*(FlatE.^2);
lat_gd = lat + lat_Component1 + lat_Component2;

Geodetic2Geocentric.m

function [r_gc, lat_gc] = Geodetic2Geocentric(h_gd,lat_gd,RE,FlatE)

h = h_gd/RE;

%Geocentric altitude
r_Component1 = (h + 1);
r_Component2 = (-0.5.*(1 - cos(2.*lat_gd))).*FlatE;
r_Component3 = (((1./(4.*(h+1))) + (1/16)).*(1-cos(4.*lat_gd))).*(FlatE.^2);
r_gc = (r_Component1 + r_Component2 + r_Component3) * RE;

%Geocentric latitude
lat_Component1 = ((-sin(2.*lat_gd))./(h+1)).*FlatE;
lat_Component2 = ((-sin(2.*lat_gd))./(2.*((h+1).^2)));
lat_Component3 = ((1./(4.*((h+1).^2))) + (1./(4.*(h+1)))).*sin(4.*lat_gd);
lat_gc = lat_gd + lat_Component1 + (lat_Component2 + ...
 lat_Component3).*(FlatE.^2);

www.manaraa.com

321

GroundTargets.m

function GroundTargets

global Lat_Denver Lon_Denver Lat_Gibraltar Lon_Gibraltar
global Lat_Glasgow Lon_Glasgow Lat_Grozny Lon_Grozny
global Lat_Moscow Lon_Moscow Lat_Ponti Lon_Ponti
global Lat_Pyong Lon_Pyong Lat_Reyk Lon_Reyk
global Lat_Tehran Lon_Tehran Lat_Tokyo Lon_Tokyo
global Lat_Brasil Lon_Brasil Lat_Buenos Lon_Buenos
global Lat_Canberra Lon_Canberra Lat_Cape Lon_Cape

%%%
%% Geographical Coordinates
%Denver, United States
Lat_Denver = 39.7392; %(deg N)
Lon_Denver = -104.9842; %(deg W)

%Gibraltar
Lat_Gibraltar = 36.1430; %(deg N)
Lon_Gibraltar = -5.3530; %(deg W)

%Glasgow, Scotland
Lat_Glasgow = 55.8700; %(deg N)
Lon_Glasgow = -4.2700; %(deg W)

%Grozny, Chechnya
Lat_Grozny = 43.2983; %(deg N)
Lon_Grozny = 45.6997; %(deg E)

%Moscow, Russia
Lat_Moscow = 55.7517; %(deg N)
Lon_Moscow = 37.6178; %(deg E)

%Pontianak, Indonesia
Lat_Ponti = 0.0000; %(deg N)
Lon_Ponti = 109.3333; %(deg E)

%Pyongyang, North Korea
Lat_Pyong = 39.0333; %(deg N)
Lon_Pyong = 125.7500; %(deg E)

%Reykjavik, Iceland
Lat_Reyk = 64.1333; %(deg N)
Lon_Reyk = -21.9333; %(deg W)

%Tehran, Iran
Lat_Tehran = 35.6833; %(deg N)
Lon_Tehran = 51.4167; %(deg E)

www.manaraa.com

322

%Tokyo, Japan
Lat_Tokyo = 35.6833; %(deg N)
Lon_Tokyo = 139.7667; %(deg E)

%Brasilia, Brazil
Lat_Brasil = -15.7810; %(deg S)
Lon_Brasil = -47.9196; %(deg W)

%Buenos Aires, Argentina
Lat_Buenos = -34.6036; %(deg S)
Lon_Buenos = -58.3817; %(deg W)

%Canberra, Australia
Lat_Canberra = -35.2828; %(deg S)
Lon_Canberra = 149.1314; %(deg E)

%Cape Town, South Africa
Lat_Cape = -33.9767; %(deg S)
Lon_Cape = 18.4244; %(deg E)

HeatFluxModel.m

function [HeatModel,Eta,T_KE] = HeatFluxModel(V_SI,Rho_SI,Emissivity, ...
 Tw_F,Tinf_F,mass,S,Cd,Cl)

global MU g0 RE BetaH Rho0 StefBoltz
WGS84Constants; %Loads global constants from external m-file

%%%
%% Variable/Function Simplication
Eta = ((Rho_SI.*Cd.*S)./(2*mass.*BetaH)); %Altitude (non-dimensional)
T_KE = ((V_SI.^2)./(2*g0.*RE)); %Kinetic energy (non-dimensional)
Ve = sqrt(MU/RE); %Planetary surface vel. (km/s)

%%%
%% Average Wall Heat Flux (Non-Dimensional); Source: Hicks (2009)
HeatModel.Qw = Eta.*((T_KE).^(3/2));

%%%
%% Average Stagnation Heat Flux (Non-Dimensional); Source: Hicks (2009)
HeatModel.Qs = ((Eta).^(1/2)).*((T_KE).^(3/2));

%%%
%% Stagnation Heat Flux (kW/m^2); Source: Rao (2002)
%Heating rate constant (kW/m^2)
Qdot_Bar = 17600*11.35377; %Source: Rao, et al. (2002)
% Qdot_Bar = 11.357; %Source: Rao, et al. (2008)
% Qdot_Bar = 199870; %Source: Darby-Rao (2010)

HeatModel.Qdot = Qdot_Bar*((Rho_SI./Rho0).^(0.5)).*((V_SI./Ve).^(3.15));

www.manaraa.com

323

%%%
%% Stagnation Heat Flux (kW/m^2); Source: Havey (1982)
Heat_Coeff = 17700;
Rn_SI = 0.3048;
V = convlength(V_SI,'km','ft'); %Velocity, (km/s)->(ft/s)
Rn = convlength(Rn_SI,'m','ft'); %Nose radius, (m)->(ft)
Rho_m3 = Rho_SI.*(1/(1000^3)); %Density, (kg/km^3)->(kg/m^3)
Rho = convdensity(Rho_m3,'kg/m^3', ...
 'slug/ft^3'); %Density, (kg/m^3)->(sl/ft^3)
Tw_R = convtemp(Tw_F, 'F','R'); %Wall temperature, (deg F)->(R)
Tinf_R = convtemp(Tinf_F,'F','R'); %Free-stream temp., (deg F)->(R)

hw = 0.24.*Tw_R;
h0 = (0.24.*Tinf_R) + ((V.^2)./(50063));

HeatFlux_Havey = Heat_Coeff.*((Rho./Rn).^(0.5)).* ...
 ((V./(1E4)).^(3.07)).*(1 - (hw./h0));
HeatModel.QHavey = HeatFlux_Havey.*11.35377;

%%%
%% Stagnation Heat Flux (kW/m^2); Source: Galman (1961)
%Note: Variables (V, Rn, Rho) obtained from preceding section
HeatFlux_Galman = ((2*Rn)^(-0.5)).* ...
 ((3.18).*(Rho.^(0.5)).*(V.^(3.2)).*(1E-9));
HeatModel.QGalman = HeatFlux_Galman.*11.35377;

%%%
%% Radiative Heat Flux (kW/m^2)
Tinf_K = convtemp(Tinf_F,'F','K'); %Free-stream temperature, (deg F)->(K)
HeatModel.Qr1 = (Emissivity.*StefBoltz.*((Tinf_K.^4)))./1000;

InclinationChange.m

function dV_Simple = InclinationChange(V0,fpa0,dIncl)

%Converts and overwrites initial angle variables
fpa0 = deg2rad(fpa0); dIncl = deg2rad(dIncl);

%Delta-V required for simple, inclination-only plane change
dV_Simple = abs(2.*V0.*cos(fpa0).*sin(0.5.*dIncl));

www.manaraa.com

324

KeplerAnomalies.m

function [E,nu] = KeplerAnomalies(MeanAnom,ecc)

%%%
%% Eccentric Anomaly
%Initial guess for eccentric anomaly
if MeanAnom < 0 || MeanAnom > pi
 E0 = MeanAnom - ecc;
else
 E0 = MeanAnom + ecc;
end

IterCount = 0; %Counter initialization
IterMax = 20; %Maximum number of iterations

%Newton-Rhapson iteration
E1 = E0 + ((MeanAnom - E0 + (ecc*sin(E0)))/(1 - (ecc*cos(E0))));

while (abs(E1 - E0) > 1E-15) && (IterCount < IterMax)
 E0 = E1;
 E1 = E0 + ((MeanAnom - E0 + (ecc*sin(E0)))/(1 - (ecc*cos(E0))));
 IterCount = IterCount + 1;
end

E = E1; %Eccentric anomaly (rad)

%%%
%% True Anomaly
nu = acos((cos(E) - ecc)/(1 - (ecc*cos(E)))); %(rad)

OrbitVelocity.m

function V = OrbitVelocity(r,ecc,nu_deg)

global MU

WGS84Constants; %Loads global constants from external m-file

%%%
%% Orbital Velocity
nu = deg2rad(nu_deg); %True anomaly (rad)

%Equation components
V_Component1 = (MU./r);
V_Component2 = 1 - (ecc^2);
V_Component3 = 1 + (ecc*cos(nu));
V = sqrt(V_Component1.*(2 - (V_Component2./V_Component3)));

www.manaraa.com

325

PayloadImager.m

function [FOV_m2,FOV_km2,Resolution] = PayloadImager(h,Aperture_Diameter, ...
 FocalLength,lambda)

%NOTE: Altitude (h) is units of meters (m)
%Linear (ground) resolution (m)
Resolution = 2.44*(h*lambda*(1/Aperture_Diameter));

%Image plane radius (m)
ImagPlane_Radius = 0.5*Aperture_Diameter;

%Angular diameter of FOV (rad)
FOV_AngularDiam = 2*atan(ImagPlane_Radius/FocalLength);

%Ground object/FOV (m^2; km^2)
FOV_m2 = pi*((h*tan(0.5*FOV_AngularDiam))^2);
FOV_km2 = FOV_m2 * (1/(1000^2));

RelativeStates.m

function [V_Rel,PSI_Rel] = RelativeStates(mass,S,Cd,Cl,h_Orbit, ...
 lat,fpa,heading,bank)

global RE OmegaE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Variable/Function Simplification
%Latitude (lat), flight-path (fpa), and bank (sigma) angles
clat = cos(lat); slat = sin(lat);
cfpa = cos(fpa); sfpa = sin(fpa); cbank = cos(deg2rad(bank));

%%%
%% Planetary Model
r = h_Orbit + RE; %Radial position (km)
[GravModel] = GravityModel(r,lat);
g = GravModel.g; %Spherical gravity model (km/s^2)

[Rho] = AtmosModel(h_Orbit,2);
rho_r = Rho;

%Planetary rotation parameter
OmegaRot = OmegaE;
OmegaRot2 = OmegaRot^2;

www.manaraa.com

326

%%%
%% Vehicle Aerodynamics
D_comp = 0.5*rho_r*Cd*S; %Drag force component
L_comp = 0.5*rho_r*Cl*S; %Lift force component

%%%
%% Newton-Raphson Iteration
PSI_Guess = heading; %Initial heading angle guess (rad)
PSI_Update = 999; %Initialization of heading angle update (rad)
IterCount = 0; %Initialization of iteration counter

while abs(PSI_Update - PSI_Guess) > 1E-12
 PSI_Update = PSI_Guess; %Re-define current heading angle (rad)

 %Quadratic equation and components
 A = (1/r) + ((L_comp*cbank)/mass);
 B = 2*OmegaRot*clat*cos(PSI_Update);
 C = -(g*cfpa) + (r*OmegaRot2*clat*(clat*cfpa + ...
 slat*sin(PSI_Update)*sfpa));
 V_Check = (-B + sqrt((B^2) - (4*A*C)))/(2*A);

 %Updated heading angle (rad)
 PSI_Guess = heading + asin((2*pi*r*sin(heading))/(86400*V_Check));

 %Difference between update and guess heading angle
 IterativeDiff_PSI = abs(PSI_Update - PSI_Guess);
 IterCount = IterCount + 1; %Update to iteration counter
end

V_Rel = V_Check; %Relative maneuver velocity (km/s)
PSI_Rel = PSI_Guess; %Relative heading angle (rad)

RelativeStates_Entry.m

function [Vrel0_mag,fpa_rel0,heading_rel0] = ...
 RelativeStates_Entry(h0,V_Boost,lon0,lat0,fpa0,heading0)

global RE MU OmegaE

WGS84Constants; %Loads global constants from external m-file

%%%
%% Maneuver Profile Initial Conditions (Inertial, Unknown Epoch)
r0 = h0 + RE; %Radial position (km)
V0 = sqrt(MU/r0) + V_Boost; %Orbit velocity (km/s)

%Initial radial position and velocity vectors
r0_init = [r0; 0; 0]; %(km)
V0_init = [0; V0; 0]; %(km/s)

www.manaraa.com

327

%%%
%% Coordinate Transformations for Initial Conditions
%Radial position vector relative to inertial frame (km)
I_r0 = ROT(3,-lon0,1)*ROT(2,lat0,1)*r0_init;
I_r0_mag = norm(I_r0); %Radial position magnitude (km)

%Vehicle-pointing (VP) velocity vector relative to inertial frame (km/s)
VP_V0 = ROT(1,-heading0,1)*ROT(3,fpa0,1)*V0_init;
%Earth-fixed velocity vector relative to inertial frame (km/s)
I_V0 = ROT(3,-lon0,1) *ROT(2,lat0,1)*VP_V0;

%Planetary angular velocity vector (rad/s)
OmegaE_vec = [0; 0; OmegaE];

%Velocity vector relative to rotating planet (km/s)
Vrel0_vec = I_V0 - cross(OmegaE_vec,I_r0);
Vrel0_mag = norm(Vrel0_vec); %Relative velocity vector magnitude (km/s)

%Initial flight-path and heading angles relative to rotating planet (rad)
fpa_rel0 = (pi/2) - acos((dot(Vrel0_vec,I_r0))/(Vrel0_mag*I_r0_mag));
heading_rel0 = (pi/2) - acos((dot(Vrel0_vec,[0;0;1]))/Vrel0_mag);

ROT.m

function B = ROT(axis,angle,Angle_Choice)

%Conversion of angle from degrees to radians
if Angle_Choice == 1 %Angle conversion NOT required
 angle = angle;
elseif Angle_Choice == 2 %Angle conversion required
 angle = deg2rad(angle);
end

%Rotation matrices
if axis == 1 %Rotation about Axis #1
 B = [1 0 0;...
 0 cos(angle) sin(angle);...
 0 -sin(angle) cos(angle)];
elseif axis == 2 %Rotation about Axis #2
 B = [cos(angle) 0 -sin(angle);...
 0 1 0;...
 sin(angle) 0 cos(angle)];
elseif axis == 3 %Rotation about Axis #3
 B = [cos(angle) sin(angle) 0;...
 -sin(angle) cos(angle) 0;...
 0 0 1];
end

www.manaraa.com

328

SingleSkip_Maneuver.m

function [SingleSkip_t,SingleSkip_States] = ...
 SingleSkip_Maneuver(Choice_1,Choice_2,Choice_3,Choice_4, ...
 Choice_5,Choice_6,Time_Max,r,V,lon,lat, ...
 fpa,heading,bank)

%Simulates skip entry trajectory for given initial conditions
[t_vec, traj_states] = Maneuver_MainFunction(Choice_1,Choice_2, ...
 Choice_3,Choice_4,Choice_5,Choice_6, ...
 Time_Max,r,V,lon,lat,fpa,heading,bank);

if isnan(traj_states(end,2)) == 1

%Deletes rows with 'NaN'
traj_states(isnan(traj_states(:,2)),:)=[];

%Limits time vector length to length of trajectory parameter matrix
t_vec = t_vec(1:length(traj_states(:,1)),1);

if isempty(traj_states) == 1
 SingleSkip_t = 0;
 SingleSkip_States = zeros(1,8);
 return
else
 SingleSkip_t = 0;
 SingleSkip_States = zeros(1,8);
 return
end

else
 %Determines states associated with single skip maneuver
 [FirstMin,FirstMax,FirstSkip_States] = FirstSkip(t_vec,traj_states);

 %Re-assignment of time and state vectors for single skip maneuver
 SingleSkip_t = FirstSkip_States.t;
 SingleSkip_States = [FirstSkip_States.r, FirstSkip_States.V, ...
 FirstSkip_States.lon, FirstSkip_States.lat, ...
 FirstSkip_States.fpa, FirstSkip_States.heading, ...
 FirstSkip_States.h_gd,FirstSkip_States.lat_gd];
end

www.manaraa.com

329

SMARadii.m

function [Radii,Altitude] = SMARadii(sma,ecc)

global RE

WGS84Constants; %Loads global constants from external m-file

%%%
%Radius and altitude of perigee (km)
Radii.r_perig = sma*(1 - ecc);
Altitude.h_perig = Radii.r_perig - RE;

%Radius and altitude of apogee (km)
Radii.r_apog = sma*(1 + ecc);
Altitude.h_apog = Radii.r_apog - RE;

TimeUtility.m

function [t_modified,time_string] = TimeUtility(t_vector,Time_Choice)

%%%
%% 'Time_Choice' Options
%1 = %Retains time unit of 'seconds'
%2 = %Converts time units from 'seconds' to 'minutes'
%3 = %Converts time units from 'seconds' to 'hours'
%4 = %Converts time units from 'seconds' to 'days'

%%%
%% Time Conversions
if Time_Choice == 1
 t_modified = t_vector;
 time_string = '(sec)'; % 'seconds'

elseif Time_Choice == 2
 t_modified = t_vector * (1/60);
 time_string = '(min)'; % 'minutes'

elseif Time_Choice == 3
 t_modified = t_vector * (1/60) * (1/60);
 time_string = '(hr)'; % 'hours'

elseif Time_Choice == 4
 t_modified = t_vector * (1/60) * (1/60) * (1/24);
 time_string = '(day)'; % 'days'
end

www.manaraa.com

330

TLE2RV.m

function [PositionVec,VelocityVec,h_perig,h_apog] = ...
 TLE2RV(incl_deg,raan_deg,ecc,omega_deg,MeanAnom_deg,MeanMotion_rev)

global MU

WGS84Constants; %Loads global constants from external m-file

%%%
%% TLE Inputs (Example)
% ecc = 0.6887925; %Eccentricity
% incl_deg = 63.5982; %Inclination (deg)
% raan_deg = 126.1576; %Right ascension of the ascending node (deg)
% omega_deg = 276.0005; %Argument of perigee (deg)
% MeanAnom_deg = 122.0897; %Mean anomaly (deg)
% MeanMotion_rev = 2.00582243; %Mean motion (rev/day)

%%%
%% Unit Conversion
incl = deg2rad(incl_deg); %(rad)
raan = deg2rad(raan_deg); %(rad)
omega = deg2rad(omega_deg); %(rad)
MeanAnom = deg2rad(MeanAnom_deg); %(rad)
MeanMotion = MeanMotion_rev*(2*pi)*(1/86400); %(rad/s)

%%%
%% Secondary Orbital Elements
sma = (MU/(MeanMotion^2))^(1/3); %Semi-major axis (km)

[E,nu] = KeplerAnomalies(MeanAnom,ecc);
nu_deg = rad2deg(nu); %True anomaly (deg)

%%%
%% Position and Velocity Vectors
[r,V] = COE2RV(MU,sma,ecc,incl,raan,omega,nu,1);

PositionVec = r'; %Position vector (km)
VelocityVec = V'; %Velocity vector (km/s)

%%%
%% Semi-Major Axis Radii
[Radii,Altitude] = SMARadii(sma,ecc);
h_perig = Altitude.h_perig; %Perigee altitude (km)
h_apog = Altitude.h_apog; %Apogee altitude (km)

www.manaraa.com

331

Appendix H. MATLAB® Code for Design of Experiments Support Utilities

Table H.1. m-File Classification for Design of Experiments Support Utilities

Filename File Type Description

DOE_BankAngle Script Pareto optimization with variable 𝜎
DOE_MainEffectsPlot Function Plots main effects

DOE_MainEffectsPlotting Script Plots main effects
DOEAnalysis Script Primary driver of DOE simulations

ParetoBoundary_5Factors Script Pareto optimization with 5 factors
ParetoBoundary_6Factors Script Pareto optimization with 6 factors
ParetoBoundary_InitAlt Script Pareto optimization for ℎ𝑖 analysis

ParetoDOE Script Augmented Pareto front analysis
paretofront Function Determines Pareto front points

DOE_BankAngle.m

close all; clear all; clc;

%%%
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 8; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_dV = 0; %Constraint for minimum delta-V (km/s)
obj_x = 7; %Column number of x-axis objective (from reduced matrix)
obj_y = 6; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_729_80_100; %Bank angle range: [-100, -80]
load DOEMatrix_729_50_80; %Bank angle range: [-80, -50]
load DOEMatrix_729_20_50; %Bank angle range: [-50, -20]
load DOEMatrix_729_0_20; %Bank angle range: [0, -20]
load DOEMatrix_729_100_120; %Bank angle range: [-120,-100]

%% Matrix of Experiments and Observations
%Bank Angle Campaign #1
IN_1 = DOEMatrix_729_80_100(:,1:end);
split_1 = length(IN_1(:,1));
total_1 = length(IN_1(:,1)); %Length of input matrix (number of rows)

www.manaraa.com

332

%Bank Angle Campaign #2
IN_2 = DOEMatrix_729_50_80(:,1:end);
split_2 = length(IN_2(:,1));
total_2 = length(IN_2(:,1)); %Length of input matrix (number of rows)

%Bank Angle Campaign #3
IN_3 = DOEMatrix_729_20_50(:,1:end);
split_3 = length(IN_3(:,1));
total_3 = length(IN_3(:,1)); %Length of input matrix (number of rows)

%Bank Angle Campaign #4
IN_4 = DOEMatrix_729_0_20(:,1:end);
split_4 = length(IN_4(:,1));
total_4 = length(IN_4(:,1)); %Length of input matrix (number of rows)

%Bank Angle Campaign #5
IN_5 = DOEMatrix_729_100_120(:,1:end);
split_5 = length(IN_5(:,1));
total_5 = length(IN_5(:,1)); %Length of input matrix (number of rows)

%% Creation of Reduced Factor and Observation Matrices
%Bank Angle Campaign #1
for ii = 1:size(IN_1,1)
 x_star_1(ii,:) = IN_1(ii,1:nvars); %Factors
 J_1(ii,:) = IN_1(ii,nvars+1:size(IN_1,2)); %Observations
end

%Bank Angle Campaign #2
for jj = 1:size(IN_2,1)
 x_star_2(jj,:) = IN_2(jj,1:nvars); %Factors
 J_2(jj,:) = IN_2(jj,nvars+1:size(IN_2,2)); %Observations
end

%Bank Angle Campaign #3
for kk = 1:size(IN_3,1)
 x_star_3(kk,:) = IN_3(kk,1:nvars); %Factors
 J_3(kk,:) = IN_3(kk,nvars+1:size(IN_3,2)); %Observations
end

%Bank Angle Campaign #4
for kk = 1:size(IN_4,1)
 x_star_4(kk,:) = IN_4(kk,1:nvars); %Factors
 J_4(kk,:) = IN_4(kk,nvars+1:size(IN_4,2)); %Observations
end

%Bank Angle Campaign #5
for kk = 1:size(IN_5,1)
 x_star_5(kk,:) = IN_5(kk,1:nvars); %Factors
 J_5(kk,:) = IN_5(kk,nvars+1:size(IN_5,2)); %Observations
end

www.manaraa.com

333

%% Determination of Observations which Satisfy Constraints
%Bank Angle Campaign #1
I_1 = find(J_1(1:split_1,obj_x) >= min_incl & ...
 J_1(1:split_1,obj_y) >= min_dV);
Z_1 = (find(J_1(split_1+1:total_1,obj_x) >= min_incl & ...
 J_1(split_1+1:total_1,obj_y) >= min_dV)+split_1);
J_filt_1 = J_1(I_1,:);
J_filt1_1 = J_1(Z_1,:);

%Bank Angle Campaign #2
I_2 = find(J_2(1:split_2,obj_x) >= min_incl & ...
 J_2(1:split_2,obj_y) >= min_dV);
Z_2 = (find(J_2(split_2+1:total_2,obj_x) >= min_incl & ...
 J_2(split_2+1:total_2,obj_y) >= min_dV)+split_2);
J_filt_2 = J_2(I_2,:);
J_filt1_2 = J_2(Z_2,:);

%Bank Angle Campaign #3
I_3 = find(J_3(1:split_3,obj_x) >= min_incl & ...
 J_3(1:split_3,obj_y) >= min_dV);
Z_3 = (find(J_3(split_3+1:total_3,obj_x) >= min_incl & ...
 J_3(split_3+1:total_3,obj_y) >= min_dV)+split_3);
J_filt_3 = J_3(I_3,:);
J_filt1_3 = J_3(Z_3,:);

%Bank Angle Campaign #4
I_4 = find(J_4(1:split_4,obj_x) >= min_incl & ...
 J_4(1:split_4,obj_y) >= min_dV);
Z_4 = (find(J_4(split_4+1:total_4,obj_x) >= min_incl & ...
 J_4(split_4+1:total_4,obj_y) >= min_dV)+split_4);
J_filt_4 = J_4(I_4,:);
J_filt1_4 = J_4(Z_4,:);

%Bank Angle Campaign #5
I_5 = find(J_5(1:split_5,obj_x) >= min_incl & ...
 J_5(1:split_5,obj_y) >= min_dV);
Z_5 = (find(J_5(split_5+1:total_5,obj_x) >= min_incl & ...
 J_5(split_5+1:total_5,obj_y) >= min_dV)+split_5);
J_filt_5 = J_5(I_5,:);
J_filt1_5 = J_5(Z_5,:);

%%%
%% Factors Associated with Observations which Satisfy Constraints
%Bank Angle Campaign #1
x_star_filt_1 = x_star_1(I_1,:);
x_star_filt1_1 = x_star_1(Z_1,:);

%Bank Angle Campaign #2
x_star_filt_2 = x_star_2(I_2,:);
x_star_filt1_2 = x_star_2(Z_2,:);

%Bank Angle Campaign #3
x_star_filt_3 = x_star_3(I_3,:);
x_star_filt1_3 = x_star_3(Z_3,:);

www.manaraa.com

334

%Bank Angle Campaign #4
x_star_filt_4 = x_star_4(I_4,:);
x_star_filt1_4 = x_star_4(Z_4,:);

%Bank Angle Campaign #5
x_star_filt_5 = x_star_5(I_5,:);
x_star_filt1_5 = x_star_5(Z_5,:);

%%%
%% Plotting of Design Space
% subplot(1,2,1);
figure; %Bank Angle Campaign #5
scatter((J_filt_5(:,obj_x)-InitIncl)',J_filt_5(:,obj_y)./BaselineCost', ...

'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','c','Marker','o');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');

hold on; %Bank Angle Campaign #1
scatter((J_filt_1(:,obj_x)-InitIncl)',J_filt_1(:,obj_y)./BaselineCost', ...

'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','b','Marker','o');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');

hold on; %Bank Angle Campaign #2
scatter((J_filt_2(:,obj_x)-InitIncl)',J_filt_2(:,obj_y)./BaselineCost', ...

'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','g','Marker','o');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');

hold on; %Bank Angle Campaign #3
scatter((J_filt_3(:,obj_x)-InitIncl)',J_filt_3(:,obj_y)./BaselineCost', ...

'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','r','Marker','o');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');

hold on; %Bank Angle Campaign #4
scatter((J_filt_4(:,obj_x)-InitIncl)',J_filt_4(:,obj_y)./BaselineCost', ...

'SizeData',2^2,'MarkerEdgeColor','k','MarkerFaceColor','m','Marker','o');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');
hold on;

legend('\it\sigma\rm = [-120,-100] deg', ...
 '\it\sigma\rm = [-100, -80] deg', ...
 '\it\sigma\rm = [-80, -50] deg', ...
 '\it\sigma\rm = [-50, -20] deg', ...
 '\it\sigma\rm = [-20, 0] deg','location','NorthEast');

www.manaraa.com

335

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt_1; J_filt1_1; ...
 J_filt_2; J_filt1_2; ...
 J_filt_3; J_filt1_3; ...
 J_filt_4; J_filt1_4; ...
 J_filt_5; J_filt1_5];

x_star_filt_tot = [x_star_filt_1; x_star_filt1_1; ...
 x_star_filt_2; x_star_filt1_2; ...
 x_star_filt_3; x_star_filt1_3; ...
 x_star_filt_4; x_star_filt1_4; ...
 x_star_filt_5; x_star_filt1_5];

K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',10^2,'Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',1.5,'HandleVisibility','off');

x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted1 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto_xJ = [x_sorted1,J_sorted1];

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

www.manaraa.com

336

DOE_MainEffectsPlot.m

function [figh,axesh] = DOE_MainEffectsPlot(y,group,varargin)

%%%
%
% Use: [figh,axesh] = DOE_MainEffectsPlot(y,group,varargin)
%
% Displays main effects plots for the group means of matrix Y with groups
% defined by entries in the cell array GROUP. Y is a numeric matrix or
% vector. If Y is a matrix, the rows represent different observations and
% the columns represent replications of each observation.
%
% Author/Date : The MathWorks, Inc./2006-2010
% Modified by : Bettinger, Robert AFIT/ENY/2013
%
% Example:
% Display main effects plots for car weight with two grouping variables,
% model year and number of cylinders:
% load carsmall;
% maineffectsplot(Weight,{Model_Year,Cylinders}, ...
% 'varnames',{'Model Year', '# of Cylinders'})
%
%%%

if nargin <2
 error(message('stats:maineffectsplot:FewInput'))
end

%Parse parameter/value pairs
args = {'varnames','statistics','parent'};
defaults = {'','mean',[]};
[eid emsg varnames,statistics,parent] = ...
 internal.stats.getargs(args,defaults,varargin{:});
if ~isempty(eid)
 error(sprintf('stats:maineffectsplot:%s',eid),emsg);
end
if ~iscell(varnames) && ~ischar(varnames)
 error(message('stats:maineffectsplot:BadVarnames'));
end
if (~(ischar(varnames) || iscellstr(varnames)))
 error(message('stats:maineffectsplot:BadVarnames'));
end
needvarnames = isempty(varnames);

%Character matrix grouping variable names are converted into cell array
if ischar(varnames) && ~needvarnames
 varnames = cellstr(varnames);
end

if ~ischar(statistics)||(~strcmp(statistics,'mean') ...
 && ~strcmp(statistics,'std'))
 error(message('stats:maineffectsplot:BadStatistics'));
end

www.manaraa.com

337

plotstddev = strcmp(statistics,'std');
if plotstddev && size(y,2)==1
 error(message('stats:maineffectsplot:BadYstatistics'))
end

% Convert the GROUP to cell arrays
if isnumeric(group) %Numerical arrays
 group = num2cell(group,1);
elseif ischar(group) %Character matrix
 group = {cellstr(group)};
elseif ~iscell(group)
 group = {group}; %Possible categorical variable
end

group = group(:);
ng = length(group); %Number of grouping factors

%Convert numeric cells or character matrix to string cell array
for i = 1:ng
 if ischar(group{i})
 group{i} = cellstr(group{i});
 end
end

%Grouping variable should have the same number of items as Y
if any(cellfun(@length,group)~=size(y,1))
 error(message('stats:maineffectsplot:BadGroup'))
end

%Generate default varnames
if needvarnames
 varnames = strcat({'X'},num2str((1:ng)','%d'));
end

%The length of varnames should be the same as the number of groups
if ng ~= length(varnames)
 error(message('stats:maineffectsplot:MismatchVarnameGroup'))
end

if plotstddev
 y = nanstd(y,0,2);
end

if size(y,2) ~= 1
 y = nanmean(y,2);
end

if feature('HGUsingMATLABClasses')
 H = hg2.SceneNode.empty;
else

www.manaraa.com

338

 H = zeros(ng,1);
end

if isempty(parent)
 parent = clf;
end

ylim = zeros(ng,2);

for i = 1:ng
 [maineffect, gname] = grpstats(y,group{i},{'mean','gname'});
 maineffect = nanmean(maineffect,2);
 H(i) = subplot(1,ng,i,'parent',parent);
 plot(H(i),1:length(maineffect),maineffect,'.')
 set(H(i),'xtick',1:length(maineffect))
 set(H(i),'xticklabel',gname)
 xlabel(H(i),varnames{i})
 axis(H(i),'tight');
 xlim(H(i),[0.5, length(maineffect)+.5]);
 ylim(i,:) = get(H(i),'ylim');
 xlim([0.5, length(maineffect)+.5]);
end

%Re-scale y-axis limit and leave gaps between data and axes
ylimmin = min(ylim(:,1)); ylimmax = max(ylim(:,2));
df = .05*(ylimmax-ylimmin);
set(H,'YLim',[ylimmin-df ylimmax+df]);
set(H(2:end),'yticklabel','');

if plotstddev
 ylabel(H(1),'standard deviation')
else
 ylabel(H(1), 'mean')
end

if nargout>0
 figh = parent;
end

if nargout>1
 axesh = H;
end

www.manaraa.com

339

DOE_MainEffectsPlotting.m

clear all; clc; close all;

%%%
%% Loads Experiments and Observations
%TAV mass (kg)
load MainEffect_3125mass;
%Planform area (m^2)
load MainEffect_3125PA;
%Drag coefficient
load MainEffect_3125Cd;
%Lift coefficient
load MainEffect_3125Cl;
%Perigee altitude (km)
load MainEffect_3125Perig;
%Bank angle (deg)
load MainEffect_729Bank;

InitIncl = 37.843; %Initial inclination (deg)
Mass_Range = [0:1:8000]'; %TAV mass range (kg)
PA_Range = [0:0.1:30]'; %Planform area range (m^2)
Cd_Range = [0:0.05:3.0]'; %Drag coefficient range
Cl_Range = [0:0.05:3.0]'; %Lift coefficient range
Perig_Range = [60:0.1:120]'; %Perigee altitude range (km)
Bank_Range = [-120:0.1:0]'; %Bank angle range (deg)

%%%
%% TAV Mass (kg) v. Maximum Inclination Change (deg)
subplot(2,3,1);
%Main effect for experiment campaign
plot(MainEffect_3125mass_x,(MainEffect_3125mass_y - InitIncl),'bo');

%Polynomial fit for experiment campaign
[fit_3125mass,S_3125mass] = polyfit(MainEffect_3125mass_x, ...
 (MainEffect_3125mass_y - InitIncl),2);
[f_3125mass, delta_3125mass] = polyconf(fit_3125mass, ...
 Mass_Range,S_3125mass, ...
 'simopt','on','predopt','curve');
hold on;
h1 = plot(Mass_Range,f_3125mass,'-b');

% %Plotting of 95% confidence bounds
% hold on; plot(Mass_Range,f_3125mass + delta_3125mass,':b');
% hold on; plot(Mass_Range,f_3125mass - delta_3125mass,':b');

xlim([2000 6000]);
ylim([0 1]);
xlabel('TAV Mass, kg');
ylabel('Maximum Inclination Change (Mean Response)');
legend(h1,{'Polynomial Fit, Degree: 2'},'location','NorthEast');

www.manaraa.com

340

%%%
%% Planform Area (m^2) v. Maximum Inclination Change (deg)
subplot(2,3,2);
%Main effect for experiment campaign
plot(MainEffect_3125PA_x,(MainEffect_3125PA_y - InitIncl),'bo');

%Polynomial fit for experiment campaign
[fit_3125PA,S_3125PA] = polyfit(MainEffect_3125PA_x, ...
 (MainEffect_3125PA_y - InitIncl),1);
[f_3125PA, delta_3125PA] = polyconf(fit_3125PA, ...
 PA_Range,S_3125PA, ...
 'simopt','on','predopt','curve');
hold on;
h2 = plot(PA_Range,f_3125PA,'-b');

% %Plotting of 95% confidence bounds
% hold on; plot(PA_Range,f_3125PA + delta_3125PA,':b');
% hold on; plot(PA_Range,f_3125PA - delta_3125PA,':b');

xlim([15 22]);
ylim([0 1]);
xlabel('Planform Area, m^2');
ylabel('Maximum Inclination Change (Mean Response)');
legend(h2,{'Polynomial Fit, Degree: 1'},'location','NorthEast');

%%%
%% Drag Coefficient v. Maximum Inclination Change (deg)
subplot(2,3,3);
%Main effect for experiment campaign
plot(MainEffect_3125Cd_x,(MainEffect_3125Cd_y - InitIncl),'bo');

%Polynomial fit for experiment campaign
[fit_3125Cd,S_3125Cd] = polyfit(MainEffect_3125Cd_x, ...
 (MainEffect_3125Cd_y - InitIncl),3);
[f_3125Cd, delta_3125Cd] = polyconf(fit_3125Cd, ...
 Cd_Range,S_3125Cd, ...
 'simopt','on','predopt','curve');
hold on;
h3 = plot(Cd_Range,f_3125Cd,'-b');

% %Plotting of 95% confidence bounds
% hold on; plot(Cd_Range,f_3125Cd + delta_3125Cd,':b');
% hold on; plot(Cd_Range,f_3125Cd - delta_3125Cd,':b');

xlim([0.5 2.2]);
ylim([0 1]);
xlabel('Drag Coefficient');
ylabel('Maximum Inclination Change (Mean Response)');
legend(h3,{'Polynomial Fit, Degree: 3'},'location','NorthEast');

www.manaraa.com

341

%%%
%% Lift Coefficient v. Maximum Inclination Change (deg)
subplot(2,3,4);
%Main effect for experiment campaign
plot(MainEffect_3125Cl_x,(MainEffect_3125Cl_y - InitIncl),'bo');

%Polynomial fit for experiment campaign
[fit_3125Cl,S_3125Cl] = polyfit(MainEffect_3125Cl_x, ...
 (MainEffect_3125Cl_y - InitIncl),2);
[f_3125Cl, delta_3125Cl] = polyconf(fit_3125Cl, ...
 Cl_Range,S_3125Cl, ...
 'simopt','on','predopt','curve');
hold on;
h4 = plot(Cl_Range,f_3125Cl,'-b');

% %Plotting of 95% confidence bounds
% hold on; plot(Cl_Range,f_3125Cl + delta_3125Cl,':b');
% hold on; plot(Cl_Range,f_3125Cl - delta_3125Cl,':b');

xlim([0.5 3.0]);
ylim([0 1]);
xlabel('Lift Coefficient');
ylabel('Maximum Inclination Change (Mean Response)');
legend(h4,{'Polynomial Fit, Degree: 2'},'location','NorthEast');

%%%
%% Perigee Altitude (km) v. Maximum Inclination Change (deg)
subplot(2,3,5);
%Main effect for experiment campaign
plot(MainEffect_3125Perig_x,(MainEffect_3125Perig_y - InitIncl),'bo');

%Polynomial fit for experiment campaign
[fit_3125Perig,S_3125Perig] = polyfit(MainEffect_3125Perig_x, ...
 (MainEffect_3125Perig_y -
InitIncl),3);
[f_3125Perig, delta_3125Perig] = polyconf(fit_3125Perig, ...
 Perig_Range,S_3125Perig, ...
 'simopt','on','predopt','curve');
hold on;
h5 = plot(Perig_Range,f_3125Perig,'-b');

% %Plotting of 95% confidence bounds
% hold on; plot(Perig_Range,f_3125Perig + delta_3125Perig,':b');
% hold on; plot(Perig_Range,f_3125Perig - delta_3125Perig,':b');

xlim([79 110]);
xlabel('Perigee Altitude, km');
ylabel('Maximum Inclination Change (Mean Response)');
legend(h5,{'Polynomial Fit, Degree: 3'},'location','NorthEast');

www.manaraa.com

342

%%%
%% Bank Angle (deg) v. Maximum Inclination Change (deg)
% subplot(2,3,6);
% %Main effect for experiment campaign
% plot(MainEffect_3125Bank_x,(MainEffect_3125Bank_y - InitIncl),'bo');
%
% %Polynomial fit for experiment campaign
% [fit_3125Bank,S_3125Bank] = polyfit(MainEffect_3125Bank_x, ...
% (MainEffect_3125Bank_y - InitIncl),4);
% [f_3125Bank, delta_3125Bank] = polyconf(fit_3125Bank, ...
% Bank_Range,S_3125Bank, ...
% 'simopt','on','predopt','curve');
% hold on;
% h6 = plot(Bank_Range,f_3125Bank,'-b');
%
% % %Plotting of 95% confidence bounds
% % hold on; plot(Bank_Range,f_3125Bank + delta_3125Bank,':b');
% % hold on; plot(Bank_Range,f_3125Bank - delta_3125Bank,':b');
%
% xlim([-120 0]);
% % ylim([-1 10]);
% xlabel('Bank Angle, deg');
% ylabel('Maximum Inclination Change (Mean Response)');
% legend(h6,{'Polynomial Fit, Degree: 4'},'location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

DOEAnalysis.m

clear all; clc; close all;

Factor_Choice = 2;
%1 = 5-factor experiments with constant Bank Angle
%2 = 6-factor experiments with variable Bank Angle

ReCirc_Choice = 1;
%1 = Re-circularization at Skip Apogee
%2 = Re-circularization via Hohmann Transfer at 500 km if Apogee < 500 km

%%%
%% Loads Orthogonal Matrix of Experiments
DOEMatrix = ...
[2000 18.5 0.5 3.0 86.75 1000 -90];

www.manaraa.com

343

%Factor design values
if Factor_Choice == 1 %Constant bank angle
 Factor_mass = DOEMatrix(:,1); %Mass (kg)
 Factor_S = DOEMatrix(:,2); %Planform area (m^2)
 Factor_Cd = DOEMatrix(:,3); %Drag coefficient
 Factor_Cl = DOEMatrix(:,4); %Lift coefficient
 Factor_Perig = DOEMatrix(:,5); %Perigee altitude (km)
 Factor_InitAlt = DOEMatrix(:,6); %Initial altitude (km)
 bank_Skip = -90; %Skip maneuver bank angle (deg)

elseif Factor_Choice == 2 %Variable bank angle
 Factor_mass = DOEMatrix(:,1); %Mass (kg)
 Factor_S = DOEMatrix(:,2); %Planform area (m^2)
 Factor_Cd = DOEMatrix(:,3); %Drag coefficient
 Factor_Cl = DOEMatrix(:,4); %Lift coefficient
 Factor_Perig = DOEMatrix(:,5); %Perigee altitude (km)
 Factor_InitAlt = DOEMatrix(:,6); %Initial altitude (km)
 Factor_Bank = DOEMatrix(:,7); %Bank angle (deg)
end

%%%
%% Initial Orbit Conditions
Vehicle_Choice = 99; %TAV selection
Target_Choice = 2; %Target selection
lon_Ref = 0; %Initial longitude (deg)
PSI_Ref = 37.843; %Heading angle (deg)

%%%
%% Execution of Experiments
mm = 0; %Initializes loop index at zero
nn = 1; %Initializes vector concatenation counter at one

if ReCirc_Choice == 1 %Re-circularization at Skip Apogee

for mm = 1:length(DOEMatrix(:,1))
 %Analysis function for experiments
 if Factor_Choice == 1 %Constant bank angle
 [Trajectory_Analysis(nn,1:7), MaxIncl(nn,1), ...
 Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ...
 BankManeuvers_fxnDOE(Vehicle_Choice,Target_Choice, ...
 lon_Ref,PSI_Ref,bank_Skip, ...
 Factor_mass(mm,1), Factor_S(mm,1), ...
 Factor_Cd(mm,1), Factor_Cl(mm,1), ...
 Factor_Perig(mm,1),Factor_InitAlt(mm,1));

 elseif Factor_Choice == 2 %Variable bank angle
 [Trajectory_Analysis(nn,1:7), MaxIncl(nn,1), ...
 Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ...
 BankManeuvers_fxnDOE(Vehicle_Choice,Target_Choice, ...
 lon_Ref,PSI_Ref,Factor_Bank(mm,1), ...
 Factor_mass(mm,1), Factor_S(mm,1), ...
 Factor_Cd(mm,1), Factor_Cl(mm,1), ...
 Factor_Perig(mm,1),Factor_InitAlt(mm,1));
 end

www.manaraa.com

344

 fprintf('Experiment #%d Completed\n',mm);
 mm = mm + 1; %Update to index counter
 nn = nn + 1; %Update to solution matrix concatenation counter
end

elseif ReCirc_Choice == 2 %Re-circularization with Hohmann Transfer
 for mm = 1:length(DOEMatrix(:,1))
 %Analysis function for experiments
 if Factor_Choice == 1 %Constant bank angle
 [Trajectory_Analysis(nn,1:7), MaxIncl(nn,1), ...
 Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ...
 BankManeuvers_fxnDOE_Hohmann(Vehicle_Choice,Target_Choice, ...
 lon_Ref,PSI_Ref,bank_Skip, ...
 Factor_mass(mm,1), Factor_S(mm,1), ...
 Factor_Cd(mm,1), Factor_Cl(mm,1), ...
 Factor_Perig(mm,1),Factor_InitAlt(mm,1));

 elseif Factor_Choice == 2 %Variable bank angle
 [Trajectory_Analysis(nn,1:7), MaxIncl(nn,1), ...
 Deceleration_Analysis(nn,1:6),HeatFlux_Analysis(nn,1:5)] = ...
 BankManeuvers_fxnDOE_Hohmann(Vehicle_Choice,Target_Choice, ...
 lon_Ref,PSI_Ref,Factor_Bank(mm,1), ...
 Factor_mass(mm,1), Factor_S(mm,1), ...
 Factor_Cd(mm,1), Factor_Cl(mm,1), ...
 Factor_Perig(mm,1),Factor_InitAlt(mm,1));
 end

 fprintf('Experiment #%d Completed\n',mm);
 mm = mm + 1; %Update to index counter
 nn = nn + 1; %Update to solution matrix concatenation counter
 end
end

%%%
%% DOE Trajectory Solutions
%Columns # 1- 6: m|S|Cd|Cl|h_Perig (Commanded)|h_Init (DOE Factors)
%Columns # 7-13: Bank Angle|h_Perig (Simulated)|h_Prop|h_Prop(end)| ...
% TimeMaxIncl|dV_Maneuver|dV_SkipTotal
%Columns #14-14: Maximum Inclination
%Columns #15-20: TangDecelG_Max|TangDecelG_Min|NormDecelG_Max| ...
% NormDecelG_Min|MagDecelG_Max|MagDecelG_Min
%Columns #21-25: Qw_Max|Qs_Max|Qdot_Max|QHavey_Max|QGalman_Max

DOEResults = [DOEMatrix,Trajectory_Analysis,MaxIncl, ...
 Deceleration_Analysis,HeatFlux_Analysis];

www.manaraa.com

345

ParetoBoundary_5Factors.m

close all; clear all; clc;

Pareto_Choice = 3;
%1 = MAX Delta-Inclination, MIN Delta-V
%2 = MAX Delta-Inclination, MAX Re-Circularization Altitude
%3 = MIN Delta-V, MAX Re-Circularization Altitude

Pareto_Intersect_Choice = 1;
%1 = Identifies, plots, and saves common Pareto optimal points
%2 = Converse of Choice #1

%%%
if Pareto_Choice == 1

%%%
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 6; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_dV = 0; %Constraint for minimum delta-V (km/s)
obj_x = 9; %Column number of x-axis objective (from reduced matrix)
obj_y = 8; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_3125_5_79;
%Matrix of experiments and observations
IN = DOEMatrix_3125_5_79(:,1:end);
split = length(IN(:,1));
total = length(IN(:,1)); %Length of input matrix (number of rows)

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_incl & ...
 J(1:split,obj_y) >= min_dV);
Z = (find(J(split+1:total,obj_x) >= min_incl & ...
 J(split+1:total,obj_y) >= min_dV)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

www.manaraa.com

346

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');
R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted1 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto_xJ = [x_sorted1,J_sorted1];

%Saves Pareto points to .MAT file
savefile = 'ParetoPoints_3125.mat';
save(savefile,'x_sorted1','J_sorted1');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted1(:,2); %Mass (kg)
S_Pareto = x_sorted1(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted1(:,4); %Drag coefficient
Cl_Pareto = x_sorted1(:,5); %Lift coefficient
Perig_Pareto = x_sorted1(:,6); %Perigee altitude (km)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted1(:,4); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted1(:,8); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted1(:,9); %Maximum inclination (deg)

www.manaraa.com

347

dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

%%%
%% Mass (kg) v. Maximum Inclination (deg)
subplot(2,3,2); box on; grid off;
plot(dIncl_Pareto,mass_Pareto,'o','MarkerFaceColor','r', ...
 'MarkerEdgeColor','k','LineWidth',1);

% %Polynomial fit
% [fit_mass,S_mass] = polyfit(dIncl_Pareto,mass_Pareto,4);
% [f_mass, delta_mass] = polyconf(fit_mass,dIncl_Range,S_mass, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_mass,'-b');
% hold on; plot(dIncl_Range,f_mass + delta_mass,':b');
% hold on; plot(dIncl_Range,f_mass - delta_mass,':b');

ylim([1000 8000]);
xlabel('Maximum Inclination Change, deg');
ylabel('TAV Mass, kg');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthEast');
legend('Pareto Optimal Points','location','NorthEast');

%%%
%% Planform Area (m^2) v. Maximum Inclination (deg)
subplot(2,3,3); box on; grid off;
plot(dIncl_Pareto,S_Pareto,'r.');

% %Polynomial fit
% [fit_PA,S_PA] = polyfit(dIncl_Pareto,S_Pareto,4);
% [f_PA, delta_PA] = polyconf(fit_PA,dIncl_Range,S_PA, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_PA,'-b');
% hold on; plot(dIncl_Range,f_PA + delta_PA,':b');
% hold on; plot(dIncl_Range,f_PA - delta_PA,':b');

ylim([10 25]);
xlabel('Maximum Inclination Change, deg');
ylabel('Planform Area, m^2');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','SouthEast');
legend('Boundary Data','location','NorthEast');

%%%
%% Drag Coefficient v. Maximum Inclination (deg)
subplot(2,3,4); box on; grid off;
plot(dIncl_Pareto,Cd_Pareto,'r.');

% %Polynomial fit
% [fit_Cd,S_Cd] = polyfit(dIncl_Pareto,Cd_Pareto,4);
% [f_Cd, delta_Cd] = polyconf(fit_Cd,dIncl_Range,S_Cd, ...
% 'simopt','on','predopt','curve');

www.manaraa.com

348

% hold on; plot(dIncl_Range,f_Cd,'-b');
% hold on; plot(dIncl_Range,f_Cd + delta_Cd,':b');
% hold on; plot(dIncl_Range,f_Cd - delta_Cd,':b');

ylim([0.0 3.0]);
xlabel('Maximum Inclination Change, deg');
ylabel('Drag Coefficient');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthEast');
legend('Boundary Data','location','NorthEast');

%%%
%% Lift Coefficient v. Maximum Inclination (deg)
subplot(2,3,5); box on; grid off;
plot(dIncl_Pareto,Cl_Pareto,'r.');

% %Polynomial fit
% [fit_Cl,S_Cl] = polyfit(dIncl_Pareto,Cl_Pareto,4);
% [f_Cl, delta_Cl] = polyconf(fit_Cl,dIncl_Range,S_Cl, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_Cl,'-b');
% hold on; plot(dIncl_Range,f_Cl + delta_Cl,':b');
% hold on; plot(dIncl_Range,f_Cl - delta_Cl,':b');

ylim([0.0 4.0]);
xlabel('Maximum Inclination Change, deg');
ylabel('Lift Coefficient');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','SouthEast');
legend('Boundary Data','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,6); box on; grid off;
plot(dIncl_Pareto,Perig_Pareto,'r.');

% %Polynomial fit
% [fit_Perig,S_Perig] = polyfit(dIncl_Pareto,Perig_Pareto,4);
% [f_Perig, delta_Perig] = polyconf(fit_Perig,dIncl_Range,S_Perig, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_Perig,'-b');
% hold on; plot(dIncl_Range,f_Perig + delta_Perig,':b');
% hold on; plot(dIncl_Range,f_Perig - delta_Perig,':b');

ylim([75 115]);
xlabel('Maximum Inclination Change, deg');
ylabel('Perigee Altitude, km');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','SouthWest');
legend('Boundary Data','location','NorthEast');

www.manaraa.com

349

%%%
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg)
% figure; box on; grid off;
% plot(dIncl_Pareto,BC_Pareto,'r.');
%
% %Polynomial fit
% [fit_BC,S_BC] = polyfit(dIncl_Pareto,BC_Pareto,4);
% [f_BC, delta_BC] = polyconf(fit_BC,dIncl_Range,S_BC, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_BC,'-b');
% hold on; plot(dIncl_Range,f_BC + delta_BC,':b');
% hold on; plot(dIncl_Range,f_BC - delta_BC,':b');
%
% % ylim([-0.1 0.1]);
% xlabel('Maximum Inclination Change, deg');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

elseif Pareto_Choice == 2

%%%
%% Pareto Optimization: MAX Delta-Inclination, MAX Re-Circ. Altitude
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 6; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_alt = 130; %Constraint for re-circularization altitude (km)
obj_x = 9; %Column number of x-axis objective (from reduced matrix)
obj_y = 4; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_3125_5_79;

%Matrix of experiments and observations
IN = DOEMatrix_3125_5_79(:,1:end);
split = length(IN);
total = length(IN); %Length of input matrix (number of rows)

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

www.manaraa.com

350

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_incl & ...
 J(1:split,obj_y) >= min_alt);
Z = (find(J(split+1:total,obj_x) >= min_incl & ...
 J(split+1:total,obj_y) >= min_alt)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Maximum Inclination Change, deg');
ylabel('Re-Circularization Altitude, km');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([-J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');

if Pareto_Intersect_Choice == 1
 %Loads and plots Pareto points from {max(delta-i),min(delta-V)} analysis
 load ParetoPoints_3125.mat;
 Pareto1 = [x_sorted1,J_sorted1];
 hold on; plot((J_sorted1(:,9) - InitIncl), ...
 J_sorted1(:,4),'gs','LineWidth',2);
end

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted2 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted2 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto2 = [x_sorted2,J_sorted2];

www.manaraa.com

351

if Pareto_Intersect_Choice == 1
 %Common Pareto points between
 %{max(delta-i),min(delta-V)} and {max(delta-i),max(h_recirc)}
 Pareto_Intersect_12 = intersect(Pareto1,Pareto2,'rows');

 %Saves common Pareto points to .MAT file
 savefile = 'Pareto_Intersect_12.mat';
 save(savefile,'Pareto_Intersect_12');
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted2(:,2); %Mass (kg)
S_Pareto = x_sorted2(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted2(:,4); %Drag coefficient
Cl_Pareto = x_sorted2(:,5); %Lift coefficient
Perig_Pareto = x_sorted2(:,6); %Perigee altitude (km)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted2(:,4); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted2(:,8); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted2(:,9); %Maximum inclination (deg)
dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

%%%
%% Mass (kg) v. Maximum Inclination (deg)
subplot(2,3,2); box on; grid off;
plot(dIncl_Pareto,mass_Pareto,'o','MarkerFaceColor','r', ...
 'MarkerEdgeColor','k','LineWidth',1);
% %Polynomial fit
% [fit_mass,S_mass] = polyfit(dIncl_Pareto,mass_Pareto,4);
% [f_mass, delta_mass] = polyconf(fit_mass,dIncl_Range,S_mass, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_mass,'-b');
% hold on; plot(dIncl_Range,f_mass + delta_mass,':b');
% hold on; plot(dIncl_Range,f_mass - delta_mass,':b');

ylim([1000 8000]);
xlabel('Maximum Inclination Change, deg)');
ylabel('TAV Mass, kg');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthWest');
legend('Pareto Optimal Points','location','NorthEast');

www.manaraa.com

352

%%%
%% Planform Area (m^2) v. Maximum Inclination (deg)
subplot(2,3,3); box on; grid off;
plot(dIncl_Pareto,S_Pareto,'r.');

% %Polynomial fit
% [fit_PA,S_PA] = polyfit(dIncl_Pareto,S_Pareto,4);
% [f_PA, delta_PA] = polyconf(fit_PA,dIncl_Range,S_PA, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_PA,'-b');
% hold on; plot(dIncl_Range,f_PA + delta_PA,':b');
% hold on; plot(dIncl_Range,f_PA - delta_PA,':b');

ylim([10 25]);
xlabel('Maximum Inclination Change, deg');
ylabel('Planform Area, m^2');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthWest');
legend('Boundary Data','location','NorthEast');

%%%
%% Drag Coefficient v. Maximum Inclination (deg)
subplot(2,3,4); box on; grid off;
plot(dIncl_Pareto,Cd_Pareto,'r.');

% %Polynomial fit
% [fit_Cd,S_Cd] = polyfit(dIncl_Pareto,Cd_Pareto,1);
% [f_Cd, delta_Cd] = polyconf(fit_Cd,dIncl_Range,S_Cd, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_Cd,'-b');
% hold on; plot(dIncl_Range,f_Cd + delta_Cd,':b');
% hold on; plot(dIncl_Range,f_Cd - delta_Cd,':b');

ylim([0.0 3.0]);
xlabel('Maximum Inclination Change, deg');
ylabel('Drag Coefficient');
% legend('Pareto Data','Polynomial Fit, Degree: 1', ...
% '95% Confidence Bounds','location','NorthEast');
legend('Boundary Data','location','NorthEast');

%%%
%% Lift Coefficient v. Maximum Inclination (deg)
subplot(2,3,5); box on; grid off;
plot(dIncl_Pareto,Cl_Pareto,'r.');

% %Polynomial fit
% [fit_Cl,S_Cl] = polyfit(dIncl_Pareto,Cl_Pareto,4);
% [f_Cl, delta_Cl] = polyconf(fit_Cl,dIncl_Range,S_Cl, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_Cl,'-b');
% hold on; plot(dIncl_Range,f_Cl + delta_Cl,':b');
% hold on; plot(dIncl_Range,f_Cl - delta_Cl,':b');

www.manaraa.com

353

ylim([0.0 4.0]);
xlabel('Maximum Inclination Change, deg');
ylabel('Lift Coefficient');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','SouthEast');
legend('Boundary Data','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,6); box on; grid off;
plot(dIncl_Pareto,Perig_Pareto,'r.');

% %Polynomial fit
% [fit_Perig,S_Perig] = polyfit(dIncl_Pareto,Perig_Pareto,4);
% [f_Perig, delta_Perig] = polyconf(fit_Perig,dIncl_Range,S_Perig, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_Perig,'-b');
% hold on; plot(dIncl_Range,f_Perig + delta_Perig,':b');
% hold on; plot(dIncl_Range,f_Perig - delta_Perig,':b');

ylim([75 115]);
xlabel('Maximum Inclination Change, deg');
ylabel('Perigee Altitude, km');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','SouthWest');
legend('Boundary Data','location','NorthEast');

%%%
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg)
% figure; box on; grid off;
% plot(dIncl_Pareto,BC_Pareto,'r.');
%
% %Polynomial fit
% [fit_BC,S_BC] = polyfit(dIncl_Pareto,BC_Pareto,4);
% [f_BC, delta_BC] = polyconf(fit_BC,dIncl_Range,S_BC, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dIncl_Range,f_BC,'-b');
% hold on; plot(dIncl_Range,f_BC + delta_BC,':b');
% hold on; plot(dIncl_Range,f_BC - delta_BC,':b');
%
% % ylim([-0.1 0.1]);
% xlabel('Maximum Inclination Change, deg');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

www.manaraa.com

354

elseif Pareto_Choice == 3

%%%
%% Pareto Optimization: MIN Delta-V, MAX Re-Circularization Altitude
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 6; %Number of columns for experiment number and factors
min_dV = 0; %Constraint for minimum inclination (deg)
min_alt = 130; %Constraint for re-circularization altitude (km)
obj_x = 8; %Column number of x-axis objective (from reduced matrix)
obj_y = 4; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_3125_5_79;
%Matrix of experiments and observations
IN = DOEMatrix_3125_5_79(:,1:end);
split = length(IN);
total = length(IN); %Length of input matrix (number of rows)

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_dV & ...
 J(1:split,obj_y) >= min_alt);
Z = (find(J(split+1:total,obj_x) >= min_dV & ...
 J(split+1:total,obj_y) >= min_alt)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x))',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Re-Circularization Altitude, km');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

www.manaraa.com

355

%Plotting of Pareto front
hold on;
scatter((J_filt_tot(K,obj_x))', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',0.5,'HandleVisibility','off');

if Pareto_Intersect_Choice == 1
 %Loads/plots common Pareto points between {max(delta-i),min(delta-V)}
 %and {max(delta-i),max(h_recirc)}
 load Pareto_Intersect_12.mat;
 hold on; plot(Pareto_Intersect_12(:,14), ...
 Pareto_Intersect_12(:,10),'gs','LineWidth',2);
end

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted3 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted3 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto3 = [x_sorted3,J_sorted3];

if Pareto_Intersect_Choice == 1

 %Common Pareto points between {max(delta-i),min(delta-V)},
 %{max(delta-i),max(h_recirc)}, and {min(delta-V),max(h_recirc)}
 Pareto_Intersect_123 = intersect(Pareto_Intersect_12,Pareto3,'rows');

 %Saves common Pareto points to .MAT file
 savefile = 'Pareto_Intersect_123.mat';
 save(savefile,'Pareto_Intersect_123');
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted3(:,2); %Mass (kg)
S_Pareto = x_sorted3(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted3(:,4); %Drag coefficient
Cl_Pareto = x_sorted3(:,5); %Lift coefficient
Perig_Pareto = x_sorted3(:,6); %Perigee altitude (km)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted3(:,4); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted3(:,8); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted3(:,9); %Maximum inclination (deg)

www.manaraa.com

356

dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)
dV_Range = [0:0.0001:0.5]; %Delta-V range (km/s)

%%%
%% Mass (kg) v. Total Delta-V (km/s)
subplot(2,3,2); box on; grid off;
plot(dIncl_Pareto,mass_Pareto,'o','MarkerFaceColor','r', ...
 'MarkerEdgeColor','k','LineWidth',1);

% %Polynomial fit
% [fit_mass,S_mass] = polyfit(dV_Total_Pareto,mass_Pareto,4);
% [f_mass, delta_mass] = polyconf(fit_mass,dV_Range,S_mass, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dV_Range,f_mass,'-b');
% hold on; plot(dV_Range,f_mass + delta_mass,':b');
% hold on; plot(dV_Range,f_mass - delta_mass,':b');

ylim([1000 8000]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('TAV Mass, kg');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthWest');
legend('Pareto Optimal Points','location','NorthEast');

%%%
%% Planform Area (m^2) v. Total Delta-V (km/s)
subplot(2,3,3); box on; grid off;
plot(dV_Total_Pareto,S_Pareto,'r.');

% %Polynomial fit
% [fit_PA,S_PA] = polyfit(dV_Total_Pareto,S_Pareto,4);
% [f_PA, delta_PA] = polyconf(fit_PA,dV_Range,S_PA, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dV_Range,f_PA,'-b');
% hold on; plot(dV_Range,f_PA + delta_PA,':b');
% hold on; plot(dV_Range,f_PA - delta_PA,':b');

ylim([10 25]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Planform Area, m^2');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','SouthWest');
legend('Boundary Data','location','NorthEast');

%%%
%% Drag Coefficient v. Total Delta-V (km/s)
subplot(2,3,4); box on; grid off;
plot(dV_Total_Pareto,Cd_Pareto,'r.');

% %Polynomial fit
% [fit_Cd,S_Cd] = polyfit(dV_Total_Pareto,Cd_Pareto,4);
% [f_Cd, delta_Cd] = polyconf(fit_Cd,dV_Range,S_Cd, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dV_Range,f_Cd,'-b');

www.manaraa.com

357

% hold on; plot(dV_Range,f_Cd + delta_Cd,':b');
% hold on; plot(dV_Range,f_Cd - delta_Cd,':b');

ylim([0.0 3.0]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Drag Coefficient');
% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthEast');
legend('Boundary Data','location','NorthEast');

%%%
%% Lift Coefficient v. Total Delta-V (km/s)
subplot(2,3,5); box on; grid off;
plot(dV_Total_Pareto,Cl_Pareto,'r.');

% %Polynomial fit
% [fit_Cl,S_Cl] = polyfit(dV_Total_Pareto,Cl_Pareto,4);
% [f_Cl, delta_Cl] = polyconf(fit_Cl,dV_Range,S_Cl, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dV_Range,f_Cl,'-b');
% hold on; plot(dV_Range,f_Cl + delta_Cl,':b');
% hold on; plot(dV_Range,f_Cl - delta_Cl,':b');

ylim([0.0 4.0]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Lift Coefficient');

% legend('Pareto Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','SouthEast');
legend('Boundary Data','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Total Delta-V (km/s)
subplot(2,3,6); box on; grid off;
plot(dV_Total_Pareto,Perig_Pareto,'r.');

% %Polynomial fit
% [fit_Perig,S_Perig] = polyfit(dV_Total_Pareto,Perig_Pareto,2);
% [f_Perig, delta_Perig] = polyconf(fit_Perig,dV_Range,S_Perig, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dV_Range,f_Perig,'-b');
% hold on; plot(dV_Range,f_Perig + delta_Perig,':b');
% hold on; plot(dV_Range,f_Perig - delta_Perig,':b');

ylim([75 115]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Perigee Altitude, km');

% legend('Pareto Data','Polynomial Fit, Degree: 2', ...
% '95% Confidence Bounds','location','SouthEast');
legend('Boundary Data','location','NorthEast');
%%%
%% Ballistic Coefficient (m^2/kg) v. Total Delta-V (km/s)
% figure; box on; grid off;
% plot(dV_Total_Pareto,BC_Pareto,'r.');

www.manaraa.com

358

%
% %Polynomial fit
% [fit_BC,S_BC] = polyfit(dV_Total_Pareto,BC_Pareto,4);
% [f_BC, delta_BC] = polyconf(fit_BC,dV_Range,S_BC, ...
% 'simopt','on','predopt','curve');
% hold on; plot(dV_Range,f_BC,'-b');
% hold on; plot(dV_Range,f_BC + delta_BC,':b');
% hold on; plot(dV_Range,f_BC - delta_BC,':b');
%
% % ylim([-0.1 0.1]);
% xlabel('Total \it\DeltaV\rm, km/s');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','Polynomial Fit, Degree: 4', ...
% '95% Confidence Bounds','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

end

ParetoBoundary_6Factors.m

close all; clear all; clc;

Pareto_Choice = 1;
%1 = MAX Delta-Inclination, MIN Delta-V
%2 = MAX Delta-Inclination, MAX Re-Circularization Altitude
%3 = MIN Delta-V, MAX Re-Circularization Altitude

Pareto_Intersect_Choice = 2;
%1 = Identifies, plots, and saves common Pareto optimal points
%2 = Converse of Choice #1

%%%
if Pareto_Choice == 1

%%%
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 8; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_dV = 0; %Constraint for minimum delta-V (km/s)
obj_x = 7; %Column number of x-axis objective (from reduced matrix)
obj_y = 6; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

www.manaraa.com

359

%Loads experiments and observations
load DOEMatrix_729_0_120;

%Matrix of experiments and observations
IN = DOEMatrix_729_0_120(:,1:end);
split = length(IN(:,1));
total = length(IN(:,1)); %Length of input matrix (number of rows)

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_incl & ...
 J(1:split,obj_y) >= min_dV);
Z = (find(J(split+1:total,obj_x) >= min_incl & ...
 J(split+1:total,obj_y) >= min_dV)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
p = scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');
legend(p,{'Pareto Optimal Points'},'location','NorthEast');

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);

www.manaraa.com

360

J_sorted1 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto_xJ = [x_sorted1,J_sorted1];

%Saves Pareto points to .MAT file
savefile = 'ParetoPoints_3125.mat';
save(savefile,'x_sorted1','J_sorted1');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted1(:,2); %Mass (kg)
S_Pareto = x_sorted1(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted1(:,4); %Drag coefficient
Cl_Pareto = x_sorted1(:,5); %Lift coefficient
Perig_Pareto = x_sorted1(:,6); %Perigee altitude (km)
InitAlt_Pareto = x_sorted1(:,7); %Initial altitude (km)
Bank_Pareto = x_sorted1(:,8); %Bank angle (deg)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted1(:,2); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted1(:,6); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted1(:,7); %Maximum inclination (deg)
dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

%%%
%% Mass (kg) v. Maximum Inclination (deg)
subplot(2,3,2); box on; grid off;
plot(dIncl_Pareto,mass_Pareto,'r.');
ylim([1000 8000]);
xlabel('Maximum Inclination Change, deg');
ylabel('TAV Mass, kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Planform Area (m^2) v. Maximum Inclination (deg)
subplot(2,3,3); box on; grid off;
plot(dIncl_Pareto,S_Pareto,'r.');
ylim([10 25]);
xlabel('Maximum Inclination Change, deg');
ylabel('Planform Area, m^2');
% legend('Boundary Data','location','NorthEast');

www.manaraa.com

361

%%%
%% Aerodynamic Coefficients v. Maximum Inclination (deg)
subplot(2,3,4); box on; grid off;
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto,dIncl_Pareto,Cl_Pareto,'plot');
xlabel('Maximum Inclination Change, deg');
set(Cd1,'linestyle','none','Marker','.');
set(Cl2,'linestyle','none','Marker','.');
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]);
set(Cd1,'color','green'); set(Cl2,'color','blue');
set(AX,{'ycolor'},{'k';'k'});
set(get(AX(1),'Ylabel'),'String','Drag Coefficient');
set(get(AX(2),'Ylabel'),'String','Lift Coefficient');
legend('Drag Coefficient','Lift Coefficient','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,5); box on; grid off;
plot(dIncl_Pareto,Perig_Pareto,'r.');
ylim([75 115]);
xlabel('Maximum Inclination Change, deg');
ylabel('Perigee Altitude, km');
% legend('Boundary Data','location','NorthEast');

%%%
%% Bank Angle (deg) v. Maximum Inclination (deg)
subplot(2,3,6); box on; grid off;
plot(dIncl_Pareto,Bank_Pareto,'r.');
ylim([-120 0]);
xlabel('Maximum Inclination Change, deg');
ylabel('Bank Angle, deg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg)
% figure; box on; grid off;
% plot(dIncl_Pareto,BC_Pareto,'r.');
% ylim([-0.1 0.1]);
% xlabel('Maximum Inclination Change, deg');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

www.manaraa.com

362

elseif Pareto_Choice == 2

%%%
%% Pareto Optimization: MAX Delta-Inclination, MAX Re-Circ. Altitude
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 8; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_alt = 130; %Constraint for re-circularization altitude (km)
obj_x = 7; %Column number of x-axis objective (from reduced matrix)
obj_y = 2; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_729_0_120;

%Matrix of experiments and observations
IN = DOEMatrix_729_0_120(:,1:end);
split = length(IN);
total = length(IN); %Length of input matrix (number of rows)

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_incl & ...
 J(1:split,obj_y) >= min_alt);
Z = (find(J(split+1:total,obj_x) >= min_incl & ...
 J(split+1:total,obj_y) >= min_alt)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Maximum Inclination Change, deg');
ylabel('Re-Circularization Altitude, km');
hold on; box on; grid off;

www.manaraa.com

363

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([-J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
p = scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');

legend(p,{'Pareto Optimal Points'},'location','NorthEast');

if Pareto_Intersect_Choice == 1
 %Loads and plots Pareto points from {max(delta-i),min(delta-V)} analysis
 load ParetoPoints_3125.mat;
 Pareto1 = [x_sorted1,J_sorted1];
 hold on; plot((J_sorted1(:,7) - InitIncl), ...
 J_sorted1(:,2),'go','LineWidth',2);
end

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted2 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted2 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto2 = [x_sorted2,J_sorted2];

if Pareto_Intersect_Choice == 1
 %Common Pareto points between
 %{max(delta-i),min(delta-V)} and {max(delta-i),max(h_recirc)}
 Pareto_Intersect_12 = intersect(Pareto1,Pareto2,'rows');

 %Saves common Pareto points to .MAT file
 savefile = 'Pareto_Intersect_12.mat';
 save(savefile,'Pareto_Intersect_12');
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

www.manaraa.com

364

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted2(:,2); %Mass (kg)
S_Pareto = x_sorted2(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted2(:,4); %Drag coefficient
Cl_Pareto = x_sorted2(:,5); %Lift coefficient
Perig_Pareto = x_sorted2(:,6); %Perigee altitude (km)
InitAlt_Pareto = x_sorted2(:,7); %Initial altitude (km)
Bank_Pareto = x_sorted2(:,8); %Bank angle (deg)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted2(:,2); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted2(:,6); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted2(:,7); %Maximum inclination (deg)
dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

%%%
%% Mass (kg) v. Maximum Inclination (deg)
subplot(2,3,2); box on; grid off;
plot(dIncl_Pareto,mass_Pareto,'r.');
ylim([1000 8000]);
xlabel('Maximum Inclination Change, deg');
ylabel('TAV Mass, kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Planform Area (m^2) v. Maximum Inclination (deg)
subplot(2,3,3); box on; grid off;
plot(dIncl_Pareto,S_Pareto,'r.');
ylim([10 25]);
xlabel('Maximum Inclination Change, deg');
ylabel('Planform Area, m^2');
% legend('Boundary Data','location','NorthEast');

%%%
%% Aerodynamic Coefficients v. Maximum Inclination (deg)
subplot(2,3,4); box on; grid off;
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto, ...
 dIncl_Pareto,Cl_Pareto,'plot');
xlabel('Maximum Inclination Change, deg');
set(Cd1,'linestyle','none','Marker','.');
set(Cl2,'linestyle','none','Marker','.');
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]);
set(Cd1,'color','green'); set(Cl2,'color','blue');
set(AX,{'ycolor'},{'k';'k'});
set(get(AX(1),'Ylabel'),'String','Drag Coefficient');
set(get(AX(2),'Ylabel'),'String','Lift Coefficient');
legend('Drag Coefficient','Lift Coefficient','location','NorthEast');

www.manaraa.com

365

%%%
%% Perigee Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,5); box on; grid off;
plot(dIncl_Pareto,Perig_Pareto,'r.');
ylim([75 115]);
xlabel('Maximum Inclination Change, deg');
ylabel('Perigee Altitude, km');
% legend('Boundary Data','location','NorthEast');

%%%
%% Bank Angle (deg) v. Maximum Inclination (deg)
subplot(2,3,6); box on; grid off;
plot(dIncl_Pareto,Bank_Pareto,'r.');
ylim([-120 0]);
xlabel('Maximum Inclination Change, deg');
ylabel('Bank Angle, deg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg)
% figure; box on; grid off;
% plot(dIncl_Pareto,BC_Pareto,'r.');
% % ylim([-0.1 0.1]);
% xlabel('Maximum Inclination Change, deg');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

elseif Pareto_Choice == 3

%%%
%% Pareto Optimization: MIN Delta-V, MAX Re-Circularization Altitude
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 8; %Number of columns for experiment number and factors
min_dV = 0; %Constraint for minimum inclination (deg)
min_alt = 130; %Constraint for re-circularization altitude (km)
obj_x = 6; %Column number of x-axis objective (from reduced matrix)
obj_y = 2; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_729_0_120;

%Matrix of experiments and observations
IN = DOEMatrix_729_0_120(:,1:end);
split = length(IN);
total = length(IN); %Length of input matrix (number of rows)

www.manaraa.com

366

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_dV & ...
 J(1:split,obj_y) >= min_alt);
Z = (find(J(split+1:total,obj_x) >= min_dV & ...
 J(split+1:total,obj_y) >= min_alt)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x))',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Re-Circularization Altitude, km');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
p = scatter((J_filt_tot(K,obj_x))', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',0.1,'HandleVisibility','off');

legend(p,{'Pareto Optimal Points'},'location','NorthWest');

if Pareto_Intersect_Choice == 1
 %Loads/plots common Pareto points between {max(delta-i),min(delta-V)}
 %and {max(delta-i),max(h_recirc)}
 load Pareto_Intersect_12.mat;
 hold on; p = plot(Pareto_Intersect_12(:,14), ...
 Pareto_Intersect_12(:,10),'go','LineWidth',2);
end

www.manaraa.com

367

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted3 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted3 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto3 = [x_sorted3,J_sorted3];

if Pareto_Intersect_Choice == 1
 %Common Pareto points between {max(delta-i),min(delta-V)},
 %{max(delta-i),max(h_recirc)}, and {min(delta-V),max(h_recirc)}
 Pareto_Intersect_123 = intersect(Pareto_Intersect_12,Pareto3,'rows');
 %Saves common Pareto points to .MAT file
 savefile = 'Pareto_Intersect_123.mat';
 save(savefile,'Pareto_Intersect_123');
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted3(:,2); %Mass (kg)
S_Pareto = x_sorted3(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted3(:,4); %Drag coefficient
Cl_Pareto = x_sorted3(:,5); %Lift coefficient
Perig_Pareto = x_sorted3(:,6); %Perigee altitude (km)
InitAlt_Pareto = x_sorted3(:,7); %Initial altitude (km)
Bank_Pareto = x_sorted3(:,8); %Bank angle (deg)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted3(:,2); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted3(:,6); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted3(:,7); %Maximum inclination (deg)
dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

%%%
%% Mass (kg) v. Total Delta-V (km/s)
subplot(2,3,2); box on; grid off;
plot(dV_Total_Pareto,mass_Pareto,'r.');
ylim([1000 8000]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('TAV Mass, kg');
% legend('Boundary Data','location','NorthEast');

www.manaraa.com

368

%%%
%% Planform Area (m^2) v. Total Delta-V (km/s)
subplot(2,3,3); box on; grid off;
plot(dV_Total_Pareto,S_Pareto,'r.');
ylim([10 25]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Planform Area, m^2');
% legend('Boundary Data','location','NorthEast');

%%%
%% Aerodynamic Coefficients v. Total Delta-V (km/s)
subplot(2,3,4); box on; grid off;
[AX,Cd1,Cl2] = plotyy(dV_Total_Pareto,Cd_Pareto, ...
 dV_Total_Pareto,Cl_Pareto,'plot');
xlabel('Total \it\DeltaV\rm, km/s');
set(Cd1,'linestyle','none','Marker','.');
set(Cl2,'linestyle','none','Marker','.');
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]);
set(Cd1,'color','green'); set(Cl2,'color','blue');
set(AX,{'ycolor'},{'k';'k'});
set(get(AX(1),'Ylabel'),'String','Drag Coefficient');
set(get(AX(2),'Ylabel'),'String','Lift Coefficient');
legend('Drag Coefficient','Lift Coefficient','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Total Delta-V (km/s)
subplot(2,3,5); box on; grid off;
plot(dV_Total_Pareto,Perig_Pareto,'r.');
ylim([75 115]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Perigee Altitude, km');
% legend('Boundary Data','location','NorthEast');

%%%
%% Bank Angle (deg) v. Total Delta-V (km/s)
subplot(2,3,6); box on; grid off;
plot(dV_Total_Pareto,Bank_Pareto,'r.');
ylim([-120 0]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Bank Angle, deg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

end

www.manaraa.com

369

ParetoBoundary_InitAlt.m

close all; clear all; clc;

Pareto_Choice = 1;
%1 = MAX Delta-Inclination, MIN Delta-V
%2 = MAX Delta-Inclination, MAX Re-Circularization Altitude
%3 = MIN Delta-V, MAX Re-Circularization Altitude

Pareto_Intersect_Choice = 2;
%1 = Identifies, plots, and saves common Pareto optimal points
%2 = Converse of Choice #1

%%%
if Pareto_Choice == 1

%%%
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 6; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_dV = 0; %Constraint for minimum delta-V (km/s)
obj_x = 9; %Column number of x-axis objective (from reduced matrix)
obj_y = 1; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_3125_300_1000;

%Matrix of experiments and observations
IN = DOEMatrix_3125_300_1000(:,1:end);
split = length(IN(:,1));
total = length(IN(:,1)); %Length of input matrix (number of rows)

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_incl & ...
 J(1:split,obj_y) >= min_dV);
Z = (find(J(split+1:total,obj_x) >= min_incl & ...
 J(split+1:total,obj_y) >= min_dV)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

www.manaraa.com

370

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
ylim([100 1100]);
xlabel('Maximum Inclination Change, deg');
ylabel('Initial Altitude, km');
% ylabel('Total \it\DeltaV\rm, km/s');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
% p = scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
% J_filt_tot(K,obj_y)./BaselineCost','y', ...
% 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
% 'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');
% legend(p,{'Pareto Optimal Points'},'location','SouthEast');

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted1 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto_xJ = [x_sorted1,J_sorted1];

%Saves Pareto points to .MAT file
savefile = 'ParetoPoints_3125.mat';
save(savefile,'x_sorted1','J_sorted1');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted1(:,2); %Mass (kg)
S_Pareto = x_sorted1(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted1(:,4); %Drag coefficient
Cl_Pareto = x_sorted1(:,5); %Lift coefficient
Perig_Pareto = x_sorted1(:,6); %Perigee altitude (km)
InitAlt_Pareto = x_sorted1(:,7); %Initial altitude (km)

www.manaraa.com

371

Bank_Pareto = x_sorted1(:,8); %Bank angle (deg)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted1(:,2); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted1(:,6); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted1(:,7); %Maximum inclination (deg)
dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

%%%
%% Mass (kg) v. Maximum Inclination (deg)
subplot(2,3,2); box on; grid off;
plot(dIncl_Pareto,mass_Pareto,'r.');
ylim([1000 8000]);
xlabel('Maximum Inclination Change, deg');
ylabel('TAV Mass, kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Planform Area (m^2) v. Maximum Inclination (deg)
subplot(2,3,3); box on; grid off;
plot(dIncl_Pareto,S_Pareto,'r.');
ylim([10 25]);
xlabel('Maximum Inclination Change, deg');
ylabel('Planform Area, m^2');
% legend('Boundary Data','location','NorthEast');

%%%
%% Aerodynamic Coefficients v. Maximum Inclination (deg)
subplot(2,3,4); box on; grid off;
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto, ...
 dIncl_Pareto,Cl_Pareto,'plot');
xlabel('Maximum Inclination Change, deg');
set(Cd1,'linestyle','none','Marker','.');
set(Cl2,'linestyle','none','Marker','.');
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]);
set(Cd1,'color','green'); set(Cl2,'color','blue');
set(AX,{'ycolor'},{'k';'k'});
set(get(AX(1),'Ylabel'),'String','Drag Coefficient');
set(get(AX(2),'Ylabel'),'String','Lift Coefficient');
legend('Drag Coefficient','Lift Coefficient','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,5); box on; grid off;
plot(dIncl_Pareto,Perig_Pareto,'r.');
ylim([75 115]);
xlabel('Maximum Inclination Change, deg');
ylabel('Perigee Altitude, km');
% legend('Boundary Data','location','NorthEast');

www.manaraa.com

372

%%%
%% Initial Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,6); box on; grid off;
plot(dIncl_Pareto,InitAlt_Pareto,'r.');
ylim([100 1100]);
xlabel('Maximum Inclination Change, deg');
ylabel('Initial Altitude, km');
% legend('Boundary Data','location','NorthEast');

%%%
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg)
% figure; box on; grid off;
% plot(dIncl_Pareto,BC_Pareto,'r.');
% ylim([-0.1 0.1]);
% xlabel('Maximum Inclination Change, deg');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

elseif Pareto_Choice == 2

%%%
%% Pareto Optimization: MAX Delta-Inclination, MAX Re-Circ. Altitude
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 8; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_alt = 130; %Constraint for re-circularization altitude (km)
obj_x = 7; %Column number of x-axis objective (from reduced matrix)
obj_y = 2; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_3125_300_1000;

%Matrix of experiments and observations
IN = DOEMatrix_3125_300_1000(:,1:end);
split = length(IN);
total = length(IN); %Length of input matrix (number of rows)

%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

www.manaraa.com

373

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_incl & ...
 J(1:split,obj_y) >= min_alt);
Z = (find(J(split+1:total,obj_x) >= min_incl & ...
 J(split+1:total,obj_y) >= min_alt)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x)-InitIncl)',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Maximum Inclination Change, deg');
ylabel('Re-Circularization Altitude, km');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([-J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;
scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',1,'HandleVisibility','off');

if Pareto_Intersect_Choice == 1
 %Loads and plots Pareto points from {max(delta-i),min(delta-V)} analysis
 load ParetoPoints_3125.mat;
 Pareto1 = [x_sorted1,J_sorted1];
 hold on; plot((J_sorted1(:,7) - InitIncl), ...
 J_sorted1(:,2),'go','LineWidth',2);
end

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted2 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front

x_sorted2 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto2 = [x_sorted2,J_sorted2];

www.manaraa.com

374

if Pareto_Intersect_Choice == 1
 %Common Pareto points between
 %{max(delta-i),min(delta-V)} and {max(delta-i),max(h_recirc)}
 Pareto_Intersect_12 = intersect(Pareto1,Pareto2,'rows');

 %Saves common Pareto points to .MAT file
 savefile = 'Pareto_Intersect_12.mat';
 save(savefile,'Pareto_Intersect_12');
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted2(:,2); %Mass (kg)
S_Pareto = x_sorted2(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted2(:,4); %Drag coefficient
Cl_Pareto = x_sorted2(:,5); %Lift coefficient
Perig_Pareto = x_sorted2(:,6); %Perigee altitude (km)
InitAlt_Pareto = x_sorted2(:,7); %Initial altitude (km)
Bank_Pareto = x_sorted2(:,8); %Bank angle (deg)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted2(:,2); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted2(:,6); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted2(:,7); %Maximum inclination (deg)
dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

%%%
%% Mass (kg) v. Maximum Inclination (deg)
subplot(2,3,2); box on; grid off;
plot(dIncl_Pareto,mass_Pareto,'r.');
ylim([1000 8000]);
xlabel('Maximum Inclination Change, deg');
ylabel('TAV Mass, kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Planform Area (m^2) v. Maximum Inclination (deg)
subplot(2,3,3); box on; grid off;
plot(dIncl_Pareto,S_Pareto,'r.');
ylim([10 25]);
xlabel('Maximum Inclination Change, deg');
ylabel('Planform Area, m^2');
% legend('Boundary Data','location','NorthEast');

www.manaraa.com

375

%%%
%% Aerodynamic Coefficients v. Maximum Inclination (deg)
subplot(2,3,4); box on; grid off;
[AX,Cd1,Cl2] = plotyy(dIncl_Pareto,Cd_Pareto, ...
 dIncl_Pareto,Cl_Pareto,'plot');
xlabel('Maximum Inclination Change, deg');
set(Cd1,'linestyle','none','Marker','.');
set(Cl2,'linestyle','none','Marker','.');
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]);
set(Cd1,'color','green'); set(Cl2,'color','blue');
set(AX,{'ycolor'},{'k';'k'});
set(get(AX(1),'Ylabel'),'String','Drag Coefficient');
set(get(AX(2),'Ylabel'),'String','Lift Coefficient');
legend('Drag Coefficient','Lift Coefficient','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,5); box on; grid off;
plot(dIncl_Pareto,Perig_Pareto,'r.');
ylim([75 115]);
xlabel('Maximum Inclination Change, deg');
ylabel('Perigee Altitude, km');
% legend('Boundary Data','location','NorthEast');

%%%
%% Initial Altitude (km) v. Maximum Inclination (deg)
subplot(2,3,6); box on; grid off;
plot(dIncl_Pareto,InitAlt_Pareto,'r.');
ylim([100 1100]);
xlabel('Maximum Inclination Change, deg');
ylabel('Initial Altitude, km');
% legend('Boundary Data','location','NorthEast');

%%%
%% Ballistic Coefficient (m^2/kg) v. Maximum Inclination (deg)
% figure; box on; grid off;
% plot(dIncl_Pareto,BC_Pareto,'r.');
% % ylim([-0.1 0.1]);
% xlabel('Maximum Inclination Change, deg');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%

www.manaraa.com

376

elseif Pareto_Choice == 3

%%%
%% Pareto Optimization: MIN Delta-V, MAX Re-Circularization Altitude
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 8; %Number of columns for experiment number and factors
min_dV = 0; %Constraint for minimum inclination (deg)
min_alt = 130; %Constraint for re-circularization altitude (km)
obj_x = 6; %Column number of x-axis objective (from reduced matrix)
obj_y = 2; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_3125_300_1000;

%Matrix of experiments and observations
IN = DOEMatrix_3125_300_1000(:,1:end);
split = length(IN);
total = length(IN); %Length of input matrix (number of rows)
%Creation of reduced factor and observation matrices
for i = 1:size(IN,1)
 x_star(i,:) = IN(i,1:nvars); %Factors (w/ experiment number)
 J(i,:) = IN(i,nvars+1:size(IN,2)); %Observations
end

%Determination of observations which satisfy constraints
I = find(J(1:split,obj_x) >= min_dV & ...
 J(1:split,obj_y) >= min_alt);
Z = (find(J(split+1:total,obj_x) >= min_dV & ...
 J(split+1:total,obj_y) >= min_alt)+split);
J_filt = J(I,:);
J_filt1 = J(Z,:);

%Factors associated with observations which satisfy constraints
x_star_filt = x_star(I,:);
x_star_filt1 = x_star(Z,:);

%Plotting of design space
subplot(2,3,1);
scatter((J_filt(:,obj_x))',J_filt(:,obj_y)./BaselineCost','b', ...
 'SizeData',5^2,'MarkerFaceColor','k','Marker','.');
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Re-Circularization Altitude, km');
hold on; box on; grid off;

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt; J_filt1];
x_star_filt_tot = [x_star_filt; x_star_filt1];

K = find(paretofront([J_filt_tot(:,obj_x) -J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

www.manaraa.com

377

%Plotting of Pareto front
hold on;
scatter((J_filt_tot(K,obj_x))', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',5^2,'MarkerFaceColor','r','Marker','o', ...
 'MarkerEdgeColor','k','LineWidth',0.5,'HandleVisibility','off');

if Pareto_Intersect_Choice == 1
 %Loads/plots common Pareto points between {max(delta-i),min(delta-V)}
 %and {max(delta-i),max(h_recirc)}
 load Pareto_Intersect_12.mat;
 hold on; plot(Pareto_Intersect_12(:,14), ...
 Pareto_Intersect_12(:,10),'go','LineWidth',2);
end

R = find(K > size(J_filt,1));
x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);
[B IX] = sort(J_pareto,1);
J_sorted3 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted3 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto3 = [x_sorted3,J_sorted3];

if Pareto_Intersect_Choice == 1
 %Common Pareto points between {max(delta-i),min(delta-V)},
 %{max(delta-i),max(h_recirc)}, and {min(delta-V),max(h_recirc)}
 Pareto_Intersect_123 = intersect(Pareto_Intersect_12,Pareto3,'rows');
 %Saves common Pareto points to .MAT file
 savefile = 'Pareto_Intersect_123.mat';
 save(savefile,'Pareto_Intersect_123');
end

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

%%%
%% Factor Analysis of Pareto Front
%Factors
mass_Pareto = x_sorted3(:,2); %Mass (kg)
S_Pareto = x_sorted3(:,3); %Planform area (m^2)
Cd_Pareto = x_sorted3(:,4); %Drag coefficient
Cl_Pareto = x_sorted3(:,5); %Lift coefficient
Perig_Pareto = x_sorted3(:,6); %Perigee altitude (km)
InitAlt_Pareto = x_sorted3(:,7); %Initial altitude (km)
Bank_Pareto = x_sorted3(:,8); %Bank angle (deg)
BC_Pareto = ((Cd_Pareto.*S_Pareto)./(2*mass_Pareto)); %Ballistic coeff.

%Observations
RecircAlt_Pareto = J_sorted3(:,2); %Re-circularization altitude (km)
dV_Total_Pareto = J_sorted3(:,6); %Total delta-V (km/s)
MaxIncl_Pareto = J_sorted3(:,7); %Maximum inclination (deg)
dIncl_Pareto = MaxIncl_Pareto - InitIncl; %Max. inclination change (deg)
dIncl_Range = [0:0.1:16]'; %Delta-inclination angle range (deg)

www.manaraa.com

378

%%%
%% Mass (kg) v. Total Delta-V (km/s)
subplot(2,3,2); box on; grid off;
plot(dV_Total_Pareto,mass_Pareto,'r.');
ylim([1000 8000]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('TAV Mass, kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Planform Area (m^2) v. Total Delta-V (km/s)
subplot(2,3,3); box on; grid off;
plot(dV_Total_Pareto,S_Pareto,'r.');
ylim([10 25]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Planform Area, m^2');
% legend('Boundary Data','location','NorthEast');

%%%
%% Aerodynamic Coefficients v. Total Delta-V (km/s)
subplot(2,3,4); box on; grid off;
[AX,Cd1,Cl2] = plotyy(dV_Total_Pareto,Cd_Pareto, ...
 dV_Total_Pareto,Cl_Pareto,'plot');
xlabel('Total \it\DeltaV\rm, km/s');
set(Cd1,'linestyle','none','Marker','.');
set(Cl2,'linestyle','none','Marker','.');
set(AX(1),'ylim',[0.0 2.5]); set(AX(2),'ylim',[1.0 3.5]);
set(Cd1,'color','green'); set(Cl2,'color','blue');
set(AX,{'ycolor'},{'k';'k'});
set(get(AX(1),'Ylabel'),'String','Drag Coefficient');
set(get(AX(2),'Ylabel'),'String','Lift Coefficient');
legend('Drag Coefficient','Lift Coefficient','location','NorthEast');

%%%
%% Perigee Altitude (km) v. Total Delta-V (km/s)
subplot(2,3,5); box on; grid off;
plot(dV_Total_Pareto,Perig_Pareto,'r.');
ylim([75 115]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Perigee Altitude, km');
% legend('Boundary Data','location','NorthEast');

%%%
%% Initial Altitude (km) v. Total Delta-V (km/s)
subplot(2,3,6); box on; grid off;
plot(dV_Total_Pareto,InitAlt_Pareto,'r.');
ylim([100 1100]);
xlabel('Total \it\DeltaV\rm, km/s');
ylabel('Initial Altitude, km');
% legend('Boundary Data','location','NorthEast');

www.manaraa.com

379

%%%
%% Ballistic Coefficient (m^2/kg) v. Total Delta-V (km/s)
% figure; box on; grid off;
% plot(dV_Total_Pareto,BC_Pareto,'r.');
% % ylim([-0.1 0.1]);
% xlabel('Total \it\DeltaV\rm, km/s');
% ylabel('Ballistic Coefficient, m^2/kg');
% legend('Boundary Data','location','NorthEast');

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window
%%%
end

ParetoDOE.m

close all; clear all; clc;

%%%
%% Pareto Optimization: MAX Delta-Inclination, MIN Delta-V
%%%
%% Initial Conditions for Pareto Analysis
InitIncl = 37.843; %Initial inclination (deg)
nvars = 6; %Number of columns for experiment number and factors
min_incl = InitIncl; %Constraint for minimum inclination (deg)
min_dV = 0; %Constraint for minimum delta-V (km/s)
obj_x = 9; %Column number of x-axis objective (from reduced matrix)
obj_y = 8; %Column number of y-axis objective (from reduced matrix)
BaselineCost = 1; %Value to normalize y-axis objective

%Loads experiments and observations
load DOEMatrix_3125_5_79; %Initial DOE Matrix
load ParetoMatrix_3125_5_79; %Pareto Front DOE Matrix
load DOEOutliers_3125_5_79; %Outlier DOE Matrix

%% Matrix of Experiments and Observations
%Initial DOE Matrix
IN_1 = DOEMatrix_3125_5_79(:,1:end);
split_1 = length(IN_1(:,1));
total_1 = length(IN_1(:,1)); %Length of input matrix (number of rows)

%Pareto Front DOE Matrix
IN_2 = ParetoMatrix_3125_5_79(:,1:end);
split_2 = length(IN_2(:,1));
total_2 = length(IN_2(:,1)); %Length of input matrix (number of rows)

www.manaraa.com

380

%Outlier DOE Matrix
IN_3 = DOEOutliers_3125_5_79(:,1:end);
split_3 = length(IN_3(:,1));
total_3 = length(IN_3(:,1)); %Length of input matrix (number of rows)

%% Creation of Reduced Factor and Observation Matrices
%Initial DOE Matrix
for ii = 1:size(IN_1,1)
 x_star_1(ii,:) = IN_1(ii,1:nvars); %Factors
 J_1(ii,:) = IN_1(ii,nvars+1:size(IN_1,2)); %Observations
end

%Pareto Front DOE Matrix
for jj = 1:size(IN_2,1)
 x_star_2(jj,:) = IN_2(jj,1:nvars); %Factors
 J_2(jj,:) = IN_2(jj,nvars+1:size(IN_2,2)); %Observations
end

%Outlier DOE Matrix
for kk = 1:size(IN_3,1)
 x_star_3(kk,:) = IN_3(kk,1:nvars); %Factors
 J_3(kk,:) = IN_3(kk,nvars+1:size(IN_3,2)); %Observations
end

%% Determination of Observations which Satisfy Constraints
%Initial DOE Matrix
I_1 = find(J_1(1:split_1,obj_x) >= min_incl & ...
 J_1(1:split_1,obj_y) >= min_dV);
Z_1 = (find(J_1(split_1+1:total_1,obj_x) >= min_incl & ...
 J_1(split_1+1:total_1,obj_y) >= min_dV)+split_1);
J_filt_1 = J_1(I_1,:);
J_filt1_1 = J_1(Z_1,:);

%Pareto Front DOE Matrix
I_2 = find(J_2(1:split_2,obj_x) >= min_incl & ...
 J_2(1:split_2,obj_y) >= min_dV);
Z_2 = (find(J_2(split_2+1:total_2,obj_x) >= min_incl & ...
 J_2(split_2+1:total_2,obj_y) >= min_dV)+split_2);
J_filt_2 = J_2(I_2,:);
J_filt1_2 = J_2(Z_2,:);

%Outlier DOE Matrix
I_3 = find(J_3(1:split_3,obj_x) >= min_incl & ...
 J_3(1:split_3,obj_y) >= min_dV);
Z_3 = (find(J_3(split_3+1:total_3,obj_x) >= min_incl & ...
 J_3(split_3+1:total_3,obj_y) >= min_dV)+split_3);
J_filt_3 = J_3(I_3,:);
J_filt1_3 = J_3(Z_3,:);

%% Factors Associated with Observations which Satisfy Constraints
%Initial DOE Matrix
x_star_filt_1 = x_star_1(I_1,:);
x_star_filt1_1 = x_star_1(Z_1,:);

www.manaraa.com

381

%Pareto Front DOE Matrix
x_star_filt_2 = x_star_2(I_2,:);
x_star_filt1_2 = x_star_2(Z_2,:);

%Outlier DOE Matrix
x_star_filt_3 = x_star_3(I_3,:);
x_star_filt1_3 = x_star_3(Z_3,:);

%%%
%% Plotting of Design Space
figure; %Initial DOE Matrix
scatter((J_filt_1(:,obj_x)-InitIncl)',J_filt_1(:,obj_y)./ ...
 BaselineCost','b','SizeData',6^2,'MarkerFaceColor','k','Marker','.');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');

hold on; %Pareto Front DOE Matrix
scatter((J_filt_2(:,obj_x)-InitIncl)',J_filt_2(:,obj_y)./ ...
 BaselineCost','g','SizeData',6^2.5,'MarkerFaceColor','k','Marker','x');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');
hold on;

hold on; %Outlier DOE Matrix
scatter((J_filt_3(:,obj_x)-InitIncl)',J_filt_3(:,obj_y)./ ...
 BaselineCost','r','SizeData',6^2,'MarkerFaceColor','w','Marker','o');
xlabel('Maximum Inclination Change, deg');
ylabel('Total \it\DeltaV\rm, km/s');
hold on; box on; grid off;

legend('Initial DOE Campaign','DOE for Pareto Front', ...
 'DOE for Outlier Points','location','NorthEast');

%%%
%% Data Filtering and Pareto Analysis
J_filt_tot = [J_filt_1; J_filt1_1; ...
 J_filt_2; J_filt1_2; ...
 J_filt_3; J_filt1_3];
% J_filt_tot = [J_filt_1; J_filt1_1; ...
% J_filt_2; J_filt1_2];

x_star_filt_tot = [x_star_filt_1; x_star_filt1_1; ...
 x_star_filt_2; x_star_filt1_2; ...
 x_star_filt_3; x_star_filt1_3];
% x_star_filt_tot = [x_star_filt_1; x_star_filt1_1; ...
% x_star_filt_2; x_star_filt1_2];

K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);
% K = find(paretofront([-J_filt_tot(:,obj_x) J_filt_tot(:,obj_y)])==1);

%Plotting of Pareto front
hold on;

www.manaraa.com

382

scatter((J_filt_tot(K,obj_x) - InitIncl)', ...
 J_filt_tot(K,obj_y)./BaselineCost','y', ...
 'SizeData',10^2.5,'Marker','s', ...
 'MarkerEdgeColor','k','LineWidth',1.5,'HandleVisibility','off');

x_star_pareto = x_star_filt_tot(K,:);
J_pareto = J_filt_tot(K,:);

 [B IX] = sort(J_pareto,1);
J_sorted1 = J_pareto([IX(:,obj_x)'],:); %Observations for Pareto front
x_sorted1 = x_star_pareto([IX(:,obj_x)'],:); %Factors for Pareto front
Pareto_xJ = [x_sorted1,J_sorted1];

%%%
%% Miscellaneous Plotting Commands
set(gcf,'Color','w'); %Sets overall figure background color to 'white'
set(gcf,'Position',get(0,'Screensize')); %Automatically maximizes plot window

paretofront.m

function [] = paretofront(varargin)

%%%
%
% Use: front = paretofront(M)
%
% Returns the logical Pareto Front of a set of points.
%
% Author/Date : Cao, Yi/Cranfield University/2007
% Modified by : Bettinger, Robert AFIT/ENY/2013
%
% Example:
% Find the Pareto Front of a set of 3D random points:
% X = rand(100,3);
% front = paretofront(X);
% hold on;
% plot3(X(:,1),X(:,2),X(:,3),'.');
% plot3(X(front, 1) , X(front, 2) , X(front, 3) , 'r.');
% hold off; grid on;
% view(-37.5, 30)
% xlabel('X_1'); ylabel('X_2'); zlabel('X_3');
% title('Pareto Front of a set of random points in 3D');
%
%%%

error('mex file absent, type ''mex paretofront.c'' to compile');

www.manaraa.com

383

paretofront.c

#include <math.h>
#include "mex.h"

/*
 paretomember returns the logical Pareto membership of a set of points.

 Synopsis : front = paretofront(objMat)

 Author/Date : Cao, Yi/Cranfield University/2007

 Modified by : Bettinger, Robert AFIT/ENY/2013

 mex paretofront.c
*/

void paretofront(bool * front, double * M, unsigned int row, unsigned int
col);

void mexFunction(int nlhs, mxArray *plhs[] , int nrhs, const mxArray *prhs[]
)
{
 bool * front;
 double * M;
 unsigned int row, col;
 const int *dims;

 if(nrhs == 0 || nlhs > 1)
 {
 printf("\nsynopsis: front = paretofront(X)");
 plhs[0] = mxCreateDoubleMatrix(0 , 0 , mxREAL);
 return;
 }

 M = mxGetPr(prhs[0]);
 dims = mxGetDimensions(prhs[0]);
 row = dims[0];
 col = dims[1];

 /* ----- Output ----- */

 plhs[0] = mxCreateLogicalMatrix (row , 1);
 front = (bool *) mxGetPr(plhs[0]);

 /* --- Main Call --- */
 paretofront(front, M, row, col);
}

void paretofront(bool * front, double * M, unsigned int row, unsigned int
col)
{

www.manaraa.com

384

 unsigned int t,s,i,j,j1,j2;
 bool *checklist, coldominatedflag;

 checklist = (bool *)mxMalloc(row*sizeof(bool));
 for(t = 0; t<row; t++) checklist[t] = true;
 for(s = 0; s<row; s++) {
 t=s;
 if (!checklist[t]) continue;
 checklist[t]=false;
 coldominatedflag=true;
 for(i=t+1;i<row;i++) {
 if (!checklist[i]) continue;
 checklist[i]=false;
 for (j=0,j1=i,j2=t;j<col;j++,j1+=row,j2+=row) {
 if (M[j1] < M[j2]) {
 checklist[i]=true;
 break;
 }
 }
 if (!checklist[i]) continue;
 coldominatedflag=false;
 for (j=0,j1=i,j2=t;j<col;j++,j1+=row,j2+=row) {
 if (M[j1] > M[j2]) {
 coldominatedflag=true;
 break;
 }
 }
 if (!coldominatedflag) { //Swap active index continue checking
 front[t]=false;
 checklist[i]=false;
 coldominatedflag=true;
 t=i;
 }
 }
 front[t]=coldominatedflag;
 if (t>s) {
 for (i=s+1; i<t; i++) {
 if (!checklist[i]) continue;
 checklist[i]=false;
 for (j=0,j1=i,j2=t;j<col;j++,j1+=row,j2+=row) {
 if (M[j1] < M[j2]) {
 checklist[i]=true;
 break;
 }
 }
 }
 }
 }
 mxFree(checklist);
}

www.manaraa.com

385

References

Agte, Jeremy S. “Multistate Analysis and Design: Case Studies in Aerospace Design and Long

Endurance Systems.” Ph.D Dissertation. Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology (MIT), Cambridge, MA, 2011.

Agte, Jeremy S., Nicholas Borer, and Olivier de Weck. “Design of Long Endurance Systems

with Inherent Robustness to Partial Failures during Operations,” Journal of Mechanical
Design 134, no. 10: 100903-100918 (2012).

Akins, Keith, Liam Healy, Shannon Coffey, and Mike Picone. “Comparison of MSIS and

Jacchia Atmospheric Density Models for Orbit Determination and Propagation.” Paper
presented at the 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 9-
13 February 2003.

Allen, H. J. and A. J. Eggers, Jr. “A Study of the Motion and Aerodynamic Heating of Ballistic

Missiles Entering the Earth’s Atmosphere at High Supersonic Speeds,” NACA TR 1381.
Moffett Field, CA: AMES Aeronautical Laboratory, 1958.

Allen, Julie D. and Unicode Consortium, eds. The Unicode Standard: Version 5.0. Reading, MA:

Addison-Wesley, 2007.

Anderson Jr., John D. Hypersonic and High-Temperature Gas Dynamics, Second Edition.

Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 2006.

Arora, J. S. Introduction to Optimum Design, Third Edition. Waltham, MA: Academic Press,

2012.

Barbeau, Edward J. Polynomials. New York, NY: Springer-Verlag New York, Inc., 1989.

Barrentine, Larry B. An Introduction to Design of Experiments: A Simplified Approach.
Milwaukee, WI: Quality Press, 1999.

Bate, Roger R., Donald D. Mueller, and Jerry E. White. Fundamentals of Astrodynamics. New

York, NY: Dover Publications, Inc., 1971.

Battin, Richard H. and Robin M. Vaughn. “An Elegant Lambert Algorithm,” Journal of

Spacecraft and Rockets 7, no. 6: 662-670 (1984).

Bedford, Anthony and Wallace Fowler. Engineering Mechanics: Dynamics, Fourth Edition.

Upper Saddle River, NJ: Pearson Prentice Hall, 2005.

Betin, Pierre. “Reflections on the Spaceplane,” Space Policy 7, no. 2: 137-145 (1991).

www.manaraa.com

386

Bettinger, Robert A. and Jonathan T. Black. “Mathematical Relation between the Hohmann
Transfer and Continuous-Low Thrust Maneuvers,” Acta Astronautica, 96: 42-44 (2014).

Brown, Charles D. Elements of Spacecraft Design. Reston, VA: American Institute of

Aeronautics and Astronautics, Inc., 2002.

Brunner, Christopher W. and Ping Lu. “Skip Entry Trajectory Planning and Guidance,” Journal

of Guidance, Control, and Dynamics 31, no. 5: 1210-1219 (2008).

Busemann, Adolf, Nguyen X. Vinh, and Robert D. Culp. “Solution of the Exact Equations for

Three-Dimensional Atmospheric Entry Using Directly Matched Asymptotic
Expansions,” NASA CR-2643. Washington, D.C.: National Aeronautics and Space
Administration, 1976.

Capderou, Michel. Satellites: Orbits and Missions. Paris, France: Springer-Verlag France, 2005.

Chapman, Dean R. “An Approximate Analytical Method for Studying Entry into Planetary

Atmospheres,” NACA TN 4276. Moffett Field, CA: AMES Aeronautical Laboratory,
1958.

Chesley, Bruce, Reinhold Lutz, and Robert F. Brodsky. “Space Payload Design and Sizing,” in

Space Mission Analysis and Design. Ed. James R. Wertz and Wiley J. Larson. El
Segundo, CA: Microcosm Press, 2003.

Chobotov, Vladimir A. Orbital Mechanics, Third Edition. Reston, VA: American Institute of

Aeronautics and Astronautics, Inc., 2002.

Christol, Carl Q. “The Aerospace Plane: Its’ Legal and Political Future,” Space Policy 9, no. 1:

35-43 (1993).

Co, Thomas C. “Operationally Responsive Spacecraft Using Electric Propulsion.” Ph.D

Dissertation, AFIT-ENY-DS-12-01. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, September 2012
(ADA564646).

Committee on the Peaceful Uses of Outer Space. Questionnaire on Possible Legal Issues with

Regard to Aerospace Objects: Replies from Member States. UN doc. A/AC.105/635.
Vienna, Austria: United Nations Office at Vienna, 15 February 1996.

Dalton, Devin K. “Ground Target Over-Flight and Orbital Maneuvering via Aeroassisted

Maneuvers.” MS Thesis, AFIT-ENY-14-M-12. School of Engineering and Management,
Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, March 2014.

Darby, Christopher L., and Anil V. Rao. “Optimal Impulsive LEO to LEO Multiple-Pass

Aeroassisted Orbital Transfer for Small Spacecraft.” Paper presented at the 20th
AAS/AIAA Space Flight Mechanics Meeting, San Diego, CA, 14-17 February 2010.

www.manaraa.com

387

Darby, Christopher. L., and Anil V. Rao. “Minimum-Fuel Low-Earth-Orbit Aeroassisted Orbital

Transfer of Small Spacecraft,” Journal of Spacecraft and Rockets 48, no. 4: 618-628
(2011).

Daryabeigi, Kamran. “Thermal Analysis and Design of Multilayer Insulation for Re-Entry

Aerodynamic Heating,” Journal of Spacecraft and Rockets 39, no. 4: 509-514 (2002).

Der, Gim J. “The Superior Lambert Algorithm.” Paper presented at the Advanced Maui Optical

and Space Surveillance Technologies Conference, Wailea, Maui, HI, 13-16 September
2011.

Detra, R. W., N.H. Kemp, and F. R. Riddell. “Addendum to ‘Heat Transfer to Satellite Vehicles

Re-Entering the Atmosphere,’” Jet Propulsion 27: 1256-1257 (1957).

Deza, Michel M. and Elena Deza. Encyclopedia of Distances, Second Edition. Berlin, Germany:

Springer-Verlag Berlin Heidelberg, 2013.

Diederiks-Verschoor, I. H. Ph. and V. Kopal. An Introduction to Space Law, Third Edition.

Alphen aan den Rijn, The Netherlands: Kluwer Law International, 2008.

Eggers Jr., A. J. and Thomas J. Wong. “Motion and Heating of Lifting Vehicles during

Atmosphere Entry,” American Rocket Society (ARS) Journal, 31: 1364-1375 (1961).

Epperson, James F. An Introduction to Numerical Methods and Analysis. Hoboken, NJ: John

Wiley & Sons, Inc., 2007.

Galman, Barry A. “Some Fundamental Considerations for Lifting Vehicles in Return from

Satellite Orbit,” Planetary and Space Science, 4: 399-410 (1961).

Gargasz, Michael L. “Optimal Spacecraft Attitude Control Using Aerodynamic Torques.” MS

Thesis, AFIT-ENY-GA-07-M-08. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, March 2007 (ADA469919).

Geddes, Keith O., Stephen R. Czapor, George Labahn. Algorithms for Computer Algebra.

Norwell, MA: Kluwer Academic Publishers, 1992.

Giunta, Anthony A., Vladimir Balabanov, Dan Haim, Bernard Grossman, William H. Mason,

Layne T. Watson, and Raphael T. Haftka. “Multidisciplinary Optimization of a
Supersonic Transport Using Design of Experiments Theory and Response Surface
Modeling,” TR 97-10. Blacksburg, VA: Virginia Polytechnic Institute and State
University, 2001.

Gong, Leslie, William L. Ko, Robert D. Quinn, and W. Lance Richards. “Comparison of Flight-

Measured and Calculated Temperatures on the Space Shuttle Orbiter,” NASA TM 88278.
Edwards, CA: NASA Dryden Flight Research Facility, 1987.

www.manaraa.com

388

Gonzalez, Daniel, Mel Eisman, Calvin Shipbaugh, Timothy Bonds, and Anh Tuan Le.

Proceedings of the RAND Project AIR FORCE Workshop on Transatmospheric Vehicles.
Santa Monica, CA: RAND Corporation, 1997.

Gooding, R. H. “A Procedure for the Solution of Lambert’s Orbital Boundary-Value Problem,”

Celestial Mechanics and Dynamical Astronomy 48, no. 2: 145-165 (1990).

Gorove, Katherine M. “Delimitation of Outer Space and the Aerospace Object – Where is the

Law?” Journal of Space Law 28, no. 1: 11-28 (2000).

Granger, Robert A. Fluid Mechanics. Mineola, NY: Dover Publications, Inc., 1995.

Guettler, David B. “Satellite Attitude Control Using Atmospheric Drag.” MS Thesis, AFIT-

ENY-GA-07-M-10. School of Engineering and Management, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, March 2007 (ADA469265).

Hajovsky, Blake B. “Satellite Formation Control Using Atmospheric Drag.” MS Thesis, AFIT-

ENY-GA-07-M-11. School of Engineering and Management, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, March 2007 (ADA469289).

Hall, Timothy S. “Orbit Maneuver for Responsive Coverage Using Electric Propulsion.” MS

Thesis, AFIT-ENY-GSS-10-M-04. School of Engineering and Management, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, March 2010 (ADA516854).

Hanson, John M. “Combining Propulsive and Aerodynamic Maneuvers to Achieve Optimal

Orbital Transfer,” Journal of Guidance, Control, and Dynamics 12, no. 5: 732-738
(1989).

Harris, Alexandra and Ray Harris. “The Need for Air Space and Outer Space Demarcation,”

Space Policy 22, no. 1: 3-7 (2006).

Havey Jr., Keith A. “Entry Vehicle Performance in Low-Heat-Load Trajectories,” Journal of

Spacecraft and Rockets, 19: 506-512 (1982).

Hedayat, A. S., N. J. A. Sloane, and John Stufken. Orthogonal Arrays: Theory and Applications.

New York, NY: Springer Verlag New York, Inc., 1999.

Heppenheimer, T. A. The Space Shuttle Decision: NASA’s Search for a Reusable Space Vehicle.

Washington, D.C.: National Aeronautics and Space Administration, 1999.

Hicks, Kerry D. Introduction to Astrodynamic Re-Entry, TR 09-03. Wright-Patterson AFB, OH:

Air Force Institute of Technology, 2009.

Hobe, Stephan, Gerardine M. Goh, and Julia Neumann. “Space Tourism Activities – Emerging

Challenges to Air and Space Law?” Journal of Space Law 33, no. 2: 359-374 (2007).

www.manaraa.com

389

Huttenlocher, Daniel P., Gregory A. Klanderman, and William J. Rucklidge. “Comparing Images

Using the Hausdorff Distance,” IEEE Transactions on Pattern Analysis and Machine
Intelligence 15, no. 9: 850-863 (1993).

Ikawa, H. and T. F. Rudiger. “Synergetic Maneuvering of Winged Spacecraft for Orbital Plane

Change.” Paper presented at the AIAA 20th Aerospace Sciences Meeting, Orlando, FL,
11-14 January 1982.

Jolley, Patrick R. and Stephen A. Whitmore. “Aerodynamic and Propulsion Assisted

Maneuvering for Orbital Transfer Vehicles.” Paper presented at the 5th Responsive Space
Conference, Los Angeles, CA, 23-26 April 2007.

Johnson, Richard E. “Effects of Thrust Vector Control on the Performance of the Aerobang
Orbital Plane Change Maneuver.” MS Thesis; Department of Aeronautical and
Astronautical Engineering, Naval Postgraduate School, Monterey, CA, June 1993
(ADA272532).

Kay, W. D. “The X-15 Hypersonic Flight Research Program: Politics and Permutations at

NASA,” in From Engineering Science to Big Science: The NACA and NASA Collier
Trophy Research Project Winners. Ed. Pamela E. Mack. Washington D.C.: U.S.
Government Printing Office, 1998.

Kelley, C. T. Solving Nonlinear Equations with Newton’s Method. Philadelphia, PA: Society for

Industrial and Applied Mathematics (SIAM), 2003.

King-Hele, Desmond. Satellite Orbits in an Atmosphere: Theory and Applications. Glasgow,

Scotland: Blackie and Son Ltd., 1987.

Kleijnen, Jack P. C. Design and Analysis of Simulation Experiments. New York, NY: Springer

Science + Business Media, LLC, 2008.

Kluever, C. A. “Entry Guidance Using Analytical Atmospheric Skip Trajectories,” Journal of

Guidance, Control, and Dynamics 31, no. 5: 1531-1534 (2008).

Ko, William L., Leslie Gong, and Robert D. Quinn. “Re-Entry Thermal Analysis of a Generic

Crew Exploration Vehicle Structure,” NASA TM 2007-214607. Edwards, CA: NASA
Dryden Flight Research Facility, 2007.

Ko, William L., Robert D. Quinn, and Leslie Gong. “Finite Element Re-Entry Heat Transfer

Analysis of Space Shuttle Orbiter,” NASA TP 2657. Edwards, CA: NASA Dryden Flight
Research Facility, 1986.

Kovvali, Narayan. Theory and Applications of Gaussian Quadrature Methods. New York:

Morgan & Claypool Publishers, 2011.

www.manaraa.com

390

Kuneš, Joseph. Dimensionless Physical Quantities in Science and Engineering. Waltham, MA:
Elsevier Inc., 2012.

Lee, Dorothy B., John J. Bertin, and Winston D. Goodrich. “Heat-Transfer Rate and Pressure

Measurements Obtained during Apollo Orbital Entries,” NASA TN D-6028. Washington,
D.C.: National Aeronautics and Space Administration, 1970.

Levin, Henry M. and Patrick J. McEwan. Cost-Effectiveness Analysis, Second Edition. Thousand

Oaks, CA: Sage Publications, Inc., 2001.

Lindeburg, Michael P. Engineering Unit Conversion, Fourth Edition. Belmont, CA: Professional

Publications, Inc., 1999.

Long, S.A.T. “General-Altitude Transformations between Geocentric and Geodetic

Coordinates,” Celestial Mechanics 12: 225-230 (1975).

Longley, Paul, Michael F. Goodchild, David J. Maguire, and David W. Rhind. Geographic

Information Systems and Science. Hoboken, NJ: John Wiley & Sons, Inc., 2005.

Lundstedt, Torbjörn, Elisabeth Seifert, Lisbeth Abramo, Bernt Thelin, B., Åsa Nyström, Jarle

Petterson, and Rolf Bergman. “Experimental Design and Optimization,” Chemometrics
and Intelligent Laboratory Systems 42, no. 1-2: 3-40 (1998).

Lyall, Francis and Paul B. Larsen. Space Law: A Treatise. Surrey, United Kingdom: Ashgate

Publishing Limited, 2009.

Marín, E., A. Calderón, and O. Delgado-Vasallo. “Similarity Theory and Dimensionless

Numbers in Heat Transfer,” European Journal of Physics 30: 439-445 (2009).

McNabb, Dennis J. “Investigation of Atmospheric Re-Entry for the Space Maneuver Vehicle.”

MS Thesis, AFIT-ENY-GA-04-M-03. School of Engineering and Management, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH, March 2004
(ADA424074).

McNish, Larry. “Latitude and Longitude.” RASC Calgary Centre, The Royal Astronomical

Society of Canada. Last modified 11 November 2011. Accessed 17 August 2012.
http://calgary.rasc.ca/latlong.htm.

Miele, A., W. Y. Lee, and K. D. Mease. “Optimal Trajectories for LEO-to-LEO Aeroassisted

Orbital Transfer,” Acta Astronautica 18: 99-122 (1988).

Moore, F. K. “Entry Radiative Transfer,” in Re-Entry and Planetary Entry Physics and

Technology: Dynamics, Physics, Radiation, Heat Transfer, and Ablation. Ed. W. H. T.
Loh. New York, NY: Springer-Verlag New York Inc., 1968.

www.manaraa.com

391

Murphy, Kevin J., Robert J. Nowak, Richard A. Thompson, and Brian R. Hollis. “X-33
Hypersonic Aerodynamic Characteristics,” Journal of Spacecraft and Rockets 38, no. 5:
670-683 (2001).

Naidu, D. S. “Three-Dimensional Atmospheric Entry Problem Using Method of Matched

Asymptotic Expansions,” IEEE Transactions on Aerospace and Electronic Systems 25,
no. 5: 660-667 (1989).

National Aeronautics and Space Administration. “Process for Limiting Orbital Debris,” NASA

STD 8719.14A. Washington, D.C.: National Aeronautics and Space Administration,
2012.

National Research Council. Aeronautics and Space Engineering Board. Continuing Kepler’s

Quest: Assessing Air Force Space Command’s Astrodynamics Standards. Washington,
D.C.: The National Academies Press, 2012.

Newberry, Robert D. “Powered Spaceflight for Responsive Space Systems,” High Frontier 1:

46-49 (2005).

Nicholson, John C. “Numerical Optimization of Synergistic Maneuvers.” MS Thesis;

Department of Aeronautical and Astronautical Engineering, Naval Postgraduate School,
Monterey, CA, June 1994 (ADA283398).

O’Leary, Michael. Revolutions of Geometry. Hoboken, NJ: John Wiley & Sons, Inc., 2010.

Olfe, Daniel B. “Radiation Gasdynamics,” in Radiation and Re-Entry. Ed. S. S. Penner and

Daniel B. Olfe. New York, NY: Academic Press Inc., 1968.

Parish II, Michael S. “Optimality of Aeroassisted Orbital Plane Changes.” MS Thesis;

Department of Aeronautical and Astronautical Engineering, Naval Postgraduate School,
Monterey, CA, December 1995 (ADA306573).

Peterson, Roger P. Design and Analysis of Experiments. New York, NY: Marcel Dekker, Inc.,

1985.

Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical

Recipes: The Art of Scientific Computing. Cambridge, United Kingdom: Cambridge
University Press, 1988.

Powell, R.W., J.C. Naftel, and M.J. Cunningham. “Performance Evaluation of an Entry Research

Vehicle,” Journal of Spacecraft and Rockets 24: 489-495 (1987).

Putnam, Zachary R., Matthew D. Neave, and Gregg H. Barton. “PredGuid Entry Guidance for

Orion Return from Low Earth Orbit.” Paper presented at the 2010 IEEE Aerospace
Conference, Big Sky, Montana, 6-13 March 2010.

www.manaraa.com

392

Rao, Anil V. and Arthur E. Scherich. “A Concept for Operationally Responsive Space Mission
Planning Using Aeroassisted Orbital Transfer.” Paper presented at the 6th Responsive
Space Conference, Los Angeles, CA, 28 April – 1 May 2008.

Rao, Anil V., Sean Tang, and Wayne P. Hallman. “Numerical Optimization Study of Multiple-

Pass Aeroassisted Orbital Transfer,” Optimal Control Applications and Methods 23: 215-
238 (2002).

Rekab, Kamel and Muzaffar Shaikh. Statistical Design of Experiments with Engineering

Applications. Boca Raton, FL: Taylor and Francis Group, LLC., 2005.

Ross, I. Michael and John C. Nicholson. “Optimality of the Heating-Rate-Constrained

Aerocruise Maneuver,” Journal of Spacecraft and Rockets 35, no. 3: 361-364 (1998).

Silva, J. Dario Landa, Edmund K. Burke, and Sanja Petrovic. “An Introduction to Multiobjective

Metaheuristics for Scheduling and Timetabling,” in Metaheuristics for Multiobjective
Optimization. Ed. Xavier Gandibleux, Marc Sevaux, Kenneth Sörensen, and Vincent
T’kindt. Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2004.

Speyer, J. L. and M. E. Womble. “Approximate Optimal Atmospheric Entry Trajectories,”

Journal of Spacecraft and Rockets 8: 1120-1125 (1971).

Stanik, Joseph T. El Dorado Canyon: Reagan’s Undeclared War with Qaddafi. Annapolis, MD:

Naval Institute Press, 2003.

Storch, J. A. Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow. El Segundo,

CA: The Aerospace Corporation, 2002.

Su, Jinyuan. “Near Space as a Sui Generis Zone: A Tri-Layer Approach of Delimitation,” Space

Policy 29, no. 2: 90-92 (2013).

Sun, Yong and Maorui Zhang. “Optimal Re-Entry Range Trajectory of Hypersonic Vehicle by

Gauss Pseudospectral Method.” Paper presented at the 2nd International Conference on
Intelligent Control and Information Processing, Harbin, China, 25-28 July 2011.

Talbi, El-Ghazali. Metaheuristics: From Design to Implementation. Hoboken, NY: John Wiley

& Sons, Inc., 2009.

Tauber, Michael E. “Maximum Lift/Drag Ratio of Flat Plates with Bluntness and Skin Friction at

Hypersonic Speeds,” NASA TM 88338. Moffett Field, CA: AMES Research Center,
1986.

Terekhov, Andrei D. “Passage of Space Objects through Foreign Airspace: International

Custom?” Journal of Space Law 25, no. 1: 1-16 (1997).

Tewari, Ashish. Atmospheric and Space Flight Dynamics. Boston, MA: Birkhäuser, 2007.

www.manaraa.com

393

The Center for Space Standards & Innovation. “Molniya 3-42 TLE.” NORAD Two-Line

Element Sets, CelesTrak. Last modified 29 January 2014. Accessed 29 January 2014.
http://www.celestrak.com/NORAD/elements/molniya.txt.

United Nations General Assembly. Convention on Registration of Objects Launched into Outer

Space. 28 U.S.T. 695, 1023 U.N.T.S. 15. New York, NY: United Nations Office at New
York, 14 January 1975.

Vallado, David A. Fundamentals of Astrodynamics and Applications, Third Edition. El Segundo,

CA: Microcosm Press, 2007.

Van Nimmen, Jane, Leonard C. Bruno, and Linda N. Ezell. NASA Historical Data Book, Volume

VII: NASA Launch Systems, Space Transportation, Human Spaceflight, and Space
Science, 1989-1998. Washington D.C.: U.S. Government Printing Office, 1999.

Viikari, Lotta. The Environmental Element in Space Law: Assessing the Present and Charting

the Future. Leiden, The Netherlands: Koninkliijke Brill NV, 2008.

Vincenty, Thaddeus. “Direct and Inverse Solutions of Geodesics on the Ellipsoid with

Applications of Nested Equations,” Survey Review XXII 176: 88-93 (1975).

Vinh, Nguyen X., Adolf Busemann, and Robert D. Culp. Hypersonic and Planetary Entry Flight

Mechanics. Ann Arbor, MI: The University of Michigan Press, 1980.

Vinh, N. X., A. Busemann, and R. D. Culp. “Optimum Three-Dimensional Atmospheric Entry,”

Acta Astronautica 2: 593-611 (1975).

Vinh, N. X. and John M. Hanson. “Optimal Aeroassisted Return from High Earth Orbit with

Plane Change,” Acta Astronautica, 12: 11-25 (1985).

Vinh, N. X. and Der-Ming Ma. “Optimal Multiple-Pass Aeroassisted Plane Change,” Acta

Astronautica 21: 749-758 (1990).

Vinh, N. X. and Ya-Wen Shih. “Optimum Multiple-Skip Trajectories,” Acta Astronautica 41:

103-112 (1997).

Wang, Yalin, Qilong Han, and Haiwei Pan. “A Clustering Scheme for Trajectories in Road

Networks,” in Advanced Technology in Teaching – Proceedings of the 2009 3rd
International Conference on Teaching and Computational Science. Ed. Yanwen Wu.
Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2012.

Weisstein, Eric W. CRC Concise Encyclopedia of Mathematics, Second Edition. Boca Raton,

FL: CRC Press LLC, 2003.

www.manaraa.com

394

Vita

Captain Robert A. Bettinger graduated from Niagara-Wheatfield Central High School in

Wheatfield, New York in June 2003. He attained a nomination to and entered the United States

Air Force Academy in Colorado Springs, Colorado where he graduated with a Bachelor of

Science in Astronautical Engineering, was recognized as a Distinguished Graduate, and received

a Regular Commission in May 2007.

 As his first assignment, Captain Bettinger was sent to Kirtland AFB, New Mexico where

he began work as a Research Engineer for Spacecraft Navigation and Guidance in the Air Force

Research Laboratory’s Space Vehicle Directorate in November 2007. Soon after his start at

Kirtland AFB, Captain Bettinger entered the American Public University (APU) and, in May

2010, attained his Master’s degree in History with an emphasis on European History. Following

his assignment in New Mexico, he entered the Graduate School of Engineering and

Management, Air Force Institute of Technology (AFIT) in May 2010 and completed his Master’s

degree in Astronautical Engineering in June 2011. Immediately thereafter, Captain Bettinger

transitioned into the Ph.D program at AFIT and continued his graduate research in re-entry

dynamics and aeroassisted, trans-atmospheric maneuvers. Following an interim assignment at the

National Air and Space Intelligence Center (NASIC) upon conferral of his doctorate in 2014,

Captain Bettinger will be assigned to the United States Air Force Academy in 2017 where he

will be an instructor within the Department of Astronautics.

www.manaraa.com

395

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD–MM–YYYY)

19-06-2014
2. REPORT TYPE

Dissertation
3. DATES COVERED (From — To)

July 2011 – June 2014
4. TITLE AND SUBTITLE
The Prospect of Responsive Spacecraft Using
Aeroassisted, Trans-Atmospheric Maneuvers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Bettinger, Robert A, Capt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER

AFIT-ENY-DS-14-J-13

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Intentionally Left Blank

10. SPONSOR/MONITOR’S ACRONYM(S)
N/A

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

N/A
12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A. Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
14. ABSTRACT
Comprised of exo- and trans-atmospheric trajectory segments, atmospheric re-entry represents a complex
dynamical event which traditionally signals the mission end-of-life for low-Earth orbit spacecraft. Transcending this
paradigm, atmospheric re-entry can be employed as a means of operational maneuver whereby aerodynamic
forces can be exploited to create an aeroassisted maneuver. Utilizing a notional trans-atmospheric, lifting re-entry
vehicle with L/D =6, the first phase of research demonstrates the terrestrial reachability potential for skip entry
aeroassisted maneuvers. By overflying a geographically diverse set of ground targets, comparative analysis
indicates a significant savings in ΔV expenditure for skip entry compared with exo-atmospheric maneuvers. In the
second phase, the Design of Experiments method of orthogonal arrays provides optimal vehicle and skip entry
trajectory designs by employing main effects and Pareto front analysis. Depending on re-circularization altitude,
the coupled optimal design can achieve an inclination change of 19.91 deg with 50-85% less ΔV than a simple
plane change. Finally, the third phase introduces the descent-boost aeroassisted maneuver as an alternative to
combined Hohmann and bi-elliptic transfers in order to perform LEO injection. Compared with bi-elliptic transfers,
simulations demonstrate that a lifting re-entry vehicle performing a descent-boost maneuver requires 6-12% less
for injection into orbits lower than 650 km. In addition, the third phase also introduces the “Maneuver Performance
Number” as a dimensionless means of comparative maneuver effectiveness analysis.
15. SUBJECT TERMS
Aeroassisted; re-entry; skip entry; descent-boost; plane change; design of experiments; MP number

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

413

19a. NAME OF RESPONSIBLE PERSON
Dr. Jonathan T. Black, AFIT/ENY

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)
(937) 255-6565 x4578
jonathan.black@afit.edu

	Air Force Institute of Technology
	AFIT Scholar
	6-19-2014

	The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers
	Robert A. Bettinger
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I. Introduction
	General Issue
	Research Motivation
	Methodology
	Preview

	II. Literature Review
	Chapter Overview
	Types of Aeroassisted Maneuvers
	Summary
	Chapter Overview
	Planetary Ellipticity
	/
	Atmospheric Density and Dynamics
	TAV Mass Properties
	Chapter Overview
	Introduction
	Simulation of Planar Phasing Maneuvers
	Simulation of Out-of-Plane Skip Entry Maneuvers
	Simulation of Simple Plane Change Maneuvers
	Results and Analysis
	Maneuver Performance Comparison for Select Ground Targets
	Analysis of Out-of-Plane Skip Entry Maneuvers
	Chapter Overview
	Introduction
	Methods of Maneuver Optimization
	Methodology
	Results and Analysis
	Constant Bank Angle Analysis
	Chapter Overview
	Introduction
	Maneuver Performance (MP) Number
	Results and Analysis
	Circular Orbit Injection
	Molniya Orbit Injection
	Summary and Conclusion
	Chapter Overview
	Introduction
	Applicability of Air and Space Law
	Spatialism and Aeroassisted Maneuver Altitude Delimitation
	Functionalism and TAV Classification
	Environmental Considerations

	VIII. Conclusions and Recommendations
	Conclusions of Research
	Significance of Research
	Recommendations for Future Research
	Hohmann Transfer182F
	Combined Hohmann Transfer184F
	Bi-Elliptic Transfer185F
	Phasing Maneuvers

	References

